Catalysis

1. What Is Catalysis?

2. History of Catalysis?

3. Definition of catalysis

4. Catalysis Concept?
5. Using Catalysis approach in System Analysis and Design.
Rujukan

http://www.catalysis.org/index.htm
http://www.trireme.u-net.com/catalysis/
What is Catalysis
Catalysis is a next generation approach for the systematic business-driven development of component-based systems, based on the industry standard Unified Modeling Language (UML). In development and application since 1992, it has been used by Fortune 500 companies in fields including finance, telecommunication, insurance, manufacturing, embedded systems, process control, flight simulation, travel and transportation, and systems management. Catalysis is a non-proprietary method, in use in many projects, and supported by tools and related products and services from several companies. The original developers of Catalysis are Desmond D'Souza and Alan Wills, who co-authored the first Catalysis book.

Defination
Catalysis
An acceleration of the rate of a process or reaction, brought about by a catalyst, usually present in small managed quantities and unaffected at the end of the reaction. A catalyst permits reactions or processes to take place more effectively or under milder conditions than would otherwise be possible.
In the context of system modeling and software development, the name describes an approach which makes the development process more repeatable, scalable, and effective. Catalysis is a service mark of ICON Computing, a wholly owned subsidiary of Platinum Technology.

Concept
At its core, Catalysis is based on a very small number of precisely defined UML concepts that can be combined and used in increasingly sophisticated ways. All higher-level modeling constructs are ultimately defined in terms of this core, and could, in theory, be translated to them. At its core it is correspondingly simple, and applying it in its light form is easy and suitable for some projects; applying it in full, with rigor, precision, and sophistication takes more investment and offers corresponding benefits to other projects (more details in the Process section).

Having such a small core has some nice benefits. Basic but effective use becomes simpler: to use Catalysis on a project you just need to understand a couple of key concepts such as collaborations and refinement. As your usage becomes more sophisticated you do not need to understand new fundamental concepts, but simply better ways to use that core. The method itself becomes more robust, since the relationships between the different views is precisely defined. Hence new views, constructs, and notations can be added with far less risk of ending up with a "kitchen sink" approach, in which the individual pieces may be useful but how they fit together remains unclear. Tools can provide more meaningful support for the method and process, instead of the overpriced "smart-drawings-plus-database" version that we have unfortunately become accustomed to.

Because Catalysis encourages certain separations of concerns that are often overlooked (e.g. interface specifications from implementations, architectural definitions from their applications), there is still a learning curve associated with it despite its simple core; the same is true of any other systematic approach to modeling and design. Moreover, Catalysis provides a very concrete basis for things traditionally left very vague in other methods - architecture, testing, configuration management, non-functional requirements. The alternative path of starting up a rich and complex notational set (e.g. the complete UML notation) without the usage guidelines, separations, and semantics, would be easy to learn on the surface, but of far less value in practice.

