
Presented by
William Ebenezer

ITC Infotech India Ltd.

Architectural & Use Case Analysis

© ITC Infotech India Ltd

Architectural & Use Case Analysis

Architecture Definition

The RUP defines architecture as

“the highest level concept of a system in its environment. The
architecture of a software system (at a given point in time) is its
organization or structure of significant components interacting through
interfaces, those components being composed of successively smaller
components and interfaces.”

More Definitions

Architectural investigation

Identify functional and non-functional requirements that have significant

impact on the system design.

Architectural design

Resolve the forces and requirements in the design of the software.

So What is it …..

Architectural Investigation

+
Architectural Design

=
Architectural Analysis

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

Architectural Analysis Overview

Supplementary
Specifications

Glossary

Use-Case Model

Architectural
Analysis

Use Case Realization

Architecture Document

Design Model

Design Model

Design
Guidelines Design

Guidelines

Architectural Analysis Topics

Key Architectural Analysis Concepts

Modeling Conventions

Analysis Mechanisms

Key System Concepts

Architectural Patterns

Architecture: The “4+1 View” Model

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user
Functionality

Programmers
Software management

Performance
Scalability
Throughput

System integrators
System topology

Delivery, installation
communication

System engineering

Analysts/Designers
Structure

Architectural Analysis Topics

Key Architectural Analysis Concepts

Modeling Conventions

Analysis Mechanisms

Key System Concepts

Architectural Patterns

Modeling Conventions

What Are They?
What diagrams and modeling elements to use

Rules for the use of modeling elements and diagrams

Naming conventions

Architectural Analysis Topics

Key Architectural Analysis Concepts

Modeling Conventions

Analysis Mechanisms

Key System Concepts

Architectural Patterns

What Are They?

Architectural Mechanisms
Analysis Mechanisms (conceptual)
Design Mechanisms (concrete)
Implementation Mechanisms (actual)

Sample Analysis Mechanisms

Persistency
Communication (IPC and RPC)
Message routing
Distribution
Transaction management
Process control and synchronization (resource contention)
Information exchange, format conversion
Security
Error detection / handling / reporting
Redundancy
Legacy Interface

Analysis Mechanism Characteristics

Persistency
Granularity
Volume
Duration
Access mechanism
Access frequency (creation/deletion, update, read)
Reliability

Security
Data granularity
User granularity
Security rules
Privilege types

Describing Analysis Mechanisms

Collect all analysis mechanisms in a list
Draw a map of the client classes to the analysis mechanisms

Analysis Class Analysis Mechanism(s)

Architectural Analysis Topics

Key Architectural Analysis Concepts
Modeling Conventions
Analysis Mechanisms
Key System Concepts
Architectural Patterns

Identify Key Concepts

Define preliminary entity analysis classes
Domain knowledge
Requirements
Glossary
Domain/Business Model (if exists)

Example: Key Concepts

Course
(from University Artifacts)

<<entity>>
CourseCatalog

(from Course Catalog)

<<entity>>

Professor
(from University Artifacts)

<<entity>>

CourseOffering
(from University Artifacts)

<<entity>>

Grade
(from University Artifacts)

<<entity>>

Student
(from University Artifacts)

<<entity>>

Schedule
(from University Artifacts)

<<entity>>

Architectural Analysis Topics

Key Architectural Analysis Concepts

Modeling Conventions

Analysis Mechanisms

Key System Concepts

Architectural Patterns

Architectural Patterns

Layers
Model-view-controller (M-V-C)
Pipes and filters
Blackboard

Typical Layering Approach

General
functionality

Specific
functionality

Organization of the Model

Course Catalog
(from Business Objects)

University Artifacts
(from Business Objects)

RegistrarInterface
(from User Interface)

Finance System
(from Business Services)

Student Evaluation
(from Business Services)

Registration
(from Business Services)

StudentInterface
(from User Interface)

ProfessorInterface
(from User Interface)

User Interface Layer

Business Services Layer

Business Objects Layer

Use Case Analysis

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

Student Course Catalog SystemRegister for Courses

Use-Case Model

Sample Use Case

Use Case Analysis Activity

Create an Use-Case Realization
Supplement the Use-Case descriptions
Find Analysis Classes from Use-Case Behavior
Distribute Behavior to Analysis Classes

Class Diagrams

Sequence Diagrams

Use Case

Collaboration Diagrams

Use-Case Model Design Model

Use Case Use-Case Realization

Use-Case Realization

Use Case Analysis Activity

Create an Use-Case Realization
Supplement the Use-Case descriptions
Find Analysis Classes from Use-Case Behavior
Distribute Behavior to Analysis Classes

• The system
displays a
list of
course
offerings.

• The system
retrieves and
displays a list of
current course
offerings from the
course catalog
legacy database.

Supplement Use-Case Description

Use Case Analysis Activity

Create an Use-Case Realization
Supplement the Use-Case descriptions
Find Analysis Classes from Use-Case Behavior
Distribute Behavior to Analysis Classes

System
boundary Use-case

behavior
coordination

System
information

<<boundary>>

<<control>>

<<entity>>

Analysis Classes

Environment Dependent

Analysis class
stereotype

Boundary Classes

Intermediates between the interface and something outside the
system
Several Types

User interface classes
System interface classes
Device interface classes

One boundary class per actor/use case pair

Student Course Catalog SystemRegister for Courses

RegisterForCoursesForm CourseCatalogSystem

Finding Boundary Classes

One boundary class per actor/use case pair

Entity Classes

Typically store + manage data
Represent key concepts
Show logical data structure
Usually not specific to one use case
May model real world objects

Control Classes

Use-case behavior coordinator

Interacts with several entity classes

Effectively decouples boundary and entity classes

One control class per use case

Course Catalog SystemRegister for CoursesStudent

RegistrationController

Finding Control Classes

One control class per use case

Student Course Catalog SystemRegister for Courses

Use-Case Model

Design Model

RegisterForCoursesForm CourseCatalogSystem Student Schedule

CourseOffering RegistrationController

Summary: Analysis Classes

Analysis Class Analysis Mechanism(s)

Student

CourseOffering
Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface
Persistency, Legacy Interface

Distribution

Schedule Persistency, Security

Map from Use-Case Analysis

Map Analysis Classes to Architectural Mechanisms

Use Case Analysis Activity

Create an Use-Case Realization
Supplement the Use-Case descriptions
Find Analysis Classes from Use-Case Behavior
Distribute Behavior to Analysis Classes

: Student
: RegisterForCoursesForm : RegistrationController : Course Catalog: CourseCatalogSystem

A list of the available
course offerings for this
semester are displayed

1: // Register)

5: // display course offerings()

2: // get course offerings()

3: // get course offerings(forSemester)

4: // get course offerings()

Distribute Behavior

RegisterForCoursesForm

// submit schedule()
// display course offerings()
// display schedule()
// save schedule()
// create schedule()
// select 4 primary and 2 alternate offerings()
// display blank schedule()

(from Registration)

<<boundary>>

Student.

- name
- address
- studentID : int

// addSchedule()
// getSchedule()
// hasPrerequisites()
// passed()

(from University Artifacts)

<<entity>>

RegistrationController

// submit schedule()
// save schedule()
// create schedule with offerings()
// getCourseOfferings()

(from Registration)

<<control>>

0..1

0..1registrant

1 1 Schedule

semester

// submit()
// save()
// any conflicts?()
// new()

(from University Artifacts)

<<entity>>

0..*

1

0..1

0..1

Current Schedule

CourseOffering

number
startTime
endTime
days

// addStudent()
// removeStudent()
// new()

(from University Artifacts)

<<entity>>

0..*

0..4
primaryCourses

0..*

alternateCourses

Distribute Behavior

Road Map

Thank You

william.ebenezer@itcinfotech.com

