
Architectural Patterns for Usability
Len Bass and Bonnie E. John

 Software Engineering Institute/Human Computer Institute
Carnegie Mellon University
Pittsburgh, Pa, 15213 USA

412.268.6763
{len.bass,bonnie.john}@cmu.edu

ABSTRACT

Facets of usability that require architectural support such as cancellation, undo, and progress bars are identified.
For each facet, an architectural pattern is described that
supports the achievement of the facet. Facets of usability
that require architectural support are difficult to add after
the initial design of a system has been completed and,
hence, it is critical to identify these facets prior to initial
system design.

Keywords
 Software Architecture, Usability, Architectural patterns

1. Introduction
Usability is important for interactive systems. No one
would dispute this. Hence it is important to design
systems to support usability. Achieving usability for an
interactive system depends on a number of factors. The
functions provided by the system must accomplish the
intended tasks, fit within the work context of the user, be
understandable and clearly visible through the user
interface. The input and output devices and layout must be
correct for the class of users of the system and their
physical work environment. The software architecture must
be designed to support the user in the achievement of the
necessary tasks.

In recent work undertaken at the Software Engineering
Institute, we have focussed on determining the facets of
usability that require software architectural support.

2. Software Architecture
Software architecture comprises the earliest design
decisions for a system. They underlie subsequent decisions
and are the most difficult to modify. In previous work on
supporting usability through software architecture, the
focus was on supporting the iterative design process by
allowing the presentation and input/output devices to vary.
This was accomplished by separating the presentation from
the remainder of the application. Separation is an
architectural technique that restricts the impact of
modifications.

Separating the presentation thus makes modification of the
user interface relatively easy after user testing reveals
problems with the interface. MVC, PAC, Seeheim, and
Arch/Slinky are examples of architectural patterns based on
separating the user interface from the remainder of the
system. See Chapter 6 of [2] for a discussion of these
patterns and for references to additional sources.

Separation of the user interface has been quite effective, and
is commonly used in practice, but it has problems. These
problems are, first, there are some aspects of usability that
are not impacted by separation and, secondly, the later
changes are made to the system, the more expensive they
are to achieve. Forcing usability to be achieved through
modification means that time and budget pressures will cut
off iterations on the user interface and result in a system
that is not as usable as possible.

3. An example of our approach
Our approach is more proactive and complementary to
separation. We identified a set of specific usability
scenarios that have software architectural implications. This
set currently contains 26 scenarios. Although we make no
claim, yet, that these scenarios are exhaustive, they seem to
cover much of what people typically mean by usability
(e.g., efficiency, learnability, some aspects of user
satisfaction). For each one of these aspects, we identified
an architectural pattern that enables the achievement of that
scenario. We then organized these scenarios and patterns in
a fashion we will discuss after we introduce an example.

Consider cancellation. Users require the capability to cancel
an active command for most commands. It does not matter
why they wish to cancel, they may have made a slip of the
mouse or changed their mind, they may have been
exploring the effects of an unknown command but do not
wish to wait. Once a command has been cancelled, the
system should be returned to the state it was in prior to the
issuance of the command. One architectural pattern for
achieving cancellation is for the system to maintain a
thread of control that listens for the user to issue a
cancellation command. This thread should be separate from
the thread executing the command Furthermore, the
component that implements the issued command must save
its state prior to beginning work on the command so that
this state can be restored if the user does, in fact, cancel the
command. The architectural pattern we have produced for

the cancellation scenario discusses these and other aspects
of supporting cancellation.

Other examples of usability facets that require software
architectural support are undo, progress bars for feedback to
the user, and propagation of known information to input
forms. This last scenario would support, for example,
allowing the user to input name or address once and then
automatically filling in this information in portions of the
user interface that require it.

Once we generated our 26 scenarios, we then organized
them in two separate fashions. We organized them into a
hierarchy that represents benefits to the organization from
applying these scenarios. For example, “accommodates
users’ mistakes” and “supports problem solving” are entries
in this hierarchy. Each scenario was placed into one or
more positions in this hierarchy. The second organization
was into a hierarchy of software architectural mechanisms.
“Recording state” and “preemptive scheduling” are two of
the items in this hierarchy. Again, each scenario was placed
into one or more positions in the hierarchy.

The hierarchies were then treated as the two axes of a
matrix and each scenario was placed in the appropriate
cells. That is, if a scenario provided a single benefit to the
users and required a single architectural mechanism to be in
place, then it would show up in a single cell in the matrix
indexed by its position in the two hierarchies. Most
scenarios provide more than one benefit and require more
than one architectural mechanism and therefore occupy
several cells in the matrix. Figure 1 gives a small portion
of this matrix.

For the designer, the matrix can be used in two fashions. If
the desired benefits to the organization are known, then the
matrix can be used to determine which scenarios are
relevant to that benefit and which software architectural
mechanisms should be included in the system to achieve
those benefits. If one scenario is to be included in the
system then an examination of the matrix will yield other
scenarios that could be incorporated into the system at a
small incremental cost. See [4] for a full description of the
scenarios, the hierarchies, the architectural patterns, and the
matrix.

We have used these scenarios in three different design or
analysis situations on two commercial and one prototype
systems. The design context was using the Attribute
Driven Design method [1] and the analysis context was
using the Attribute Trade-off Analysis Method [5]. The
systems for which the usability scenarios were applied were
a large financial system, a driver information system, and a
multi-user meeting support system. That is, we have
applied these in a variety of different domains. In each case,
the scenarios discovered issues in the user interface design

that would have otherwise gone undiscovered, at least
through initial implementation.

Accelerates error-freeportion of routineperformanceReduces impact ofslipsDataNavigating with asingle viewCommandsAggregatingcommandsAggregatingcommandsReplicationUsability BenefitsArchitecturalMechanisms

Figure 1: A sample of four cells of the benefit/mechanism
hierarchy. The full hierarchy is 9 benefits by 13
mechanisms, or 117 cells.

4. Trade-offs with other attributes
Usability is important but it must be considered in the
context of other important attributes. That is if a particular
architectural pattern is used to support usability, what are
its performance, availability, security, and modifiability
impacts. The usability work we are reporting on here is a
portion of a larger project to understand the trade-offs
inherent in achieving any quality attribute. [3] gives an
overview of this larger effort.

5. References
1. Bachmann, F. and Bass, L. “Designing Software
Architecture for Quality: the ADD Method”, OOPSLA
2001 Conference Companion

2. Bass, L., Clements, P. and Kazman, R., “Software
Architecture in Practice”, Addison-Wesley Longman,
Reading, Ma. 1998

3. Bass, L., Klein, M., and Bachmann, F., “Quality
Attribute Design Primitives”, CMU/SEI-TN-2000-017,
December, 2000.

4. Bass, L., John, B.E., and Kates, J., “Achieving
Usability Through Software Architecture”, CMU/SEI-TR-
2001-005. March, 2001.

5. Clements, P., Kazman, R., and Klein, M. “Evaluating
Software Architectures: Methods and Case Studies”,
Addison-Wesley Longman, 2001.

Current Architectural Support for Usability

User
Interface

Remainder
Of

SystemMVC
PAC
Seeheim
Arch/Slinky

Supports iterative design process
Widely used in practice
Has been very effective

BUT

Relying on changes
expensive – time &
budget may preclude
usability features

Does not include many
aspects of usability

Makes UI engineer
a “nag”

Problem: Need a more
proactive approach

Our approach:

determine facets of usability dependent on software architecture

present architectural pattern for each facet

integrate usability considerations into:

architectural analysis method (ATAM)

architectural design method (ADD)

Life Cycle
Software
architecture
design

implementation test

Separation

Examples
• Cancellation

– pre-emptive scheduling

– recording of state of components that may be cancelled

• Undo

– recording of state before any command by all important
components

• Information reuse (e.g. user’s name propagated to all
relevant forms)

– global data dictionary and repository

• Progress bars for feedback

– system state available and current

Must Understand Multiple Attributes

Attribute
Primitive

Basis for achieving
one quality attribute

usability
performance
availability
modifiability
security

Understand primitive’s
effect on other quality
attributes.
E.g. what are

usability, performance,
security, modifiability

implications of using
redundancy to support
availability

