
1

1

Software Engineering
G22.2440-001

Session 5 – Sub-Topic 3 Presentation
Pattern Elicitation Frameworks/Methodologies

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Objectives

Describe Pattern Elicitation Activities

2

3

Roadmap

Definitions
Solution Architecture
Component
Sub-solution/Sub-system
Architectural Style
Reference Architecture/Element
ABASs
Architectural Mechanisms
Patterns
Framework
Architectural Pattern
Design Pattern
Idiom

4

Becoming a Chess Master

First learn rules and physical requirements
e.g., names of pieces, legal movements, chess board
geometry and orientation, etc.

Then learn principles
e.g., relative value of certain pieces, strategic value of center
squares, power of a threat, etc.

However, to become a master of chess, one must study
the games of other masters

These games contain patterns that must be understood,
memorized, and applied repeatedly

There are hundreds of these patterns

3

5

Patterns…
« Patterns help you build on the collective
experience of skilled architects. »
« They capture existing, well-proven
experience in solutions development and help
to promote good design practice »
« Every pattern deals with a specific, recurring
problem in the design or implementation of a
business solution »
« Patterns can be used to construct solution
architectures with specific properties… »

6

Becoming a Solution Master
First learn the rules

e.g., the processes/algorithms, data structures and
modeling/implementation languages

Then learn the principles
e.g., CBM/SOAD/OOAD methologies,
structured/modular/OO/generic programming, etc.

However, to truly master solution design, one must
study the designs of other masters

These designs contain patterns must be understood,
memorized, and applied repeatedly

There are hundreds of these patterns

4

7

Solution Architecture
A solution architecture is a description of the
sub-solutions and components of a solution and
the relationships between them
Sub-solutions and components are typically
specified in different views to show the relevant
functional and non-functional properties of a
business solution
The business solution is an artifact

It is the result of the solution design activity

8

Solution Architecture (cont.)
A set of artifacts (that is: principles, guidelines, policies, models,
standards, and processes) and the relationships between these
artifacts, that guide the selection, creation, and implementation
of solutions aligned with business goals
Solution architecture encompasses the set of significant
decisions about the organization of a solution

Selection of the structural elements and their interfaces by which a solution
is composed
Behavior as specified in collaborations among those elements
Composition of these structural and behavioral elements into larger
solutions
Architectural style or pattern that guides this organization

Architecture = Elements + Form + Rationale
Architecture involves a set of strategic design decisions, rules, or
patterns that constrain solution design and implementation

Architecture constrains design which constrains implementation

5

9

Component
A component is an encapsulated part of a
business solution/software system

A component has an interface

Components serve as the building blocks for the
structure of a business solution/system.
At a modeling language level, components may
be represented as processes, services, etc
At a programming-language level, components
may be represented as modules, classes, objects
or as a set of related functions

10

Sub-solutions/Sub-systems

A sub-solution/sub-system is a set of
collaborating components performing a given
task
A sub-solution/sub-system is considered a
separate entity within a solution/software
architecture

It performs its designated task by interacting with other
sub-solutions/sub-systems and components…

6

11

Architectural Style
An architectural style is a description of component
types and their topology
It also includes a description of the pattern of data and
control interaction among the components and an
informal description of the benefits and drawbacks of
using that style

Architectural styles are important engineering artifacts
because they define classes of designs along with their
associated known properties
They offer experience-based evidence of how each class has
been used historically, along with qualitative reasoning to
explain why each class has its specific properties

12

ABASs
Attribute Based Architectural Styles (ABASs)
ABASs build on architectural styles to provide a
foundation for more precise reasoning about
architectural design by explicitly associating a
reasoning framework (whether qualitative or
quantitative) with an architectural style
These reasoning frameworks are based on quality
attribute-specific models, which exist in the various
quality attribute communities (such as the performance
and reliability communities)

7

13

Back to “Patterns”
A common solution to a common problem in a
context
Examples:

Architectural Patterns
Design Patterns
Frameworks
Implementation Patterns
Idioms

14

Reference Architecture/Element

A reference architecture is a self-contained
architectural style

i.e., provides a description of readily applicable set of
component types and their topology
e.g., SOA, OMA, etc.

A reference element is an atomic constituent of a
reference architecture

e.g., various categories of SOA services, OMA
components, etc.

8

15

Framework
A set of assumptions, concepts, values, and practices that
constitutes a way of viewing the current environment
Defines the general approach to solving the problem
Skeletal solution, whose details may be analysis/design
patterns
A solution/software framework is a partially complete
solution/software (sub-) system that is intended to be
instantiated

It defines the architecture for a family of (sub-) systems and
provides the basic building blocks to create them
It also defines the places where adaptations for specific
functionality should be made

16

Architectural Mechanism
An architectural mechanism represents a common solution
to a problem occurring a number of places in the system

Often a frequently-encountered problem a pattern

Provide a clean way to “plug” technology-based solutions
into technology-independent application models

Examples
Commercial off-the-shelf products
Database management systems
Distributed access (networking, remote methods, etc.)
Enterprise platforms (Microsoft .NET, Java 2 Enterprise Edition, CORBA
Services, etc.)

Three categories
Analysis mechanisms (conceptual: persistence, remote access, etc.)
Implementation mechanisms (concrete: e.g. RDBMS, J2EE)
Product selection mechanisms (actual: Oracle, BEA WebLogic)

9

17

Architectural Pattern
An architectural Pattern expresses a
fundamental structural organization schema
for software systems

Predefined subsystems and their responsibilities
Rules and guidelines for organizing the subsystems
Relationships between subsystems

Examples of architecture patterns
Layers
Model-View-Controller (separate the user interface from
underlying application model, integrated by a controller)
Pipes and filters (Unix, signal processing systems, etc.)
Shared data (web-based and corporate information systems
with user views of a shared RDBMS)

18

Design Pattern
A solution to a narrowly-scoped business/technical
problem

A fragment of a solution, a partial solution, or a piece of the puzzle
A solution to a common design problem

Describes a common design problem
Describes a proven solution to the problem
A solution based on experience

Design patterns discuss the result and trade-offs of applying the
pattern
Design patterns provide the capability to reuse successful designs

A design pattern provides a scheme for refining the
subsystems or components of a solution, or the
relationships between them

10

19

Design Pattern (cont.)

A technical pattern is modeled as a
parameterized collaboration in UML,
including its structural and behavioral
aspects

Pattern
Name

Template
Parameters

Structural
Aspect

Behavioral
Aspect

Parameterized
Collaboration

20

Idiom

An Idiom is a low-level pattern specific to
an implementation (i.e.,
execution/programming) language
An idiom describes how to implement
particular aspects of components or the
relationships between them using the
features of the given language

11

21

Roadmap

EAMF Framework
Introducing the EAMF Framework
EAMF Framework Concepts
EAMF Standard Structural Elements

22

Spelling it Out!

Enterprise

Architecture

Management

Framework

12

23

Why EAMF?

Design Information is typically not organized
well enough

Cannot find documentation when you need it

Solutions to difficult problems are typically too
complex

Documentation, when available, is difficult to understand
and buried in long and arcane documents

Communication of problems and their solutions
is typically inefficient

Long and boring meetings with too many people.

24

EAMF Objectives

Identify, categorize, capture and catalogue optimal
solutions and their intent based on best practice
architectural analysis and design guidelines, and
patterns
Divide and conquer problem and solution spaces
Formalize architectural processes

From the inception of a problem
To the deployment of a solution
And every step in-between

Encourage top-down, bottom-up, and abstract thinking
Simplify interactions between architects

13

25

EAMF Practical Ingredients

EAMF Framework
Supporting structure used as a container to present
and maintain EAMF artifacts
EAMF artifacts include reference and/or solution
specific pattern clusters along with their intent

EAMF Methodology
Set of documented architectural analysis and design
procedures and guidelines used to produce EAMF
artifacts stored in the EAMF Framework

26

Introducing the EAMF
Framework

The EAMF Framework subsumes concepts and
elements to store captured information

Framework Concepts
Organization techniques used to capture architecture
information

Structural Elements
The framework includes general purpose structural
elements that may be combined for a specific purpose

14

27

EAMF Framework Concepts
Map
Landscape
Grid
Perspective
ViewPoint
View
Cell
Artifact
Level of Abstraction
Level of Encapsulation

28

EAMF Framework Concepts: Map

The EAMF map represents the underlying (virtual)
area on which all the EAMF artifacts are located
independently of the perspectives and views used to
create and/or visualize them
The EAMF concept of a map accommodates back and
forth navigation across disciplines and viewpoints
within a given perspective
The EAMF concept of a map facilitates re-engineering
or pre-existing architectures

EAMF is designed to support architecture engineering, re-
engineering, and evolution modes

15

29

EAMF Framework Concepts:
Landscape

The EAMF architectural landscape
encompasses all the architectural elements that
exist at a given time on the EAMF map
Effectively, it should be possible to look at an
existing architectural landscape and map its
artifacts to various EAMF perspectives

This type of effort is referred to as architectural re-
engineering

30

EAMF Framework Concepts:
Grid

The EAMF grid is a two-dimensional table
Its columns represent perspectives and its rows
represent views
The grid is the main structure used in EAMF
architecture engineering mode to capture
information about a problem and characterize
its optimal solution
Each grid is specific to a particular architecture
domain

16

31

EAMF Framework Concepts:
Perspective

A perspective is a window into the architectural
sub-domains that make up a complete
architecture
Example: Enterprise Architectures

Architectural sub-domains include business,
information, application, and technology
architectures
EAMF perspectives may be defined accordingly to
focus on one or more architectural sub-domain

32

EAMF Framework Concepts:
Viewpoint

A viewpoint is a window within a perspective that
focuses on a very specific aspect of an architecture
sub-domain

A viewpoint and a perspective are conceptually related as a viewpoint is
more specific than a perspective
Viewpoints encompass important information about a problem context
within a given perspective that is not comprehensive enough to describe
the whole problem context

A viewpoint is a decomposition tool that helps
architects focus on one important aspect of the
problem rather than looking at the problem from many
angles at the same time

17

33

EAMF Framework Concepts:
View

Viewpoints in a perspective divide that
perspective in further detail areas
A view, in contrast, looks at the same
perspective with different intentions in mind

A view is intention related while a viewpoint is area
related

34

EAMF Framework Concepts:
Cell

A cell may contain any number of artifacts of
different types

18

35

EAMF Framework Concepts:
Artifact

Each cell in the perspective-view grid is populated
with artifacts that together capture the following
information for a given business problem:

Complete static and dynamic views
Solution structure and information as to how that solution structure
is achieved
Catalogs that help designers create new solutions structures

As-is (current state)
To-be (future state)

36

EAMF Framework Concepts:
Artifact (cont.)

Three types of artifacts
Textual

Documents, notes, e-mails, memos, anything that captures
information in plain text.

Graphical
Images, graphs, diagrams, pictures, etc.

Tabular
Tables, matrices, spreadsheets, etc.

19

37

EAMF Framework Concepts:
Artifact (cont.)

A
na

ly
si

s
D

es
ig

n
P

ro
du

ct
Im

pl
.

D
ep

l.

V
ie

w
s

TechnologyBusiness Information Application

Arrows indicate
artifact traceability

38

EAMF Framework Concepts:
Level of Abstraction

EAMF levels of abstraction on graphical
artifacts

The graphical artifacts have conceptual, logical and physical levels of
abstraction, where conceptual is very high level and does not contain any
specific detail information

The physical level is a very specific and detailed level, and the logical level
somewhere between the conceptual and physical level

EAMF levels of abstraction on tabular artifacts
Levels of abstractions are organized on the vertical axis of the matrices
(rows) where the top rows represent high level, more abstract views and
the bottom rows represent lower level, highly detailed views
EAMF defines different levels of abstractions for each perspective and
each view within the perspective

20

39

EAMF Framework Concepts:
Level of Encapsulation

Levels of encapsulation/nesting may apply to
certain artifacts

For example, a pattern hierarchy may be used to
describe the organization of a collection of patterns that
make up a framework in a given view

In this case the patterns involved in the hierarchy are at the same level
of abstraction (i.e., they are an exclusive part of either of the analysis,
design, or implementation view)
Pattern languages may suggest how multiple pattern can be used
together to make up a framework, without always implying levels of
encapsulation

40

Roadmap

EAMF Standard Structural Elements
EAMF Perspectives
EAMF Views
Perspective-View Grid
Catalog
Standard Matrices
Domain Specific Matrices
Standard vs. Domain Specific Matrices
Constraints and Restrictions Document
Capability Matrix

21

41

EAMF Perspectives
A

na
ly

si
s/

D
es

ig
n

P
ro

du
ct

Im
pl

em
en

ta
tio

n
D

ep
lo

ym
en

t

Ar
ch

ite
ct

ur
al

 V
ie

w
s

The EAMF framework relies
on an architectural
decomposition in terms of four
perspectives

Business
Application
Information
Technology

EAMF uses a 4x4 grid where
perspectives are placed
horizontally and views are
placed vertically

EAMF PerspectivesEAMF Views

42

EAMF Perspectives (cont.)

Business Perspective
This perspective establishes a context around the problem from a
business point of view

Information Perspective
This perspective establishes a context around the problem from a data
structure solution point of view

Application Perspective
This perspective establishes a context around the problem from the
software solution point of view

Technology Perspective
This perspective establishes a context around the problem from the
hardware solution point of view

22

43

EAMF Views
Analysis and Design View (Model View)

This view defines reference architectures, architectural styles and
patterns. The problem analysis and design model artifacts at conceptual
and logical levels are placed in this view

Implementation View
This view defines reference implementations, implementation styles and
patterns

Product View
This view holds artifacts that list the physical products used in the
solution. The products are different for each perspective.

Deployment View
This view holds artifacts that show how the solutions are used in a
physical environment with the determined products.

44

Perspective-View Grid

The EAMF perspectives
and views create a 4x4 grid
where perspectives are
placed horizontally and
views are placed vertically
as shown
This grid is the primary
mechanism through which
all architectural analysis,
design, implementation and
deployment information is
stored on the map in an
organized manner

Business Information Application Technology

Enterprise Perspectives

23

45

Catalog

A catalog exists in EAMF independent of a
problem context

There can be one catalog per view per perspective

A catalog contains best practice patterns
available in an industry

For practical reasons, catalogs only include pattern
information relevant to a specific domain
The catalogs are maintained by BAs and TAs to keep track
of emerging and evolving patterns

46

Standard Matrices

The standard matrices show how a particular
problem should be solved in an ideal
environment
Most of the time a company does not have the
ideal environment to implement the solution

These matrices can be used as a description of the
desired state of architecture for a particular problem
They, too, need to be updated continuously to reflect
recent changes in the patterns world

24

47

Domain Specific Matrices

The domain specific matrices capture the solution
implemented in an environment that is less than ideal

There might be many reasons why a company does not have an ideal
environment which is mostly financial and time constraints related

Domain specific matrices are a snapshot that shows the
current architecture and implementation

When the company environment changes towards the ideal environment
the solution can be re-factored and brought closer to the solution that is
described in the standard matrices

48

Standard vs. Domain Specific
Matrices

The standard matrix shows an ideal choice of patterns for the solution while
the domain specific matrix shows choice of patterns that need to be used
(i.e., mechanisms) in a company domain based on the restrictions and
constraints imposed either by the company or by external forces
Standard and Domain Specific Matrices can respectively be considered as
the future and current state matrices

Standard Matrix represents the future state because it captures information for an
ideal solution

Most often, due to constraints and restrictions, internal or external, this ideal solution cannot be
realized

Domain Specific Matrix represents the current state solution
Therefore, the information in these matrices can be used as gap analysis and provide executive
management with important information for decision making purpose

Capturing the constraints and restrictions during the process also ties
historical decisions to the current state.

25

49

Standard vs. Domain Specific
Matrices: Population Process

ad Standard and Domain Specific Matrix Population Process

Start

Populate Matrix

Any Contraints
or Restrictions?

Document Contraints and
Restrictions

End

The following diagram depicts the processing rule which
applies every time when there is a standard and domain specific
matrix independently from the enterprise perspective:

50

Constraints and Restrictions
Document

As explained in the previous section if there is a
need to create a domain specific matrix, the
reasons must be captured within a Constraints
and Restrictions Document
The document specifically outlines why a
standard matrix or a previously used domain
specific matrix cannot be used
Instances of this document are repeated
wherever there is a need to replace a standard
matrix with a domain specific matrix

26

51

Capability Matrix

A capability matrix shows the capabilities of an
entity as a tabular artifact
This matrix type is mostly used in the application
perspective for determining the functional capabilities
of reference architectures, reference implementations
and products

However, there are other perspectives where the capability
matrices are employed

The format of the matrix depends on the type of
capabilities it captures.

52

Roadmap

EAMF for Business Architects
Using EAMF Standard Structural Elements in the
Business Perspective

27

53

Business Perspective:
Business Model

Business Process
A long running set of actions or activities performed with specific
business goals in mind

Business processes typically encompass multiple service invocations
Examples of business processes are: Initiate New Employee, Sell Products or
Services, and Fulfill Order

In SOA terms, a business process consists of a series of operations which
are executed in an ordered sequence according to a set of business rules

The sequencing, selection, and execution of operations is termed service or
process choreography

Typically, choreographed services are invoked in order to respond to
business events.

54

Business Perspective:
Business Patterns

Choreography
A choreography is the observed sequence of messages
exchanged by peer services when performing a unit of work
Services do not need to be orchestrated to perform a unit of
work (this is a concept that emerged and should have stayed
in the last century)

This is a very common misconception, actually most units of work are
accomplished by a series of "orchestrated services" performing a
choreography
There are several industry efforts in the area of choreography
languages, such as BPML (defined by BPMI.org), BPSS (defined by
ebXML), IBM's WSFL, Microsoft's XLANG, and
IBM/Microsoft/BEA's BPEL4WS and their companion specifications
WS-Coordination and WS-Transaction, etc.

28

55

Business Perspective:
Business Patterns

Orchestration
An orchestration is a generalization of composition that
sequence services and provide additional logic to process
data that does not include data presentation
The same language can be used to perform a complex unit of
work achieved by invoking a series of service operations
Any given orchestration is not forced to expose a service
interface
If it does, it is a composition

An orchestration is executed by an
orchestration engine

BPEL is an orchestration programming language

56

Business Perspective:
Filling up the Business Grid

Artifacts
used to
capture

and store
information
within the

perspective

29

57

ud Partial Current CBA

AIMNew Business System

AFLAC Head Quarters

Associate Employer

Policy Holder

Markets
Products

Sells
Product

Send Sold
Product

Information

Accept Sold
Product

Information

Process Group
Information

Get Group
Information

Set Group
Infomation

Create New
Group Number

Setup New
Account

Manage Group
Information

New Account Setup
Team

New Account Contact
Team

Place
Welcome Call

Accept
Inv alid/Unset

Group

Process Policy
Information

Jet Issue Policy
Correct Policy

Information

New Business Team

1

1..*

«include»

«include»

«include»«include»

«include»

«include»
«include»

«include»

«include»

Business Perspective:
Conceptual Business Architecture (CBA)

58

Business Perspective:
Problem Specific CBA

30

59

Business Perspective: Viewpoints

Process
This viewpoint isolates the set of involved business processes

Process Interoperability
This viewpoint isolates the unique relationships between involved business
processes

Process Organization Interface
This viewpoint isolates the relationship between the business processes and their
interaction with the people

Organization
This viewpoint isolates the people around the business problem and its solution
structure

Location
This viewpoint isolates the location of the people in the context of the business
problem and its solution structure

60

Business Perspective: CBA-
Viewpoints Relationship

31

61

cd Catalog Relationships

Business Model
Catalog

Business
Reference

Architecture

Business
Reference

Architecture
Document

Business
Reference

Architecture
Model Matrix

1 1..*

1
1

1
1

Business Perspective:
Business Model Catalog

Business Model Catalog is a problem independent artifact in
EAMF
It lists the available Business Reference architectures and more
detailed information for each of these business reference
architectures

62

Business Perspective: Reference
Architectures Model Matrix

Combined with the Business Perspective viewpoints the Model
Matrix looks like the following tabular artifact
There will be one populated instance of the above matrix per
business reference architecture

32

63

Business Perspective:
Standard and Domain Specific Model Matrices

Standard and domain specific model matrices look
exactly like the catalog model matrix, except there will
be one or more instances per problem description
While a catalog shows all applicable styles and
patterns for that reference architecture a standard
model matrix instance shows only the patterns that
apply to the ideal solution of that problem
Domain Specific Model Matrix instance shows only
the patterns that apply to a solution imposed by the
constraints and restrictions

64

Capabilities and Requirements Matrix (a.k.a., CR Matrix) is
used to capture the non-functional and functional, business and
technical capabilities to solve a specific business problem
Capabilities are set of concerns that a solution tries to address
Requirements are entries in the matrix that describe how a
solution meets a specific business requirement while addressing
the capability

Business Perspective: Capabilities
and Requirements Matrix

33

65

EAMF is not complete in
terms of standard capability
sets
EAMF must be augmented
when the experience level of
the architects reach an expert
level in a reference
architecture such as SOA,
ECM, BPM and so on
The process of determining a
more abstract capability sets is
shown on the right

Business Perspective: Adding a
New Reference Architecture

66

Business Perspective: Non-
Functional Capabilities (NFCs)

Non-functional capabilities are
filled by BAs and TAs in
collaboration. There are three
types of non-functional
requirements
Only the project-based
capabilities are answered when
filling out the CR-Matrix
Organizational and external non-
functional capabilities represent
constraints and are used when
determining domain specific
solutions

Non Functional Capabilities (NFCs)
Project-Based NFCs

Accuracy
Availability
Efficiency
Extensibility - Upgradeability – Modifiability – Adaptability- Flexibility
Interoperability
Portability
Recoverability
Reliability – Dependability
Reusability
Scalability – Capacity
Security – Accessibility – Anonymity- Vulnerability
Usability – Operability

Organizational NFCs
Readability – Simplicity – Understandability
Maintainability
Testability – Verifiability
Traceability

External NFCs
Ethical
Legislative (Privacy – Safety)
Planning (Cost, development time)

34

67

Business Perspective:
Project-Based NFCs

Accuracy
Accuracy is the quantitative measure of the magnitude of error

Availability
Degree to which a service, system or component is operational and accessible when
required for use

Efficiency
Efficient is the degree to which a system or component performs its designated functions
with minimum consumption of resources (CPU, Memory, I/O, Peripherals, Networks)

Extensibility - Upgradeability – Modifiability – Adaptability-
Flexibility

Adaptability
Ease with which software satisfies differing system constraints and user needs.

Flexibility
Eease with which a system can be modified for use in applications other than those for which it
was specifically designed.
Use Strategy Pattern, etc…

Interoperability
Portability

68

Business Perspective:
Project-Based NFCs (cont.)

Interoperability
Portability

Ease with which a system or component can be transferred from one
hardware or software environment to another

Recoverability [IEEE 90]
Recoverability is the restoration of a system, program,
database or other system resource to a prior state following
a failure or externally caused disaster

Reliability – Dependability
Reliability is the ability of a system or component to
perform its required functions under stated conditions for a
specified period of time

Reusability

35

69

Business Perspective:
Project-Based NFCs (cont.)

Scalability - Capacity
Scalability is the ease with which a system or component
can be modified to fit the growing problem area.
Scalability has two variants, hardware and software

Security – Accessibility – Anonymity- Vulnerability
Security is the ability of a system to manage, protect and
distribute sensitive information

Usability - Operability
Usability is the ease with which a user can learn to operate,
prepare inputs for and interpret outputs of a system or
component

70

Business Perspective:
Organizational NFCs

Readability – Simplicity – Understandability
The degree to which a system's functions and those of its component statements can be
easily discerned by reading the associated source code

Maintainability
The ease with which a software system or component can be modified to correct faults,
improve performance, or other attributes, or adapt to a changed environment

Testability – Verifiability
The degree to which a system or component facilitates the establishment of test criteria
and the performance of tests to determine whether those criteria have been met

Traceability
The degree to which a relationship can be established between two or more products of
the development process, especially products having a predecessor-successor or master-
subordinate relationship to one another

Delivery
Implementation

36

71

Business Perspective:
External NFCs

Ethical
The policies regarding ethics that a corporation adopts when
conducting business

Legislative (Privacy – Safety)
The policies that a corporation is imposed upon when
conducting business

Planning (Cost, development time)
The resource constraints that are imposed on a project

72

Business Perspective:
Sample Functional Capabilities

EAMF divides the functional capabilities in three
distinct top level categories:

OMA Specific Services
Concurrency Service (http://www.omg.org/docs/formal/00-06-14.pdf)
Externalization Service (http://www.omg.org/docs/formal/00-06-16.pdf)
Event Service
Interface Invocation Service
Life Cycle Service
Naming and Directory Services (http://www.omg.org/docs/formal/04-10-03.pdf)
Notification Service
Persistence State Service
Security Service
Trading Object Service
Transaction Service

OMA Specific Facilities

OMA Application Objects

37

73

Roadmap

EAMF Methodology
Using a PDA EAF
NFR-Driven Pattern Elicitation

74

Using a PDA EAF
Gather problem definition – Business Requirements
Create Conceptual Business Architecture Diagrams
Create Business Catalogs

Business model matrix (BMM) captures reusable business reference
architectures, architectural styles and patterns
Business implementation matrix (BIM) captures reusable reference
implementations, styles and implementation patterns
The implementation view is prescriptive and the model view is descriptive

Run Through Decomposition Process
Populate Standard and Domain Specific Business Model Matrices

38

75

Using a PDA EAF (continued)
Populate Capabilities and Requirements Matrix (CR-Matrix)

Before the architects start creating instances of CR-Matrices several questions
must be answered:

What is the primary viewpoint for this business problem?
Which patterns are related to each other across viewpoints?
Which patterns or styles do not contribute to a technology solution pattern?
Let us assume that the answers to the above questions are:

The primary viewpoint is Process.
The related patterns across viewpoints are EBP.Producer.LowVolume and
C2B.RequestResponse.FastAccess.
The GroupsOfIndividuals and Centralized styles do not contribute to the business problem
solution .

Then
Create one CR-Matrix instance for each pattern in the primary viewpoint.
Create one CR-Matrix instance for each set of related patterns across viewpoints, and do not
include non-contributing patterns.
As follows:

EBP.Producer.LowVolume – C2B.RequestResponse.FastAccess
EBP.Transformer.HighVolume.

Policies are entered into the CR-Matrix

76

Using a PDA EAF (continued)
Using a CR-Matrix

Generation of the Conceptual Technology Architecture Diagram
Identification and Confirmation of Appropriate Reference Architecture(s)

Generation of a Logical Architecture Analysis Diagram
Generation of the Analysis Model
Identification of Applicable Pattern(s)
Generation of a Logical Architecture Design Diagram
Generation of the Design Model

Identification of Applicable Reference Implementation(s)
Identification of Applicable Implementation Pattern(s)
Refinement of the Logical Architecture Design Diagram
Refinement of the Design Model

Product Mapping
Deployment
Working with Developer
Deployment Mapping

39

77

NFR-Driven Pattern Elicitation
NF policies identified in the CR-Matrices are used to determine
appropriate styles and patterns for the solution

Not all non-functional capabilities lead to software design patterns
Some non-functional capabilities such as reliability, availability,
recoverability and dependability (and possibly others) require hardware
deployment patterns along with organizational behavior changes towards
quality

There is no (bullet-proof) defined process that would help an
architect to identify appropriate patterns

A pattern can be applicable to a certain problem but it may not be
appropriate
The identification of the applicable and appropriate pattern requires
immense working pattern knowledge which is not only knowing and
understanding what patterns are but also recognizing when and when not
to use certain patterns
NFR Framework Based Approach is suggested

78

NFR-Driven Pattern Elicitation:
Sample Guidelines

EBP.Producer.LowVolumeLowFrequency - C2B.RequestResponse

Measurable
(only verifiable after implementation)

Concrete
(based on proven design)

Business Driven
 - Required -

(resulting from analysis)

Technology Driven
- Desired -

(resulting from design considerations)

Efficieny.Time : 8 sec/per request/per user

Scalability : 20 concurrent users to 40
concurrent users without software
modifications

Extensibility : Same generation process
with different algorithms will be supported.

Efficieny.Time : 0.5 sec/per request/per
user

Readability : Follow company standards

Availability : 6:00 am - 6:00 pm Business
days

Security : Only authenticated and
authorized AFLAC employees

Concurrency
Persistent State
Security
Transaction

Testability : Provide test harness,
debugging and adjustable levels of logging
capabilities.

Naming and Directory

Motivation
Policy Type

For improvements in
Scalability

Keep data modification
blocks short and

synchronized.

Table Data Gateway
Pattern.

Improve Effiecieny.Time

40

79

Architecture Design Method

Functionality-Based architectural design

Application Architecture

Estimate quality attributes

Architecture Transformation

Quality-Attribute Optimizing Solutions

[not OK]

[OK]

Requirement Specification

Functional requirements
Quality requirements
 Development (Build-time)
 Operational (Run-time)

80

Overview of Architecture Design Method

Functionality-based architectural design

Assess quality attributes

Architecture transformation

− Define system context
− Identify archetypes (core

functional abstractions)

− Decompose into components
o Interfaces, domains, abstraction

layers, domain entities,
archetype instantiations

− Describe system instantiations

− Define quality profiles
− Scenario-based assessment
− Simulation

− Mathematical modeling
− Experience-based

assessment

− Impose architectural style
− Impose architectural pattern
− Impose design patterns

− Convert quality
requirements to
functionality

− Distribute requirements

41

81

Architecture Transformation Categories

Convert Quality
Requirement

to Functionality

Impose
Architectural

Pattern

Apply
Design
Pattern

Impose
Architectural

Style

Component Architecture

Added
functionality,
rules, and/or
constraints

Restructuring

Transformation
Type

Scope of
Input

In principle, repeat
each step for each

quality attribute

82

Convert Quality Requirements to Functionality

Self-monitoring
Redundancy
Security
etc.

Distribute system-level quality requirements to the
subsystems and components

System quality X; component quality xi

X = x1 + x2 + x3 + … + xn

Separate functionally-related qualities
e.g., Fault-tolerant computation + fault-tolerant
communication

Distribute Requirements

42

83

Impose an Architectural Style

Bass et al., Attribute-Based Architectural
Styles (ABASs)

Pipes and filters
Layers
Blackboard
Object-Orientation
Implicit Invocation
etc.

84

Impose an Architectural Pattern

Concurrency
Processors, processes, threads, scheduling, etc.

Persistence
Database management system, application-
level persistence and transaction handling, etc.

Distribution
Brokers, remote method invocation, etc.

Graphical User Interface
MVC, PAC, etc.

43

85

Apply a Design Pattern

Gang-of-Four, Buschmann,
etc.

Façade
Observer
Abstract Factory
etc.

86

Meta-Tools For Model Driven
Architectures

User & Business
Models

I n
fr

a s
tr

uc
tu

re
A

p p
l ic

a t
i o

n

AbstractConcrete

Domain
Independent

Domain
Dependent

Domain

Preferences

Application

Analysis

Analysis

Application Model
- Data Model
- Business Model
- Content Model

Technical Solution Development

Technical
Solution

Development

Technical
Solution

Development

Architectural
Styles

Domain
ModelsApplication:

- Data
- Business Logic
- Content (Screens)

KITS

Frameworks

Concrete Costs
Initial Costs

Abstract Costs

Concrete Costs

Conceptual

InfrastructureLogical

- NT/ UNIX
- Application Server

- Transaction Processing
- Persistence
- etc.

Abstract Costs

Technology
& Software

Proposal End Point

Technical
Solution

Development

Application Production
(Approach/ Assembly/

Delivery)

Domain Analysis User
Information
Gathering

U
se

r
In

fo
rm

at
i o

n
G

at
he

ri
ng

(B
us

in
es

s,
U

s e
r ,

U
s a

bi
l it

y,
P

re
fe

re
n

ce
s

Questions ?

Information
Not Specific

to Domain

Que
stio

ns ?

Ta
xonomy

Domain
Specific

Information

As information is collected, work effort,
estimates and solution becomes concrete

Questions ?

Questions ?

Infrastructure

Physical
Infrastructure

Patterns

44

87

Pattern Matching Approach
http://www.scs.carleton.ca/~weiss/research/nfr/cito.pdf

Represent force hierarchies that match a problem domain using
GRL notation
Represent force hierarchies that characterize patterns using GRL
notation
Include pattern force hierarchy as part of individual pattern
templates in the pattern catalog

http://jerry.cs.uiuc.edu/~plop/plop2002/final/PatNFR.pdf
Apply algorithms to match force hierarchies for a given problem
domain with known pattern force hierarchies in the pattern
catalog

Comparison algorithm
See “Deciding on a Pattern” by Jonathan C. McPhail and Dwight Deugo

Data mining algorithm
Learning/Rule-based algorithm

Perform additional matching on more specific artifacts than
force hierarchies as available (e.g., architecture modeling
notations, etc.)

88

Roadmap

Sample EAMF-Driven Pattern Elicitation:
EAMF Process Patterns (Actors as Agents)
EAMF GDM UCM Inter-Scenario
Relationships
Enterprise Service Lifecycle
Service Management Architecture (SMA)

45

89

Reasoning About Business Entities and
Their Dependencies and Goals

90

Pattern Language Structure for Agent
Patterns Selection

(http://www.scs.carleton.ca/~weiss/papers/aois03-revised.pdf)

46

91

Inter-Scenario Relationships Design
Patterns Used in EAMF’s BPM approach

(http://jucmnav.softwareengineering.ca/twiki/pub/UCM/VirLibIsorc2000/isorc2000.pdf,
http://www.scs.carleton.ca/~francis/Thesis/phdthesis.pdf)

92

Enterprise Service Lifecycle Management
cd ESLM Context Model

ESLM

Transaction ManagementAdministration Reporting

State Set
Administration

Business Entity
& Transaction

Type
Administration

Transaction
Information

Storage
Structure/Access

(WITTS)

Transaction
Monitoring

Illegal State
Transition

Monitor

Expired States
Monitor

Obsolete
Business Entity

Instance
Monitor

Abandoned
Transaction

Monitor

Static Reports Dynamic
Reports -

Dashboard -
Adhoc Queries

Archiv able
Transactions

Monitor

Business
Analysis /
Business

Intelligence
Reports

47

93

SMA Reference Architecture:
The Acronyms…

SMA = SOA + STA
SOA = SOP + SOI + SOM

SOA – Service Oriented
Architecture
STA – Service Trader
Architecture
SOP – Service Oriented Process
SOI – Service Oriented
Integration
SOM – Service Oriented
Management

94

SMA: The Final Big Picture…

Web Portalemail

Business Services

Worker Services

DBs, IBML, RRI, PeopleSoft

faxpaper

Composite Services
SOP SOI/SOMSTA

48

95

SMA: How it works…

DB

Worker ServiceComposite ServiceBusiness Service

UDDI
SOP

SOP

1
2

3

4

5

6

SOI + SOM

96

SOI + SOM = ESB

Transport

DBs, IBML, RRI, PeopleSoft, etc

Transform O
rch

Serv

Caller

Serv Serv

OrchOrch

O
rc

h

Management

Security

ESB + SOP = SOA

49

97

Service Oriented vs Object Oriented

Services cut across
multiple objects
Objects encapsulate

data, but Services
encapsulate behavior
The “lower” the service,

the more like an object it
becomes

Service

DB

Object 1

Object 2

98

Service Oriented vs Application
Oriented

Applications typically wrap
a single “large” database
“Services” within an
application are typically
tightly coupled
Services don’t necessarily
entirely reside “within” the
corresponding application
Groupings of “high” level
services begin to resemble
applications

Service

Service

Service

Service

Application

Application

50

99

SMA: Technology Properties

Location and platform independence
Reuse via shared services (not copied/duplicated

code)
Strict adherence to encapsulation and public API
Separation of service interface and service

implementation (via WSDL)
Deployment of new services and upgrades to

existing services (implementation or interface
extension), with NO down-time, via dynamic
service end-point discovery (UDDI)

100

SMA: Long-range Business Benefits

Uniform and consistent IT deployment “fabric” (virtual
platform)
Uniform and consistent support for SLAs
Common data security and access control base-line
Library of common support services that will enable
new projects to focus on their unique attributes rather
than reinventing infrastructure
Integrated real-time monitoring and business analysis
capabilities across the enterprise
Enables 24x7 operation, despite software system
(service) upgrades

51

101

SMA: Benefits, Risks, and Pitfalls
The Good

•Location and platform
independence

• Non-proprietary in that ESB
enables multiple service “platforms”
to interoperate/communicate

• Separation of interface and
implementation

• Dynamic late (re)binding

• Live upgrades/(re)deployments

• Flexible reuse supports agile IT
support for business

• Enterprise IT architecture/design
is driven by business needs

The Bad

• Poor initial API could limit reuse
of services (or require cascading
redesign/reimplementation)

• Some standards are still
emerging or are in flux

• May require “retooling” of system
design (thought) process

The Ugly

• More run-time overhead in extra
layers and protocols

• Needs coherent and consistent
enterprise “platform” management

102

Roadmap

Classifying Problem Types
What is the problem?
Problem Types
Enterprise Problem Instance
Pattern Cluster
How Does EAMF Come Into Play?

52

103

What is the Problem?
EAMF is a framework with a methodology to
capture design information for similar problems
Before we start designing a solution we need to
understand why we are designing a solution

In an enterprise, motivations will arise based on needs and/or problems.
Change is requested and needs to be dealt with.
When we are dealing with change, we need to create a structured
environment so that we solve similar problems using similar solutions
in order to reduce redundancies
This structured environment is not only a technical framework but a
structured thinking process which helps us organize the changes in
specific categories because if we can categorize the types of changes we
can easier categorize the solutions that address them

104

Enterprise Problem Space

PT3

PT1

api1 api2

api3 PT2

api4
api5

cpi1

api1 api6

Problem Types
A problem type identifies the
essence of a problem without
the details of the problem
instances
A solution to a problem type
is more generic than a
solution to a problem
instance
By the same token, a generic
solution to a problem type
can be applied to all problem
instances in that problem
category

53

105

Problem Types (cont.)
Atomic problem instance (api)

Specific instance of a problem that cannot be further divided into sub-problems

Composite problem instance (cpi)
Specific instance of a problem that can be further subdivided into atomic
problem instances, however it would be better to keep this problem instance in
its composite form because the solution to the composite problem is more
effective than the sum of the solutions to its atomic problem instances
In other words, there may be such a synergy between the atomic problem
instances which makes the composite problem instance more effectively
solvable

Atomic and composite problem instances are categorized into
problem types

This creates a smaller set of problem types from a larger set of atomic and
composite problem instances

106

Problem Types (cont.)
Categories of Problem Types

The current problem types need to be determined with the help of business experts and
business architect

Problem types can be categorized in many different ways
Problem types can be categorized by the type of IT solution they
require (IBM does this in their eBusiness) such as

Self-Service
Collaboration
Information Aggregation
Extended Enterprise (B2B)

Problem types can be categorized by service line they occur in such as
Billing
Claims
New Business
Etc.

54

107

Problem Types (cont.)
Categories of Problem Types (cont.)

Problems may be categorized by a more generic classification like
Information Sharing
Short Lived Business Transaction
etc…

Yet another way to categorize problems can be the life cycle of a specific
context

Doculabs consultants did that with their ECM problem types
They have categorized the problem types by the life cycle of Content such as

Create Content
Review Content
Approve Content
Manage Metadata
Etc…

We need to find a correct way of categorization in order to achieve our goals.

108

Enterprise Problem Instance (epi)
Combination of one or more atomic
and composite problem instances

Since these problem instances are
categorized as more abstract problem
types, enterprise problem instances
can be represented as a combination
of problem types
Since these problem instances are
categorized as more abstract problem
types, enterprise problem instances
can be represented as a combination
of problem types.

Enterprise Problem Instance

55

109

Pattern Cluster

A Pattern Cluster is a set of patterns which are
involved in the generic solution of a problem type
Since there may be more than one generic solution to
a problem type:

Enterprise Solution Architectures are a combination of
pattern clusters of one or more Enterprise Architectures

This conclusion identifies two additional tasks
First we need to identify what the available Enterprise
Architectures are
Second we need to identify the pattern clusters in these
Enterprise Architectures.

110

Pattern Cluster (cont.)

We have defined Enterprise Architectures as
solutions provided within a context

In the enterprise landscape not all of the contexts are at the same level
of detail
It is normal that one Enterprise Architecture uses pieces from another
Enterprise Architecture to provide a solution
Some of the architectures will be high level and make sense from a
business point of view like Customer Relationship Management (CRM)
Some of them may be more specific in focus that only deals with certain
types of problems like unstructured enterprise information like
Enterprise Content Management (ECM)
CRM might use some pattern clusters from ECM in order to provide a
solution

56

111

Pattern Cluster (cont.)

So far we have established that
Specific problem instances are categorized to a problem type
A problem type can have one or more enterprise solutions
An enterprise architecture contains 1 or more pattern clusters
An enterprise solution contains one or more pattern clusters from one or
more enterprise architectures

112

How Does EAMF Come Into Play?
EAMF comes into play from two different views:

A catalog view that captures pattern clusters and individual patterns in the
framework’s catalog matrices
A design view that captures enterprise solutions for a problem type and the
pattern clusters and individual patterns used in that solution in the framework’s
standard and domain specific matrices

The catalog matrices are populated over time
Every time a company realizes more experience and knowledge and identifies a
pattern or a pattern cluster the cluster would be inserted into the appropriate
catalog matrices
The catalog matrices would serve as a repository which would help architects
and developers to reuse solution structures in future similar problems
The standard and domain specific matrices are populated during a project
The usage of EAMF begins when a business or technology problem is
described. The problem is being analyzed outside the focus of EAMF and a set
of business requirements is created based on the problem description and
analysis

57

113

Any Questions?

