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Abstract 
 

Much attention has recently been focused on the problem of effectively developing software systems that meet 
their non-functional requirements. Architectural frameworks have been proposed as a solution to support the 
design and analysis of non-functional requirements such as performance, security, adaptability, etc. A significant 
benefit of performing such analysis work is to detect and remove defects earlier in the design phase. However, 
the non-functional properties of a system are mostly addressed independently making it difficult for the design 
and analysis of a system with respect to a collection of these interacting, or tangled, properties. This report 
presents an overview of our proposed solution to this problem called the Formal Design Analysis Framework 
(FDAF). More specifically we describe the process that supports the definition of an aspect-oriented design. 
The process is described using activity diagrams. An example is given to model part of the design for a Domain 
Name System (DNS) for one aspect, or non-functional properties, performance. The unified modeling language 
(UML) and the architectural description language Rapide and Armani are used in the example. The long-term 
goal of the work is to support the definition and analysis of two or more synergistic or conflicting aspects, or 
non-functional requirements, using the non-functional requirement (NFR) Framework.  
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1. Introduction 

1.1 Motivation and Problem Description  

Attention has recently been focused on the problem of effectively designing software systems that meet their 
non-functional requirements. The motivation for such research is straightforward: one of the significant, expected 
benefits of performing such analysis work is to detect and remove defects earlier in the design phase resulting in 
a higher quality system, reduced development time, and reduced development costs [43].  

Researchers have proposed solutions to this problem from a number of different directions. Architectural 
frameworks have been proposed as solutions to support the analysis of a single non-functional property such as 
security [18], performance [45], or adaptability [7], or provide a reasoning framework [24]. The unified 
modeling language (UML) has been investigated with respect to how it can be used and extended to model 
non-functional properties in a design. Aspect-oriented design approaches have been proposed as a means to 
systematically model cross cutting concerns like non-functional properties.  

The non-functional properties, or aspects, of a system are mostly addressed independently making it difficult for 
the design and analysis of a system with respect to a collection of these properties. Current approaches either 
concentrate on serving as a general-purpose architecture modeling language within a particular domain, or 
support the analysis of one specific non-functional requirement of a system (e.g., security, performance, 
adaptability, etc.). To fill this gap in the research, we ask the following question: 

Can we define an aspect-oriented architectural framework that supports the design and analysis 
of multiple, non-functional properties for distributed, real-time systems? 

As a solution, we propose the Formal Design Analysis Framework (FDAF). Our vision is that FDAF is 
intended to support an aspect-oriented design and analysis of multiple, non-functional properties using the Non-
Functional Requirement (NFR) Framework, UML, and a set of formal methods. The NFR Framework is used 
to identify, describe, prioritize, and negotiate the relationships among non-functional goals (called softgoals) of a 
system [8]. UML is selected because it is a well-known, standardized notation. Extensions to UML are 
proposed to better support the description of non-functional properties. A set of formal methods is used 
because a single formal method is not available that is well suited for defining and analyzing numerous non-
functional properties for a system (performance, security, capacity, etc.). Existing formal methods are used 
because developing a new formal method is a substantial task; we have chosen to leverage the previous work in 
architectural description languages (ADL), Petri Nets (timed, stochastic), temporal logic, etc. and integrate them 
into our framework rather than develop a new formal notation and tool support. 

This report is focuses on the first step of the FDAF, which is the creating of semi-formal extended UML model 
to support aspect-oriented design. The UML extension is illustrated by a Domain Name Server (DNS) 
example.    

1.2 Report Organization 

This report is organized as follows. Related work is presented in Section 2. An overview of FDAF is presented 
in Section 3. The description of our process is in Section 4. Part of the process is illustrated in Section 5. 
Conclusions and Future work are in Section 6. 
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2. Related Work  

As our work draws upon aspect-oriented approaches and the extension and translation of UML into the ADL 
RAPIDE, we provide a brief survey of work in these areas. 

  

2.1 Aspect-Oriented Approach  

Aspect-oriented approaches [38] rely on the principle of separation of concerns. A property of a system needs 
to be implemented as an aspect when it cannot be clearly encapsulated in a generalized procedure. Examples of 
aspects include non-functional properties such as performance, security, adaptability, availability, etc. Aspect-
oriented design has been inspired by the research in aspect-oriented programming (AOP) [13]. This is a 
relatively new programming technique that is based on the idea that computer systems are better programmed 
by separately specifying the various concerns (properties or areas of interest) of a system and their relationships. 
AOP relies on mechanisms in the underlying environment to weave, or compose, a coherent system [13]. A 
survey of aspect-oriented architectural frameworks is presented in this section. 

 
2.1.1 Aspect-Oriented Software Architecture 

Aspect-Oriented Software Architecture (AOSA) [36] is developed to support designers and programmers in 
cleanly separating components and aspects from each other in different layers. AOSA uses Aspect-Oriented 
Frameworks [34]. In this approach, aspects are defined as properties of the system that tend to cut across 
groups of functional components. Those aspects but do not necessarily align with the system's functional 
components, but they increase interdependencies between components and thus affect the quality of a system. 

 
AOSA is based on decomposition of aspects in system design that consists of components, aspects, and layers: 

• Component---Components consist of the basic functionality modules of the system such as the file 
system, communication, and process management etc.; 

• Aspect---Aspects are crosscutting entities, and they include fault tolerance, synchronization, scheduling, 
naming etc.; 

• Layer---Layers consist of the components and aspects decomposed into a number of more manageable 
sub-problems. 

 
Separating components, aspects, and layers from each other made it possible to abstract and compose them to 
produce the overall system. AOSA achieved reusability and stability by the higher level can use the lower level 
of the implementation and the high level would not be aware of if there was a change in the low lever. 
 
2.1.2 Dynamic Aspect-Oriented middleware Framework 

Dynamic Aspect-Oriented middleware Framework (DAOF) is proposed by [41]. In DAOF, software 
components and aspects are first-order entities composed dynamically at run-time according to architectural 
information stored in a middleware layer. Java is used as the general-purpose language to implement both 
components and aspects in this approach. The approach aims to providing a basis to separate any kind of 
aspects. Collaborative Virtual Environment (CVE) has been chosen to be the application domain. 
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The framework is composed of application architecture (AA), DAOF components and aspects, and a 
middleware layer. The architecture of an application is normally spread all over the system and describes which 
components set up the system and how they interact to accomplish the required functionality.  Information about 
when and how to apply aspects to components is not hard coded. A unique and universal role name is assigned 
to name references form components and aspects code so that components and aspects with the same role and 
provide the same behavior can be replaced by equivalent components or aspects.   
 
The AA of a system is defined as a list of components and aspects that can be instantiated in the system and a 
set of Architecture Restrictions (ARs), and also each of these components and aspects is defined by a role 
name, an interface and an implementation class, where interfaces are detached from implementation classes. 
Aspects that must be created at run-time have these alternatives: environment-oriented, user-oriented, type-
oriented and component oriented. This information is just a part of the aspect description inside AA and later 
the middleware layer creates aspect instance according to this information. Thus the number of types of aspects 
that are applicable to a component can change dynamically.     
 
2.1.3 UML All pUrpose Transformer 

UMLAUT (UML All pUrpose Transformer) [19], a framework for weaving UML-based aspect-oriented 
designs, is introduced as a tool for “weaving” aspects when modeling with the UML, and as a methodological 
support for building and manipulating UML models with UML.  

 
UMLAUT’s architecture has a three-layer architecture. The input front end consists of a graphical user interface 
for interactive editing and another interface for reading UML models described in various formats (XMI, 
Rational RoseTM MDL, Eiffel source, Java source). The middle core engine is made up of the UML meta-
model repository and the extensible transformation engine. And the output back end contains various code 
generators. The meta-model in UMLAUT’s core engine is implemented as a set of collaborative Eiffel classes. 
The resulting implementation is a direct mapping of UML meta-classes of Eiffel classes. The transformation 
engine of UMLAUT is responsible for the weaving process. A designer specifies the required transformation by 
composing a set of operators from the UMLAUT library. And users may also add new operators and extend 
the existing library to support different weaving operations. The framework is designed to cater to three levels of 
users: model designers, implementation architects and framework implementers and help the designer to 
programming “weaving” of the aspects at the level of the UML meta-model. 

 

2.2 Architecture Description Languages 

Architectural description plays an increasingly important role in the process of describing and understanding 
software systems. A number of ADLs [30] have been developed as formal notations to represent and reason 
about software architectures. A survey of ADLs is provided in this section. We recognize this survey is not 
exhaustive. 
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2.2.1 WRIGHT 

WRIGHT [1] is an architectural description language that provides formal description for both architectural 
configurations and architecture styles. WRIGHT uses explicit, independent connector types as interaction 
patterns and describes the abstract behavior of components using a CSP-like notation. It focuses on modeling 
and analysis of the dynamic behavior of concurrent systems [30]. A collection of static checks is used to 
determine the consistency and completeness of an architectural specification in WRIGHT. 

WRIGHT is built on the basic architectural abstractions of components, connectors, and configurations. Explicit 
notations for each of these elements have been provided in WRIGHT: 

• Component---A component describes a localized, independent computation with two parts of 
descriptions, the interface and the computation. An interface consists of a number of ports, where each 
port represents an interaction in which the component may participate. The computation section of a 
description describes what the component actually does. The computation carries out the interactions 
described by the ports and shows how they are tied together to form a coherent whole; 

• Connector---A connector represents an interaction among a collection of components; 

• Configuration---A configuration is a collection of component instances combined via connectors. 

In a WRIGHT description, instances of each component and connector type are required to be explicitly and 
uniquely named if they appear in a configuration. Once the instances have been declared, a configuration is 
completed by describing its topology. This is done by associating a component’s port with a connector’s role. 

Hierarchical descriptions are supported in WRIGHT by representing an architectural description as the 
computation of a component, where the component serves as abstraction boundary for a nested architectural 
subsystem. In addition to describing and analyzing system configurations, WRIGHT permits the designer to 
define architectural styles. A WRIGHT style has two parts: the common vocabulary and constraints on 
configurations. A common vocabulary is introduced by declaring a set of component and connector types.  In 
WRIGHT, the notation for constraints is based on first order predicate logic. 

 
2.2.2 RAPIDE 

RAPIDE is an event-based concurrent object-oriented language designed for simulation and behavioral analysis 
of architectures of distributed systems at an early stage [26].  It has been developed:  

• To allow be expressed in an executable form for simulation; 
• To adopt an execution model which captures distributed behavioral and timing as precisely as possible; 
• To provide formal constraints and mappings to support constraint-based definitions for conformance to 

architectures standards; 
• To address the issues of scalability involved in modeling industry system architectures. 

 

An architecture in RAPIDE consists of a set of specifications (called interfaces) of modules, a set of connection 
rules that define direct communication between the interfaces, and a set of formal constraints that define legal 
and/or illegal patterns of communication. An interface is a definition of the features provided to the architecture 
and required from the architecture by modules that conform to the interface.  It may contain an abstract 
definition of the behavioral of modules. Behavioral are defined by executable reactive rules, which specifies 
relationships between data received and data generated by a module. Connections define either synchronous or 
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asynchronous communication of data between interfaces, also in a simple interactive executable form. Formal 
constraints specify restrictions on various aspects of interfaces and connections. These architecture constructs 
have an event-based execution model, called the POSET model. Interface behaviors execute by waiting to 
receive certain sets of events and then reacting by generating new events. Connections define how events 
generated at some interfaces cause other events to be received at other interfaces. Constraints place restrictions 
on event activity, both in interfaces and over the set of connections and they are checkable. 

RAPIDE consists of five major independent languages: 

• types language for describing the interfaces of components 

• architecture language for describing the flow of events between components 

• specification language for writing abstract constraints on the behavioral of components 

• executable language for writing executable modules 

• pattern language for describing patterns of events. 

 
2.2.3 DARWIN 

DARWIN is a language for describing hierarchic configuration structures [27][28]. Unlike other module-
interconnection language, DARWIN addresses the dynamic aspects of configuration as well as providing for 
static configuration. A DARWIN configuration structure can be viewed as a hierarchy of interconnected 
component instances. Each level of the hierarchy being described with a separated DARWIN configuration 
description termed as a composite component type, which is constructed from the primitive computational 
components and these in turn can be figured into more complex composite types. 

In DARWIN, a component is defined by the services it provides to other components and the services it 
requires from other components. Components interact by accessing services. A DARWIN configuration 
description includes component instantiation declarations and binding specifications between a required service 
and a provided service. DARWIN supports the description of dynamically reconfiguring architectures through 
two constructs---lazy instantiation and explicit dynamic constructions. Using lazy instantiation, a logically infinite 
configuration is described and components are instantiated only as the services they provide are used by other 
components. Explicitly dynamic structure is provided through the use of imperative configuration on constructs. 
The operational semantics of DARWIN in terms of the π-calculus, Milner’s calculus of mobile process, is 
described in [27] and [28]. 

 
2.2.4 ACME 

ACME [17] is developed as an architecture interchange language with the purpose of providing a common 
intermediate representation for a wide variety of architecture tools. ACME supports mapping of architectural 
specification from one ADL to another; it is not strictly an ADL [30].  

ACME is built on a core ontology of seven types of entities for architectural representation: components, 
connectors, systems, ports, roles, representations, and rep-maps.  

• Component---A components represents the primary computational elements and data stores of a 
system.  

• Connector---A connector represents interactions among components.  
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• System---Systems represent configurations of components and connectors.  

• Port---Ports are defined as components’ interfaces.  

• Roles---Roles are defined as connectors’ interfaces.  

• Representations---Any components or connector can be represented by one or more detailed, low-
level descriptions, each such description is termed a representation in ACME.  

• Rep-maps---When a component or connector has an architectural representation there must be some 
way to indicate the correspondence between the internal system representation and the external 
interface of the components or connector that is being represented, a rep-map defines this 
correspondence. The topology of this system is declared by listing a set of attachments. 

Additionally, the ACME provides an open semantic framework in which architectural structures can be 
annotated with ADL-specific properties. This open semantic framework allows specific ADLs to associate 
computational or run-time behavior with architectures using the property construct, and also provides a 
straightforward mapping of the structural aspects of the language into a logical formalism based on relations and 
constraints. An ACME specification represents a derived predicate, which can be reasoned about using logic or 
it can be compared for fidelity with real world artifacts that the specification is intended to describe. 

 

2.3 UML 

UML is a graphical language for visualizing, specifying, constructing, and documenting the artifacts of a 
software-intensive system [20], [40]. UML based frameworks have also been proposed as solutions that 
support the analysis of non-functional requirements [45]. Significant advantages of using UML include that it is a 
standardized and well-known notation. In architectural research, the UMLAUT Framework [19] uses standard 
UML while other research groups focus on formalizing a subset of UML [29], modeling architectures using 
UML in combination with the object constraint language (OCL) [31] and extending UML [45].  

UML provides extension mechanisms to allow the user to model software systems if the current UML technique 
is not semantically sufficient to express the systems. These extension mechanisms are stereotypes, tagged values, 
and constraints.  

Stereotypes allow the definition of extensions to the UML vocabulary, denoted by <<stereotype-name>>. 
The base class of a stereotype can be different model elements, such as Class, Attribute, and Operation. A 
stereotype groups tagged values and constraints under a meaningful name. When a stereotype is branded to a 
model element, the semantic meaning of the tagged values and the constraints associated with the stereotype are 
attached to that model element implicitly. A number of possible uses of stereotypes have been classified in [5]. 

Tagged values extend model elements with new kinds of properties. Tagged values may be attached to a 
stereotype, and this association will navigate to the model element to which the stereotype is branded. Basically, 
the format of a tagged value is a pair of name and an associated value, i.e., {name=value}. Note that the tagged 
values attached to a stereotype must be compatible with the constraints of the stereotype’s base class. 

Constraints add new semantic restrictions to a model element. Typically constrains are written in the Object 
Constraint Language (OCL) [47]. Constraints attached to a stereotype imply that all model elements branded 
by that stereotype must obey the semantic restrictions which constraints state. Note that the constraints attached 
to a stereotyped model element must be compatible with the constraints of the stereotype and the base class of 
the model element. 
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A profile is a stereotyped package that contains model elements that have been customized for a specific 
domain or purpose by extending the metamodel using stereotypes, tagged values, and constraints. A profile may 
specify model libraries on which it depends and the metamodel subset that it extends. 

Figure 1 shows the relationships among stereotype, constraint, tagged value, and model element, where the 
stereotype, constraint, and tagged value can apply to a model element, and add corresponding semantics to that 
model element. Constraints and tagged values can also apply to a stereotype and the corresponding semantics 
added to the stereotype will navigate to a model element when the stereotype is branded to the model element. 

 

ModelElement
(from core)

Constraint

GeneralizaleElement
(from core)

Stereotype

Icon : Geometry
base Class : Name [1.*]
/definedTag : TagDefinition
/StereotypeConstraint : Constraint

TagDefinition
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dataValue : String[*]
/modelElement : ModelElement
/type : TagDefinition
/referenceValue: ModelElement

*

*

*

*

*

*
*

*

*

1*

0..1
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+ stereotype
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{ordered}

+ constraint

+ constrainedStereotype

+ owner + definedTag
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+ taggedValue

+ referenceTag

+ referenceValue

+ stereotypeConstraint

1
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Figure 1. UML Profile Meta Model 

 

A variety of UML extensions, such as [2] and [42] have been proposed to model non-functional aspects. 
Approaches focus on dealing with performance can be found in [3], [25] and [32]. In [2], an UML extension is 
introduced to model aspects with new design elements added into the current existing UML. By applying this 
approach, the project is assumed to be developed using aspect-oriented programming language AspectJ. [42] 
presents another UML extension to incorporate non-functional aspects (e.g., performance, reusability, 
portability etc) through the use of additional stereotypes, class compartments and dependencies. Additional 
stereotypes defined in this approach are based on the NoFun notation [15] and the OCL is used to establish the 
constraints of the incorporated non-functional attributes. The NoFun notation is developed to describe non-
functional requirements within the component-programming framework, which limits the UML extension only 
suitable for software component applications. 
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3. Overview of the Formal Design Analysis Framework 

The purpose of the FDAF is to support the systematic design of a system that meets its non-functional 
requirements such as performance, security, scalability, etc. [9]. The framework has a defined process and 
product model. An overview of the FDAF is illustrated in Figure 1. In this figure, the FDAF is represented with 
a cloud surrounded by the stakeholders, inputs, and outputs of the framework. The stakeholders are the 
designers, requirements engineers, and formal methodologists who use the framework to develop and evaluate a 
system design that meets its functional and non-functional requirements.  

The inputs include an object-oriented design model documented in the UML and a requirements specification 
that includes the functional and non-functional requirements for the system. The framework may be extended 
with additional formal methods; we have included a formal methods toolbox on Figure 2 to represent this. UML 
[20],[40] is selected as the notation for the input model because it is a readable, extendable [11], well-known 
notation that provides strong support for describing the functional capabilities of a system. The notation, 
however, has limited support for modeling non-functional properties.  

The outputs include a set of aspect-oriented formal design models and the analysis results. In our work, an 
aspect-oriented design is a solution defined to support one or more non-functional requirements for the system. 
Within the framework there are components including an extended UML notation and tool support. The tool 
allows the user to browse and select re-usable aspects, define new aspects, define join points in a design for 
static and dynamic views of the design, weave an aspect into the design, extract an aspect out of the design, 
assist the user in selecting a formal method, and translates an extended semi-formal UML design into a formal 

Figure 2. Overview of Formal Design Analysis Framework 
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notation.  

NFR Framework for Design. Fundamental to software engineering is the concept of meeting the needs of a 
customer. As presented in [7], we need to recognize that in reality a customer is not likely going to be 100% 
satisfied with a delivered product, the concept of "satisficing" has been introduced [44]. The term satisficing 
means that the customer is satisfied enough with the product to use it (i.e., it is "good enough"). The idea of 
satisficing has been adopted in the NFR Framework [8]. This framework supports the description, analysis 
and negotiation of multiple, possibly conflicting non-functional properties. An example of conflicting properties is 
the need for high security and fast performance. 

FDAF adopts the concepts of the NFR Framework [8] while developing an extended UML design for a 
system. The concepts adopted include the identification, analysis, and negotiation of design alternatives. In our 
work, we extend the NFR Framework to support the design of the system. In this process, non-functional 
aspects are stated and managed through refining and inter-relating aspects, justifying and documenting decisions, 
and determining their impacts. Addressing the conflicting aspects earlier in an aspect-oriented design process 
are expected to reduce the rework needed later. We believe that considering the conflicts and trade-offs 
between aspects in a final, weaving step may be too late, as the architectures for each aspect, developed 
independently, may not be possible to weave together. Instead, we consider the conflicts and trade-offs earlier 
as a concurrent and interleaving step in FDAF. 

Use a Repository of Aspects. The framework provides a repository of aspects defined in UML. The aspects 
are defined using class diagrams, sequence diagrams, collaboration diagrams, or OCL. The designer can search 
the repository and select parts of the aspects needed in the system design. Examples of aspects are presented in 
Appendix A. 

Use Existing Formal Methods. The framework assists the designer in selecting a formal method for each 
non-functional aspect of the system. Existing formal notations normally are only suitable for describing one or a 
few types of system properties. By adopting the aspect concept and a set of formal methods, we can select the 
most suitable notation and analysis techniques for a given property. 

The need to automate the analysis of an architecture (to reduce the cost, reduce the time, and improve the 
quality of the analysis), leads to us to consider the use of formal methods. ADLs, Petri Nets, and temporal logic 
have already been proven useful in designing and analyzing specific non-functional aspects of a design; we plan 
to build on the existing work in the area. Formal methods used to model software architectures include Petri 
Nets [6], temporal logic [18], process algebra [4], and ADLs including Wright[30], ACME [30], and RAPIDE 
[26]. 

Currently, we support RAPIDE in the framework as a formal method to support modeling and analyzing 
performance aspects of the DNS system. RAPIDE is an event-based, concurrent, object-oriented language 
designed for the simulation and behavioral analysis of distributed system architectures [26]. RAPIDE adopts an 
execution model which captures distributed behavioral and timing as precisely as possible. By utilizing 
architecture definitions as the development framework, RAPIDE allows gradual refinement of architectures into 
products, and supports testing and maintenance based on automated comparison with formal standard 
architectures. Meanwhile, tool support for RAPIDE is available and can be used to verify the specification for 
our example system, the DNS. Additional formal methods are going to be supported as the work matures. 

Aspect-oriented Formal Models. Using the principle of separation of concerns, a set of simpler models, each 
built for a specific purpose (or aspect) of the system, can be defined and analyzed [38]. Each aspect model can 
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be constructed and evolved relatively independently from other aspect models. Since an aspect model focuses 
on only one type of property, without burden of complexity from other aspects, an aspect model is potentially 
much simpler and smaller than a traditional mixed system model. This is expected to dramatically reduce the 
complexity of understanding and analysis.  

Automate the Translation from Semi-formal to Formal Notations . An automated translation ensures the 
consistency between the semi-formal extended UML model and the formal models. Currently, the extended 
UML is manually translated into RAPIDE. In the future, the extensions in UML are going to be refined such that 
we can define and implement algorithms to partially automate the translation.  

Analyze the Formal Model. Once translated, the formal model can be analyzed for specific properties using 
its existing tool support (e.g., model checkers, theorem provers, etc.). If the property does not hold in the 
formal model, then the architects and designers revise and possibly renegotiate the requirements. They need to 
modify the semi-formal models and update the formal models. The analysis and modifications are performed 
iteratively until the desired properties hold true. Since NFRs might not be absolutely achieved, they may simply 
be satisfied sufficiently (“satisficed”) [44]. 
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4. Formal Design Analysis Framework Process Model 

A process is defined to describe the activities that accomplish the goal of systematically defining an aspect-
oriented design that meets the system's functional and non-functional requirements (refer to Figure 3). The 
activities have entry and exit conditions, inputs, outputs, who performs the activity, and a description of the steps 

in the activity. A symbolic example is used to describe the steps. 

 

4.1 Activity 1. Create Semi-formal Extended UML Aspect-oriented Design Model 

Entry Condition: A UML design model that meets the functional requirements of the system is defined. Static 
(class diagrams) and dynamic (sequence or collaboration diagram) views of the design are available. Although 
design patterns [16] are likely to have been selected and applied to consider the non-functional requirements of 
the system, the design may not explicitly describe how the design meets these requirements. 

Exit Condition: Extended UML Design Model is Baselined 

Who performs activity: Requirements Engineer, Designer 

Description: 

Step 1.1 The requirements engineer and designer review the UML design model and the non-functional 
requirements of the system and begin to decompose, describe relationships among, and prioritize the non-
functional requirements of the system. The NFR approach is extended and used to accomplish this. Based on 
the results, the designer selects a related set of non-functional requirements, or aspects, to integrate into the 
design.  

Need to revise 
Semi-formal 
UML Model

Create Semi-formal Extended UML 
Aspect-oriented Design Model

Design 
Baselined?

No

Create Formal Aspect-oriented 
Design Model

Yes

Analyze Aspect-oriented Design 
Model

Design 
Baslined?

Yes

No

Analysis Results 
Pass?

No

Yes

Figure 3. Formal Design Analysis Framework Process 
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Step 1.2 The designer browses the FDAF repository for pre-defined aspects and selects a candidate that 
matches the non-functional requirements for the system. Currently, aspects are defined in UML as subsystem 
designs (i.e., class diagrams, capturing the static view of the aspect, and sequence or collaboration diagrams, 
capturing the dynamic view) or in OCL. The two kinds of definitions are needed because the aspects may be 
prescribed properties that permeate all or part of a system (e.g. meet a response time requirement) or as 
capabilities that may be delivered by developing classes (e.g. provide secure access control). Classes are 
defined with invariants, pre-conditions, and post-conditions on public methods. If a match is not found, then the 
designer needs to define the aspect and add it to the repository. 

Step 1.3 The designer defines the point cuts points in the dynamic view of the design model. A triangle symbol is 
used to indicate where in the dynamic model all or part of an aspect needs to be included. The static view is 
updated such that it is consistent with the dynamic view. 

Step 1.4 The designer weaves an aspect into the design. Currently, this step is performed manually. Tool 
support to automate this step is planned for future work. 

These steps are illustrated in Figure 4. 

4.2 Activity 2. Create Formal Aspect-oriented Models 

Entry Condition: Extended UML Design Model is Baselined 

Exit Condition: Formal Aspect-oriented Model is Baselined 

Who performs activity: Requirements Engineer, Designer 

Description: 

Step 2.1 The designer selects a formal notation to use. A decision tree is defined to assist the designer in 
selecting a formal notation.  Questions that are used to select a formal notation include: 

Is the system concurrent? 

Is the system real-time? 

Are there safety or liveness properties of the system that need to be met? 

Are there performance, security, adaptability, etc. requirements that need to be met? 

What kind of analysis needs to be performed to demonstrate the performance, security, 
adaptability, etc. requirements are met? 

… 

 

The decision tree for the framework is going to be defined as the work progresses. Currently, only the ADL 
Rapide is supported in the framework. Rapide is suitable for modeling and analyzing concurrent systems with 
constraints, such as performance constraints. When the FDAF is extended with an additional formal notation, 
the decision tree is also updated.  

Step 2.2 The designer translates the extended semi-formal UML design into a formal notation using the FDAF 
tool support.  
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4.3 Activity 3. Evaluate the Quality of the Semi-formal Aspect-oriented Model 

Entry Condition: Formal Aspect-oriented Model is Baselined 

Exit Condition: Quality of Extended UML Model is verified 

Who performs activity: Formal Methodologists, Specialized Engineers 

Description: 

Step 3.1 The formal methodologists and specialized engineering (e.g. performance or security engineering 
specialists) analyze the formal models using existing tool support. For example, if the formal notation Promella is 

…

RSA 3DES IDEA
…

:Client :Server

Point cut: Key
(encryption)

Point cut: Key
(decryption)

KeyKey

Identify Point cuts in UML Design (e.g. sequence diagram)

:Client :Server

Point cut: RSA
(encryption)

Point cut: RSA
(decryption)

KeyKey

Identify Aspect to Use in Repository

:Client :Server

Point cut: RSA
(encryption)

Point cut: RSA
(decryption)

RSARSA

Weave in Selected Aspect to Create the Extended UML Design

…

Security

Adaptability

Aspect Repository

…
Performance

…
Scalability

…
Availability

…

Reliability

…
Maintainability

…

Figure 4. Creating the Extended UML Design Model
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used then the model checker SPIN is used. If the results of the analysis indicate that the non-functional 
requirements are met, then the process is complete. The designers may need to iterate through this process to 
consider additional non-functional requirements. However, if the results indicate the non-functional requirements 
are not met, then the designer needs to revise the extended UML aspect-oriented design and go through the 
process again.  

5. Illustration: Create a Semi-formal Extended UML Aspect-oriented Design Model 

This section presents an example illustrating the first step in the FDAF process for a DNS example. The base 
models for the DNS in UML, the aspect-oriented model for response time performance in the extended UML, 
and the analysis rules for response time performance are presented. The base models, defined in standard 
UML, are the input to the FDAF process. In the future, examples are planned to illustrate extending the DNS 
base model with a security aspect, encrypting and encrypting data to provide data privacy as well as to 
demonstrate how the framework is used to model the addition of two tangled, conflicting aspects: performance 
and security. 

 

5.1 Base Models of the DNS 

The DNS provides a way to find an address, such as IP address, from a domain name. IP addresses uniquely 
identify every computer on the Internet. However, remembering 32 bits numeric address is hard. Therefore, the 
purpose of the DNS is to make it easier for users to access and remember the names of hosts on the Internet. 
The DNS allows networks and hosts to be addressed using common-language names as well as IP addresses 
and maps host names to various types of addresses through a distributed database. An example of its use is a 
simple internet operation--a hypertext page transfer: 

1.  A Web browser requested this URL: http://www.FreeSoft.org/Connected/index.html; 

2. The DNS protocol was used to convert www.FreeSoft.org into the 32-bit IP address 205.177.42.129; 

3. The HTTP protocol was used to construct a GET /Connected/index.html message; 

4. A table lookup in /etc/services revealed that HTTP uses TCP port 80; 

5. The TCP protocol was used to open a connection to 205.177.42.129, port 80, and transmit the GET 
/Connected/index.html message; 

6. The IP protocol was used to transmit the TCP packets to 205.177.42.129; 

7. Some media-dependent protocols were used to actually transmit the IP packets across the physical 
network. 

 

The main task of name servers is answering queries using their database they maintain. The data name servers 
manage in sets are called zones, which include local zones and foreign zones; each zone is the complete 
database for a particular "pruned" subtree of the domain space. Local zones are loaded from the name server’s 
master files and foreign zones are from other authoritative servers. A name server periodically checks to make 
sure that its zones are up to date, and if not, obtains a new copy of updated zones from master files stored 
locally or in another name server.  
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5.1.1 DNS Use Case Model 

As described, besides processing queries from clients, a DNS server needs to refresh its foreign zone 
periodically from other corresponding authoritative DNS serves. In addition, a DNS server should provide 
database maintenance functionality for administrators. Functionalities provided by a DNS name server can be 
described by Figure 5: 

 

DNS Server

 Standard Query

Refresh Zone

Load Zone

Create Zone

Update Zone

Delete Zone

Display Zone
Administrator

DNSClient

 

Figure 5 DNS Server Use Case Diagram 
 

5.1.2 DNS Architecture Design Model 

Subsystems of the DNS server as well as interfaces they provide are presented in Figure 6. Detailed description 
of subsystems are described in Table 1. 
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<<Subsystem>>
Query Processing

Subsystem

<<Subsystem>>
Zone Maintenance

Subsystem

<<Subsystem>>
Zone Refreshing

Subsystem

<<Subsystem>>
Decoding

Subsystem

<<Subsystem>>
Message Receiving

Subsystem

<<Subsystem>>
Encoding

Subsystem

<<Subsystem>>
Message Sending

Subsystem

getDNSMessage()

getRRQuery()
getRefreshResponse()

getRRQueryResponse()
getRefreshRequest()
getLoadMasterFileRequest()

getDNSMessage()

 

Figure 6 DNS Server Subsystems Diagram 
 

 

Subsystem Name  Interfaces Provides Subsystems depends  

Message  

Receiving 

Subsystem 

getDNSMessage(): generates a messages 
in the DNS protocol message format for its 
received messages; 

N. A. 

 

 

Decoding 

Subsystem 

getRRQuery(): generate a client resource 
record query from a DNS protocol 
message; 

getRefreshResponse(): generate a refresh 
response sent by other DNS servers from a 
DNS protocol message; 

Message Receiving 
Subsystem: gets a DNS 
protocol message from this 
subsystem; 

Query 

Processing  

getRRQueryReponse(): generate answers 
for a particular client query;  

Decoding Subsystem: gets 
client queries from this 
subsystem; 

Zone 

Maintenance 

Subsystem 

N. A. Decoding Subsystem:  gets 
refresh responses from this 
subsystem; 

Zone Refreshing Subsystem: 



17 

gets loading master files 
request from this subsystem; 

Zone Refresh 

Subsystem 

getRefreshRequest():generates a refresh 
request for other DNS servers; 

getLoadMasterFileRequest(): generates 
loading master files requests; 

N.A. 

 

 

Encoding 

Subsystem 

getDNSMessage():generates a encoded 
DNS protocol message; 

Query Processing 
Subsystem, Zone Refresh 
Subsystem: gets resource 
records responses and 
refresh requests for these 
two subsystems respectively 

Message  

Sending 

Subsystem 

N.A. Encoding Subsystem: gets a 
encoded DNS message from 
this subsystem 

 

Table 1. DNS Server Subsystems Description 
 

5.1.3 DNS Class Diagram Models 

Figure 7 presents the DNS entity class diagram. Descriptions of classes are available in Table 2. 
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Figure 7. DNS Entity Class Diagram 
 

Class Name  Description 

Additional the Additional section of the DNS protocol message, which may 
have zero or multiple resource records 

Answer the Answer section of the DNS protocol message, which may have 
zero or multiple resource records 

Authority the Authority section of the DNS protocol message, which may 
have zero or multiple resource records 

DNSMessage the DNS protocol message 

ForeignZone foreign zone of the DNS server, which needs to be updated by 
resource records of other DNS servers 

Header the Header section of the DNS protocol message 

IPMessage messages that received and sent by the DNS server 

LocalZone foreign zone of the DNS server, which needs to be updated by the 
DNS server’s master file  

MasterFile the DNS server’s master file  

Question the Question section of the DNS protocol message 

ResourceRecord resource record 

RRRefreshRequestToDNSSeve
r 

refresh request generated by the DNS server 

RRRequestFromClient resource record query generated by DNS clients 

RRResponse the answer of the DNS server’s refresh request 

RRResponseToClient the answer of DNS clients’ query 

Zone zone of the DNS server 

 

Table 2.  DNS Entity Classes Description 
 

Figure 8 presents another class diagram of the DNS. In this diagram, several control classes have been added 
in. As the query processing functionality of the DNS is of high interest in this report, the figure only presents 
control objects involved in this scenario. 
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DNSMessageIPMessage

RRRequestFromClient

RRRefreshRequestToDNSServer

RRResponse

RRResponseToClient Zone

MessageReceiver MessageDecoder

RRQueryProcessor

<<ADT>>
DomainNameSpaceMessageEncoderMessageSender

receives

generates

decodes

generates

generates

generates

processes

interacts

encodes encodes

generatessends

 

Figure 8. DNS Class Diagram 
 

5.1.4 DNS Query Processing Sequence Diagram 

 

The DNS query processing sequence diagram is presented in Figure 9. 
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Figure 9.  DNS Query Processing Sequence Diagram 
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5.2 Adding a Performance Aspect 

The first example non-functional aspect selected for the DNS is performance aspect. Performance may refer to 
the response time, system’s throughput, as well as efficient utilization of system resources. It is a vital factor in 
the success of software systems. To meet performance objectives, performance needs to be considered in an 
early stage of the software development life cycle [23], [37], [48]. 

The current version of UML, version 1.5, does not support the definition of an aspect. In the FDAF, a new 
UML extension is presented for this purpose. The UML extension of the FDAF has following two 
characteristics: 

1. Serves as a general-purpose mechanism to model aspects/concerns, which includes performance aspect 
and other aspects as well; 

2. Helps designers to automatically transform the UML semi-formal design models into appropriate formal 
models and then select the analysis tools in a later stage of the FDAF. 

One of the initial steps of performance analysis of software systems is identifying the critical performance 
scenarios [22], [39], [48]. A scenario is a sequence of actions performed by a group of different objects. 
Therefore, performance assessment of a key scenario inevitably crosscuts the design model’s individual 
elements. As the main task of a DNS server is to answers queries form clients, the query processing scenario is 
identified as the key scenario discussed here. Generally, performance assessment includes the evaluations of 
both resource utilization and response time.  As in this example, the response time is the part of the interest.  

An example of our UML extension for modeling the performance aspect of the DNS query processing scenario 
(the collaboration diagram is selected to illustrate the approach) is presented in Figure 10. In our UML 
extension, a wedge-like, triangular symbol is used to indicate the performance aspect. For each object in an 
execution path, the performance impact is assigned. The performance value is expressed by using stereotypes, 
tags defined in [39] and then the UML note notation associates them with the corresponding objects. Outside 
the package, another note notation is used to denote the performance evaluation techniques that are expressed 
in the OCL. Performance modeling and analysis techniques of the UML extension are explained in detail below.  
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: Client  : MessageReceiver : MessageDecoder

:RRQueryProcessor DNS  Name Space
<<ADT>>

: MessageEncoder:MessageSender

1: IP Message 2 : DNSMessage

3 :RRRequestFromClient

4: Query

5:ResourceRecords

6: RRResponseToClient

7:DNSMessage

8:IP Message

<<PAcontext>>

<<PAclosedLoad>>
{PAarvlRate=5 }

<<PAstep>>
{PAdelay=('assm', 'mean', (10,
'ms'))}

<<PAstep>>
{PAdemand=('assm ', 'mean', (5,
'ms'))}

<<PAstep>>
{PAdemand=('assm', 'mean', (50,
'ms'))}

<<PAstep>>
{PAdemand=('assm', 'mean', (5,
'ms'))}

<<PAstep>>
{PAdelay=('assm ', 'mean', (10,
'ms'))}

<<PAresource >>

{ PAschdPolicy=FIFO,

PAwaitTime : PAperfValue ,
 -- decide the source-modifier of PAwaitTime

self.source -modifier=PAcontext.PAsetp.PAdemand.source-modifier
 -- decide the type-modifier of PAwaitTime

   -- PAwaitTime is  the "mean response time" of the DNS server, using  the M/M/1 Queue theory
self.type-modifier='mean'

 -- calculate the DNS server service time, using "Sequential-Path Reduction Rule" from SPE
stepSet : set
serviceTime: real
stepSet=PAcontext.OclAny->select(PAstep)
stepSet->iterate(step:PAstep; serviceTime=0 | serviceTime@pre+step.PAdemand.time-value.time)

 - - M/M/1 Queue theory to calculate PAwaitTime
self.time-value.time=serviceTime/(1-serviceTime*PAcontext.PAclosedLoad.PAarvlRate)
self.time-value.time-unit=PAcontext.PAstep.PAdemand.time-value.time-unit

PArespTime: PAperfValue ,
 - - PArespTime is the sum of network delay and sever mean service time

networkDelay:real
self.source-modifier=PAwaitTime.source-modifier
self.type-modifier=PAwaitTime.type-modifier
stepSet ->iterate(step:PAstep; networkDelay=0 |networkDelay@pre+step.PAdelay.time-value.time)
self.time-value.time=PAwaitTime+networkDelay
self.time-value.time -unit=PAwaitTime.time-value.time-unit

}

 

Figure 10.  DNS Performance Aspect Modeling in UML  
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5.2.1 Performance Aspect  Modeling 

The UML extension of the FDAF is based on the principles discussed in [39] and [46]. Software performance 
engineering (SPE) [46] is a method for constructing software systems to meet performance objectives. SPE 
methods cover performance data collection, quantitative analysis techniques, prediction strategies, management 
of uncertainties etc. Data required to evaluate software performance in SPE are: performance goals, workload 
specifications, software execution structure, execution environment and resource usage. Furthermore, [39] 
describes a component of the profile that is intended for general performance analysis of UML models. Several 
performance analysis concepts discussed in [39] are: 

• Scenarios--define response paths whose end points are externally visible;  
• scenario steps--are elements of scenarios;  
• resource demands--the execution time taken on its host device by a step;  
• resources--simply servers;  
• performance  measures--includes resource utilization, waiting times, execution demands and 

response time, which may be specified in four different versions, namely, “required”, “assumed”, 
“estimated” and “measured”. 

 

In [39], stereotypes are used to represent performance analysis concepts. To minimize the possibility of 
confusion and conflict with other UML profiles, all extension element names related to performance analysis are 
prefixed with the string “PA”. This naming convention has been adopted by the UML extension of the FDAF. 
However, in our UML extension, the prefix “PA” may also mean “Performance Aspect” related elements. 
Additionally, [39] defined possible tags to associate with each stereotype. 

In our DNS example (see Figure 10), we used following stereotypes that already defined in [39]: 

• <<PAcontext>>--models a performance analysis context. This stereotype could associate with a 
collaboration diagram and has no tags defined; 

• <<PAclosedLoad>>--models a closed workload (has a fixed number of active or potential jobs). It 
has four tags already defined in [39]: PAresTime (response time), PApriority (priority), PApopulation 
(population), and PAextDelay (external delay). We considered that many times designers may want to 
specify the arrival rate of jobs directly. Therefore, we added an extra tag, PAarvlRate, for this 
stereotype, which is also used in the DNS example; 

• <<PAstep>>--models a step in a performance analysis scenario. Tags of this stereotype include: 
PAdemand (host execution demand), PArespTime (response time), PAprob (probability), PArep 
(repetition), PAdelay (delay), PAextOp (operations), and PAinternal (interval). In our example, we 
select the tag PAdemand for those steps inside the query processing scenario. For message 
transmission steps, we select PAdelay tag for them; 

• <<PAresource>>--models a passive resource and has tags: PAuilization (utilization), PAschdPolicy 
(scheduling policy), PAcapacity (capacity), PAaxTime (access time), PArespTime (response time), 
PAwaitTime (wait time), and PAthoughtput (throughtput). In Figure , this stereotype is used to model 
the whole performance of the DNS server’s query processing. As response time is of the interest, tags 
PArespTime and PAwaitTime are selected. Their values are decided by applying OCL rules 
(recorded in the note notation outside of the collaboration diagram) to tag values of PAclosedLoad and 
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PAstep specified in the diagram by the designer. Details about those OCL rules are explained in the 
next section. 

 

In order to make performance analysis meaningful, a new type, PAperfValue, is defined in [39] to specify a 
complex performance value, which includes not only numerical values for performance-related characteristics 
but also the semantics of those values (e.g., average, maximum, prediction, measurement). The value type is an 
array in the following format: 

“(“<source-modifier>”, “ <type-modifier>”, “ <time-value>”)” 

Where: 

• <source-modifier>::= ‘req’ | ‘assm’ | ‘pred’ | ‘msr’, is a string that defined the source of the value 
meaning respectively: required, assumed, predicted, and measured; 

• <type-modifier>::= ‘mean’ | ‘sigma’ | ‘kth-mom’, <Integer> | ‘max’ | ‘percentile’, <real> |’dist’, is a 
specification of the type of value meaning: average, variance, k th moment, maximum, percentile 
range, or probability distribution; 

• <time-value> is a time value which has two parts: numerical time and time unit. 

Several tags used in the DNS example take PAperfValue type, such as PAdemand. For example, 
{PAdemand = {‘msr’, ‘mean’, (20,’ms’))} represents a demand in a scenario step with a measured mean 
value of 20 milliseconds. 

As one important motivation of the FDAF UML extension is to assist designers in analyzing performance, the 
OCL is selected for this purpose at current stage. In order to conveniently express the PAperfValue type in 
OCL, the three part of its value (source-modifier, type-modifier, time-value) could be seen as its three 
attributes. The same consideration has been applied to the “time-value”, since it includes numerical time and time 
unit two parts. Therefore, time-value has two attributes: time and time-unit. For example, PAdemand.time-
value.time refers to the execution time of a particular PAdemand. 

 
5.2.2 Performance Aspect Analysis 

In our extension, performance analysis rules are expressed by using the OCL and captured in the note notation 
(see Figure 10). These rules are based on performance analysis techniques from [46] and [21] and focus on the 
response time for a service request. 

Software performance engineering (SPE) [46] is a work that prescribes algorithms for quantitative performance 
analysis. Algorithms formulated in SPE are for evaluating execution graphs. However, these algorithms are very 
understandable and can be applied to many types of software models, even a textual description of the system’s 
execution structure. 

Here, we present three basic performance analysis algorithms from [46]:  

• Sequential-Path Reduction Rule: this rule denotes that for a sequential path in the system’s execution 
structure, the time for the computation of the (i+1)st step is the sums of times in sequence in the ith step, 

which is 1
1
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• Repetition-Path Reduction Rule: this rule denotes that for a repetition path in the system’s execution 
structure, the time for the computation of the (i+1)st step is the result of multiplying the time of ith step by 
the loop repetition factor, which is 1

1 1
i it nt+ = ; 

• Conditional-Path Reduction Rule: this rule denotes that for a conditional path in the system’s 
execution structure, multiplies each ith step by its execution probability, and adds the time for 

determining which condition holds, which is 1
1 0

1

n
i i i

j j
j

t t p t+

=

= + ∑ ; 

In the DNS example, we need to compute the mean response time (PArespTime of stereotype PAresource) of 
the DNS server. As the query arrival rate is already specified in the stereotype <<PAclosedLoad>>, 
according to the M/M/1 Queue theory (only one server is considered in the design) from [21], we need to find 
out the service rate, which can be easily calculated through the service time (PAwaitTime of stereotype 
PAresource). 

 

Steps involved in computing PAwaitTime and PArespTime are:   

1. Decide PAwaitTime 

As PAwaitTime has three attributes (source-modifier, type-modifier, and time-value) discussed in the 
previous section, we have to decide these three parts one by one. 

Decide source-modifier: Although designers can use any of the four types of source-modifier values 
(required, assumed, predicted and measured), for the purpose of consistent analysis, we strongly recommend 
that designers should use the same kind of source-modifier through one <<PAcontext>>. In this case, the 
value for PAwaitTime.source-modifier is simply the source-modifier used in the <<PAcontext>>, which is 
OCL expression: 

      self.source-modifier=PAcontext.PAsetp.PAdemand.source-modifier; 

Decide type-modifier: PAwaitTime refers to mean response time here. Therefore its type-modifier is “mean”: 

      self.type-modifier='mean'; 

Decide time-value: Sequential-Path Reduction Rule of SPE [46] is applied to compute the service time value 
as the DNS server processes queries sequentially. <<PAstep>>s involved here are those who has demand 
that executes on the hose and the mean service time is the sum of all the PAdemand.time-value.time in this 
<<PAcontext>>, which is OCL expressions: 

-- define a set 

       stepSet : set                                   

-- define a real variable 

          serviceTime: real      

-- select PAstep stereotypes that has demand executes on the host                     

         stepSet=PAcontext.OclAny->select(PAstep)    

 -- calculate serviceTime  

         stepSet->iterate(step:PAstep; serviceTime=0 | serviceTime@pre+step.PAdemand.time-
value.time) 



26 

-- M/M/1 Queue theory to calculate PAwaitTime 

        self.time-value.time=serviceTime/(1-serviceTime*PAcontext.PAclosedLoad.PAarvlRate) 

-- time-unit is simply the one used by the designer in the PAcontext       

        self.time-value.time-unit=PAcontext.PAstep.PAdemand.time-value.time-unit 

 

2. Decide PArespTime 

PArespTime has the same source-modifier and type-modifier with PAwaitTime and is the sum of mean service 
time and message delays on the network: 

  PArespTime: PAperfValue,   

    -- PArespTime is the sum of network delay and server mean service time 

          networkDelay:real 

          self.source-modifier=PAwaitTime.source-modifier 

          self.type-modifier=PAwaitTime.type-modifier 

    -- select PAsteps that involved in network delays 

          stepSet->iterate(step:PAstep; networkDelay=0 |networkDelay@pre+step.PAdelay.time- 

                                            value.time) 

          self.time-value.time=PAwaitTime+networkDelay 

          self.time-value.time-unit=PAwaitTime.time-value.time-unit 

 

Mean Response Time: Sample Calculation 
 

For example, to calculate the server’s mean response time for Figure 10, following steps are performed: 

1. Calculate the server’s service time, which is the sum of execution time of all those performance 
contribution objects in this scenario (e.g., those design elements associated with the triangle notation in 
the diagram). In this case, performance contribution objects identified are: MessageDecoder, 
RRQueryProcess (which searches answers in the DNS Name Space, the time spending on searching 
could be viewed as the execution time of RRQueryProcessor), MessageEncoder. Hence, the server’s 
service time = 5 + 50 + 5 = 60 milliseconds; 

2. Calculate the server’s mean response time without network delay by using M/M/1 queue theory. In this 
example, the requests’ arrival rate is 5 per seconds, therefore, the server’s mean response time = 
(60∗0.001)/(1-60∗0.001∗5) = 86 milliseconds; 

3. Calculate the total response time. Total response time = server’s mean response time + network delay 
= 86 + 10 + 10 = 126 milliseconds. 
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6. Conclusions and future work 

The main contribution of this work is to define a response time performance aspect that incorporates 
established, quantitative performance analysis techniques [21][46]. This aspect is used in the Formal Design 
Analysis Framework (FDAF) to create a semi-formal extended UML aspect-oriented design model. The 
FDAF is intended to support the design and analysis of multiple, non-functional properties using a combination 
of existing semi-formal and formal methods. The FDAF integrates current research in aspect-oriented design 
and uses the concepts of the NFR Framework to support the identification, analysis, and negotiation of 
conflicting non-functional properties. The goals of the framework include assisting the architect to select an 
appropriate formal method, identify, analyze, and negotiate conflicting properties, define and maintain formal 
model for specific aspects of the system (e.g., performance, security, adaptability, etc.), and analyze formal 
models.  

In the FDAF, performance is treated as a collection of aspects modeled in the design. Basically, performance is 
a function of the frequency and nature of inter-component communication, in addition to performance 
characteristics of those components themselves [9]. Based one the research on [21] and [46], we defined 
performance aspect as set of subaspects, which can be mathematically expressed as: Performance Aspect = 
{Response Time, Rate Throughput, Resource Utilization, Probability, Time between Errors, Durations of 
Events, Time between Event}. As a system could have its own special requirements, performance subaspects 
are not limited to those listed above. According to the need of a particular application, requirement engineers 
and designers might define their own performance subaspects of interest and add them into the set.  

We have used a DNS subsystem, the query processing system, to illustrate the UML extension in this report. In 
this example, we select the response time performance aspect as the modeling aspect. Response time is defined 
as the interval between a user’s request and the system response. Stereotypes defined in the UML profile for 
performance modeling [39] are used here. The calculation of the response time performance aspect using 
performance analysis rules are expressed by using the OCL and is done manually at current stage. Our 
approach provides a way for designers to model and analysis interested performance aspect in the design 
phase, which enables one to evaluate different design alternatives according to some specific performance goals 
and select the most suitable one for the system to meet its performance requirements. 

There are several interesting directions for the future work. One direction includes investigating the real-time 
extension of UML. This extension has been developed to address specific problems in modeling real-time 
systems such as concurrency and synchronization and may be a more suitable notation for our example system, 
the DNS.  

A second direction is to investigate the automatic translation of the extended UML DNS design model into the 
notation RAPIDE and Armani [34]. RAPIDE is an event-based concurrent object-oriented language designed 
for simulation and behavioral analysis of architectures of distributed systems at an early stage, which also 
provides timing model to allow designers to describe and analyze time sensitive prototypes. There are several 
analyzing tools supported by Rapide to simulate a software architecture. Armani is a language for capturing 
software architecture design expertise and specifying software architecture designs. Armani provides core 
language constructs to support design analysis and also allows designers to build their own analysis methods. It 
is used in the ACME tool set [17]. The ACME toolset supports the quantitative performance analysis of an 
architecture. Depending on the estimated data (such as request arrival rate, service time) provided by the 
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designer, Armani’s analysis tool can automatically evaluate the design’s performance results, such as server 
mean response time, overloaded component etc. through performance measure techniques presented in [21] 
and [46]. The advantage of performing such translation work includes that the usage of existing tools supported 
by Rapide and Armani can help designers to analyze their formal model for a specific system aspect, and 
provide valuable analysis results for them to evaluate and improve their design before the system is implemented.  

A third direction is to investigate the modeling and analysis of additional aspects, such as security, and the 
interactions among these aspects. The non-functional requirements (NFR) framework [8] is going to be used to 
systematically analyze the synergistic and conflicting relationships among the aspects. For example, security and 
performance represent conflicting properties. In general, the more secure a system is, the slower the 
performance is expected to be, unless alternative solutions such as hardware implementations of 
encryption/decryption algorithms are considered that are likely to increase the cost of the system.  
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Appendix A. Performance Aspect 

As described in [21], a performance study needs a set of performance criteria or metrics. One approach to 
prepare this set is list the services offered by the system and categorize the possible outcomes into three groups. 
The first group is the system performs the service correctly. Within this category, the time taken to perform the 
service, the rate at which the service is performed, and the resource utilization may be measured. The second 
category is the system does not perform the service correctly. Here, the probability of an error occurring and 
the time between errors can be measured. The third category is the system cannot perform the service (e.g., the 
system may be down). In this category, the duration of the event and the time between the events can be 
measured. 
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  Figure A1. Static View of Performance Aspect  (adapted from [21]) 
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Appendix B. Security Aspect 

Security is a complex aspect that provides design solutions for access, authentication, accounting, privacy, and 
integrity. The security aspect is modeled as a set of packages (refer to Figure A1). In this Figure three packages 
are defined at the most abstract level to contain designs for standard reference models, encryption/decryption 
algorithms, and protocols. At the lowest level of abstraction, a package's subdiagram is defined with a class 
diagram, sequence diagram, or collaboration diagram. For example, a sequence diagram for the NIST BSR 
INCITS draft standard for Role Based Access Control is presented in Figure A2. The security aspect is being 
refined to include additional designs. 
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Figure B1 . Security Aspect 
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