Process Definition for the Formal Design Analysis Framework

Creating an Aspect-oriented Design Supporting Response Time Performance

Technical Report UTDCS-20-03

K. Cooper
Lirong Dai
Jing Dong

Department of Computer Science
Mail Station 31
Univ. of Texas at Dallas
Richardson, TX, USA P.O. 830688

Table of Contents

T 1 01 oo (8o o OSSR SE PRSPPI 1
1.1 Motivation and ProblEmM DESCIIPLIONc.ccuciiiiceiteie ettt sttt e et e b e e ae st e e b e s ese s b eseebe s ese et eseese s eseebenseteasesessensetessensnrenes 1
1.2 REPOIT OFQANIZBLION.euerveteuietetiere sttt ss et re sttt se b ese e e s es et se b eses e e s s e eh et s e e b e b e e s e e b e R e e E e b s e e A e e R e R e e e E e b e R e n e b e b e R e e e e b e st e b b eae st e b e 1

P = = (= o 1Yo ST R PPN 2
b2 R AN = o = o @ 1= 01 (=0 [N o o0 o o OSSPSR 2

211 Aspect-Oriented SOftWAIrE ATCHITECIUNE ..ot n et n e nenas 2
212 Dynamic Aspect-Oriented middleware FramEWOTKcocci ettt a e et e ene b sbenean 2
213 UML Al PUIPOSE TIANSFOMMIESviiieceeiiiieeietsesiei ettt b skt b et e b et e b bt ne b bt b ettt b e e s 3
2.2 ArchiteCture DESCIiPION LANQUAOEScciueeeuerteerueneeterteserteeeteseeesseseesesseaessaseeaeseensaseseeasseeneessseeneseeneaseseesesseneasessenessensesessanessessnsessans 3
221 WVRIGHT ettt btk e bbb e e s e e e e e b e 8o aeeE e e e R €A £ e R e S b e e eh e AE e R e e E e e eh e eEese e b e e eb e b e st e b e e eb e b ene e b e s ebeanens 4
222 RAPIDE ...ttt ettt b e bt bt bt bt e ae e st e e e £ oA e R e AR e SR e e Re e R e oAt e b e R e R e SR e SR e eh e e R £ e R e e e e EeeEe R e eReeRe e Rt eRe et et e benbenrenaan 4
223 DARWIN .ttt s s b e h e s bt bt e bt e ae e s e e e e e e e e R e 4R e SR e e R e e a e e a s e s 2R e R e eE £ eE e eh £ e R e e Re e e e e e nEeeE e eReeR e e ReeReenn et e n e nennennn 5
224 ACIME et b b e h A e R R R R a R e R AR R AR R R AR R e R SRR R e R e R e e Rt R s e R e e bR n e R e aeenen 5
23 UM L ettt bbbkt a e a e et e b e sE e eEeeE e ehe e Re SR £ e R e e R e R e AR e AR e SR £ SR e SRE SR £ SRR e R e eEeAEeAEeeEeeEeeREeREeaE e R e aReeReeReeReeReeReent et e renrenrenreee 6

3. Overview of the Formal DeSign ANalYSIS FrAMEWOIK.........c.couiiiiiiiieesieieie ettt e ettt e bbb s e eae b et e beseenenbe e enenean 8

4. Forma Design Analysis Framework PrOCESS MOUEL.........c.coiriiieiiiririeiiersie ettt ettt enenn 11
41 Activity 1. Create Semi-formal Extended UML Aspect-oriented Design MOEL..........ccoireiiiiiiniereee e 11
4.2 Activity 2. Create Formal ASPect-Oriented MOGEIS.........coiiiiiiiciseese ettt et e b e b nesbe s enesreneabens 12
4.3 Activity 3. Evaluate the Quality of the Semi-formal Aspect-oriented MOdEL............coveiiiieinie s 13

5. llustration: Create a Semi-formal Extended UML Aspect-oriented DeSign MOGE ..o 14
5.1 Base MOUEIS Of tNEDINS.......c.iiiiiiiieieieieie ettt bbb b bbb bbb bbb bbb E bbb h b b e b bbb e bbbt bbb bbb bbb en s 14

511 DINS USE CASE IMOUE ...ttt ettt et e te b e st ee e e e s e e e e st e e e e e s e seemeeE e e e eaeeEemeebeseeneseeneeaeseenesbaseneseeneasans 15
512 DINS ArchiteCture DESIGN IMOOELcuiiiieieieeeee ettt sttt b et b e seeaesb et e bt e ne e b e e be st eneebens 15
513 DINS Class DIagram IMOGEISccuiueuiiiieiiesiieeest etttk b b st b et e b bt se b b e st s b b et ns b b et e b b anenenn 17
514 DNS Query Processing SEQUENCE DIBOIAIMc.ciueiiuirieeiieeeteeieerte st eie s e s tesee e seeseeseseeaesseseeaesseaeeseseensseeneeseseenestensenesseneasan 19
5.2 Adding @PerfOrManCe ASPECE........cviuiieieiieietesete sttt et te st ete st et e te st e st s te s esesseaeebe s eaeseeaeebe e eaeebeseebeseReebeseebe b eReebe e e rentereeaensereaee

521 Performance Aspect Modeling....
522 Performance Aspect Analysis......
6. Conclusionsand futurework
7. References.....oovieiiinnenene,
Appendix A. Performance Aspect.....
APPENGIX B. SECUIMEY ASDECE ...ttt ettt b b st e b e st h b a1 e b e b e e e e e eh e e e e e R b e e A E b e Rt e b b e R e e e b e b e st e e bk et ne e b b e e e b b e e e e

Abstract

Much attention has recently been focused on the problem o effectively developing software systems that meet
their non-functiond requirements. Architectural frameworks have been proposed as a solution to support the
design and andysis of non-functiona requirements such as performance, security, adaptability, etc. A sgnificant
benefit of performing such analysis work is to detect and remove defects earlier in the design phase. However,
the non-functiona properties of a sysem are mostly addressed independently making it difficult for the design
and anaysis d a system with respect to a collection of these interacting, or tangled, properties. This report
presents an overview of our proposed solution to this problem called the Forma Design Anaysis Framework
(FDAF). More specificaly we describe the process that supports the definition of an aspect-oriented design.
The process is described using activity diagrams. An example is given to modd part of the design for a Domain
Name System (DNYS) for one aspect, or non-functiond properties, performance. The unified modding language
(UML) and the architecturd description language Rapide and Armani are used in the example. The long-term
god of the work is to support the definition and andys's of two or more synergistic or conflicting aspects, or
nor+functiona requirements, using the non-functiona requirement (NFR) Framework.

1. Introduction
1.1 Motivation and Problem Description

Attention has recently been focused on the problem of effectively designing software systems that meet their
non-functiond requirements. The motivation for such research is straightforward: one of the significant, expected
benefits of performing such andysis work is to detect and remove defects earlier in the design phase resulting in
ahigher quality system, reduced development time, and reduced development costs [43].

Researchers have proposed solutions to this problem from a number of different directions. Architectura
frameworks have been proposed as solutions to support the anadlysis of a single non-functiona property such as
security [18], performance [45], or adaptability [7], or provide a ressoning framework [24]. The unified
modeling language (UML) has been investigated with respect to how it can be used and extended to model
non-functiona properties in a design. Aspect-oriented design approaches have been proposed as a means to
systematically mode cross cutting concerns like non-functiona properties.

The non-functional properties, or aspects, of a systemn are mostly addressed independently making it difficult for
the design and andysis of a system with respect to a collection of these properties. Current approaches either
concentrate on serving as a genera-purpose architecture modeing language within a particular domain, or
support the anadlyss of one specific non-functiona requirement of a sysem (eg., secuity, performance,
adaptability, etc.). Tofill this gap in the research, we ask the following question:

Can we define an aspect-oriented architectural framework that supports the design and analysis
of multiple, non-functional properties for distributed, real-time systems?

As a solution, we propose the Forma Design Analyss Framework (FDAF). Our vison is that FDAF is
intended to support an aspect-oriented design and andysis of multiple, non-functiond properties usng the Nor+
Functiond Requirement (NFR) Framework, UML, and a set of forma methods. The NFR Framework is used
to identify, describe, prioritize, and negotiate the relationships among non-functiond gods (cdled softgods) of a
sysem [8]. UML is sdected because it is a well-known, standardized notation. Extensons to UML are
proposed to better support the description of non-functiona properties. A st of forma methods is used
because a angle forma method is not available that is well suited for defining and andyzing numerous non
functiona properties for a system (performance, security, capacity, etc.). Exising forma methods are used
because developing anew forma method is a substantid task; we have chosen to leverage the previous work in
architectura description languages (ADL), Petri Nets (timed, stochastic), tempord logic, etc. and integrate them
into our framework rather than develop a new forma notation and tool support.

This report is focuses on the firgt step of the FDAF, which is the creating of semi-forma extended UML model

to support aspect-oriented design. The UML extenson is illugstrated by a Domain Name Server (DNS)
example.

1.2 Report Organization

This report is organized as follows. Related work is presented in Section 2. An overview of FDAF is presented
in Section 3. The description of our process is in Section 4. Part of the process is illustrated in Section 5.
Conclusions and Future work arein Section 6.

2. Rdated Work

As our work draws upon aspect-oriented approaches and the extenson and trandation of UML into the ADL
RAPIDE, we provide a brief survey of work in these aress.

2.1 Aspect-Oriented Approach

Aspect-oriented approaches [38] rely on the principle of separation of concerns. A property of a system needs
to be implemented as an aspect when it cannot be clearly encapsulated in a generdized procedure. Examples of
aspects include non-functiond properties such as performance, security, adaptability, avallability, etc. Aspect-
oriented design has been inspired by the research in aspect-oriented programming (AOP) [13]. Thisis a
relatively new programming technique that is based on the idea that computer systems are better programmed
by separately specifying the various concerns (properties or areas of interest) of a system and their relationships.
AORP relies on mechanisms in the underlying environment to weave, or compose, a coherent system [13]. A
survey of aspect-oriented architectural frameworksis presented in this section.

2.1.1 Aspect-Oriented Software Architecture

Aspect-Oriented Software Architecture (AOSA) [36] is developed to support designers and programmersin
cleanly separating components and aspects from each other in different layers. AOSA uses Aspect-Oriented
Frameworks [34]. In this gpproach, aspects are defined as properties of the system that tend to cut across
groups of functiond components. Those aspects but do not necessarily dign with the system's functiond
components, but they increase interdependenci es between components and thus affect the quaity of a system.

AOSA is based on decomposition of aspectsin system design that consists of components, aspects, and layers:
- Component---Components condst of the basc functiondity modules of the sysem such as the file
system, communication, and process management etc.;
Aspect--- Aspects are crosscutting entities, and they include fault tolerance, synchronization, scheduling,
naming etc.;
Layer---Layers consst of the components and aspects decomposed into a number of more managesble
ub-problems.

Separating components, aspects, and layers from each other made it possible to abstract and compose them to
produce the overdl sysem. AOSA achieved reusability and stability by the higher level can use the lower leve
of the implementation and the high level would not be aware of if there was a change in the low lever.

2.1.2 Dynamic Aspect-Oriented middleware Framework

Dynamic Agpect-Oriented middleware Framework (DAOF) is proposed by [41]. In DAOF, software
components and aspects are firg-order entities composed dynamicaly at run-time according to architecturd
information stored in a middleware layer. Java is used as the generd-purpose language to implement both
components and aspects in this gpproach. The approach aims to providing a bass to separate any kind of
agpects. Collaborative Virtual Environment (CVE) has been chosen to be the gpplication domain.

The framework is composed of application architecture (AA), DAOF components and aspects, and a
middleware layer. The architecture of an gpplication is normaly spread al over the systlem and describeswhich
components set up the system and how they interact to accomplish the required functiondity. Information about
when and how to apply aspects to componentsis not hard coded. A unique and universal role name is assgned
to name references form components and aspects code so that components and aspects with the same role and
provide the same behavior can be replaced by equivaent components or aspects.

The AA of asystem is defined as a list of components and aspects that can be ingantiated in the system and a
st of Architecture Redrictions (ARs), and adso each of these components and aspects is defined by a role
name, an interface and an implementation class, where interfaces are detached from implementation classes.
Aspects that must be created at run-time have these dternatives: environment-oriented, user-oriented, type-
oriented and component oriented. This information is just a part of the aspect description indde AA and later
the middieware layer creates agpect instance according to thisinformation. Thus the number of types of aspects
that are gpplicable to a component can change dynamicdly.

2.1.3 UML All pUrpose Transformer

UMLAUT (UML All pUrpose Transformer) [19], a framework for weaving UML-based aspect-oriented
designs, is introduced as atool for “weaving” aspects when modeling with the UML, and as a methodologica
support for building and manipulating UML modeswith UML.

UMLAUT s architecture has a three-layer architecture. The input front end conssts of agraphical user interface
for interactive editing and another interface for reading UML modds described in various formats (XM,
Rationd Rose™ MDL, Eiffd source, Java source). The middle core engine is made up of the UML meta-
modd repository and the extensble transformation engine. And the output back end contains various code
generators. The meta-moded in UMLAUT’s core engine is implemented as a st of collaborative Eiffd classes.
The resulting implementation is a direct mapping of UML meta-classes of Eiffd classes. The transformation
engine of UMLAUT is respongble for the weaving process. A designer specifies the required transformation by
composing a set of operators from the UMLAUT library. And users may dso add new operators and extend
the exigting library to support different weaving operations. The framework is designed to cater to three levels of
users. model designers, implementation architects and framework implementers and help the desgner to
programming “weaving” of the aspects at the level of the UML meta-mode.

2.2 Architecture Description Languages

Architectural description plays an increasingly important role in the process of describing and understanding
software systems. A number of ADLs [30] have been developed as forma notations to represent and reason
about software architectures. A survey of ADLS is provided in this section. We recognize this survey is not
exhaugtive.

2.2.1 WRIGHT

WRIGHT [1] is an architecturd description language that provides forma description for both architectura
configurations and architecture styles. WRIGHT uses explicit, independent connector types as interaction
patterns and describes the abstract behavior of components using a CSP-like notation. It focuses on modeling
and andysis of the dynamic behavior of concurrent sysems [30]. A collection of datic checks is used to
determine the consistency and completeness of an architectura specification in WRIGHT.

WRIGHT is built on the basic architectural abstractions of components, connectors, and configurations. Explicit
notations for each of these e ements have been provided in WRIGHT:

Component---A component describes a locdized, independent computation with two parts of
descriptions, the interface and the computation. An interface consists of a number of ports, where each
port represents an interaction in which the component may participate. The computation section of a
description describes what the component actudly does. The computation carries out the interactions
described by the ports and shows how they are tied together to form a coherent whole;

Connector---A connector represents an interaction among a collection of components,
Configuration---A configuration is a collection of component instances combined via connectors.

In a WRIGHT description, instances of each component and connector type are required to be explicitly and
uniquely named if they gppear in a configuration. Once the ingtances have been declared, a configuration is
completed by describing its topology. This is done by associating a component’ s port with a connector’ s role.
Hierarchicd descriptions are supported in WRIGHT by representing an architectural description as the
computation of a component, where the component serves as abstraction boundary for a nested architectura
subsystem. In addition to describing and analyzing system configurations, WRIGHT permits the designer to
define architecturd syles. A WRIGHT gyle has two pats. the common vocabulary and condraints on
configurations. A common vocabulary is introduced by declaring a set of component and connector types. In
WRIGHT, the notation for condtraintsis based on first order predicate logic.

2.2.2 RAPIDE

RAPIDE is an event-based concurrent object- oriented language designed for amulation and behaviord andyss
of architectures of distributed systems at an early stage [26]. 1t has been developed:
To dlow be expressed in an executable form for smulation;
To adopt an execution modd which captures distributed behavioral and timing as precisaly as possible;
To provide forma congtraints and mappings to support constraint-based definitions for conformance to
architectures standards,
To address the issues of scaability involved in modding industry system architectures.

An architecture in RAPIDE congsts of a set of specifications (caled interfaces) of modules, a set of connection
rules that define direct communication between the interfaces, and a set of forma condraints that define lega
and/or illegd patterns of communication. An interface is a definition of the feetures provided to the architecture
and required from the architecture by modules that conform to the interface. It may contain an abstract
definition of the behaviord of modules. Behaviord are defined by executable reactive rules, which specifies
relationships between data recelved and data generated by a module. Connections define either synchronous or

asynchronous communication of data between interfaces, aso in a Smple interactive executable form. Forma
congraints specify restrictions on various aspects of interfaces and connections. These architecture constructs
have an event-based execution modd, cdled the POSET modd. Interface behaviors execute by waiting to
receive certain sets of events and then reacting by generating new events. Connections define how events
generated at some interfaces cause other events to be received at other interfaces. Congtraints place restrictions
on event activity, both in interfaces and over the set of connections and they are checkable.

RAPIDE conggts of five mgor independent languages.
types language for describing the interfaces of components
architecture language for describing the flow of events between components
gpecification language for writing abstract congtraints on the behavioral of components
executable language for writing executable modules
pattern language for describing paiterns of events.

2.2.3 DARWIN

DARWIN is a language for describing hierarchic configuration structures [27][28]. Unlike other module-
interconnection language, DARWIN addresses the dynamic aspects of configuration as well as providing for
gatic configuration. A DARWIN configuration structure can be viewed as a hierarchy of interconnected
component instances. Each levd of the hierarchy being described with a separated DARWIN configuration
description termed as a composite component type, which is condructed from the primitive computationa
components and these in turn can be figured into more complex composite types.

In DARWIN, a component is defined by the services it provides to other components and the services it
requires from other components. Components interact by accessing services. A DARWIN configuration
description includes component instantiation declarations and binding specifications between a required service
and a provided service. DARWIN supports the description of dynamicaly reconfiguring architectures through
two congtructs---lazy ingantiation and explicit dynamic condructions. Using lazy indantiation, a logicaly infinite
configuration is described and components are ingtantiated only as the services they provide are used by other
components. Explicitly dynamic structure is provided through the use of imperative configuration on congtructs.
The operationd semantics of DARWIN in terms of the p-caculus, Milner’s cdculus of mobile process, is
described in [27] and [28].

2.2.4 ACME

ACME [17] is devedoped as an architecture interchange language with the purpose of providing a common
intermediate representation for a wide variety of architecture tools. ACME supports mapping of architectura
gpecification from one ADL to another; it isnot drictly an ADL [30].

ACME is built on a core ontology of seven types of entities for architectura representation: components,
connectors, systems, ports, roles, representations, and rep-maps.

Component---A components represents the primary computational eements and data stores of a
system.

Connector---A connector represents interactions among components.

System:--- Systems represent configurations of components and connectors.
Port-- - Ports are defined as components’ interfaces.
Roles---Roles are defined as connectors' interfaces.

Representations---Any components or connector can be represented by one or more detailed, low-
level descriptions, each such description is termed a representation in ACME.

Rep-maps---When a component or connector has an architectural representation there must be some
way to indicate the correspondence between the internd system representation and the externa
interface of the components or connector that is being represented, a rep-map defines this
correspondence. The topology of this system is declared by listing a set of attachments.

Additiondly, the ACME provides an open semantic framework in which architectura sructures can be
annotated with ADL-specific properties. This open semantic framework alows specific ADLS to associate
computationd or run-time behavior with architectures using the property congtruct, and also provides a
graightforward mapping of the structurd aspects of the language into a logical formalism based on reations and
congraints. An ACME specification represents a derived predicate, which can be reasoned about using logic or
it can be compared for fiddlity with real world artifacts that the specification isintended to describe.

23 UML

UML is a grephicd language for visudizing, specifying, condructing, and documenting the artifects of a
software-intengve sysem [20], [40]. UML based frameworks have aso been proposed as solutions that
support the analysis of non-functiond requirements [45]. Significant advantages of usng UML includetha it isa
standardized and well-known notation. In architectura research, the UMLAUT Framework [19] uses standard
UML while other research groups focus on formdizing a subset of UML [29], modding architectures usng
UML in combination with the object congraint language (OCL) [31] and extending UML [45].

UML provides extenson mechanisms to alow the user to model software systemsiif the current UML technique
is not semanticaly sufficient to express the sysems. These extenson mechanisms are stereotypes, tagged vaues,
and condraints.

Stereotypes dlow the definition of extensons to the UML vocabulary, denoted by << stereotype-name>>.
The base class of a stereotype can be different model elements, such as Class, Attribute, and Operation. A

stereotype groups tagged vaues and condraints under a meaningful name. When a stereotype is branded to a
mode eement, the semantic meaning of the tagged vaues and the congtraints associated with the stereotype are
attached to that modd eement implicitly. A number of possible uses of stereotypes have been classfied in [5].

Tagged values extend modd dements with new kinds of properties. Tagged vaues may be atached to a
Sereotype, and this association will navigate to the model eement to which the stereotype is branded. Basically,
the format of atagged vaue isapair of name and an associated vaue, i.e., { name=value}. Note that the tagged
values atached to a stereotype must be compatible with the congtraints of the stereotype’s base class.

Constraints add new semantic redtrictions to a modd dement. Typicaly congtrains are written in the Object
Condraint Language (OCL) [47]. Condraints atached to a Sereotype imply that al modd e ements branded
by that stereotype must obey the semantic redtrictions which condraints state. Note that the congtraints attached
to a stereotyped modd element must be compatible with the condraints of the stereotype and the base class of
the modd dement.

A profile is a sereotyped package that contains model dements that have been customized for a specific
domain or purpose by extending the metamode using stereotypes, tagged values, and congraints. A profile may
specify mode libraries on which it depends and the metamodel subset thet it extends.

Figure 1 shows the relationships among stereotype, congraint, tagged value, and modd eement, where the
stereotype, congraint, and tagged vaue can gpply to amodd eement, and add corresponding semantics to that
modd eement. Congtraints and tagged values can also apply to a stereotype and the corresponding semantics
added to the stereotype will navigate to amodel € ement when the stereotype is branded to the model eement.

*

+ extendedElement| ModelElement + referenceValue
* (from core)
) + modelElement
+ constraintedElement | «
{ordered} + referenceTag | «
GeneralizaleElement | .| *taggedvalue
(from core) TaggedValue
A + constraint| « -
dataValue : String[*]
; /modelElement : ModelElement
Constraint Itype : TagDefinition
/referenceValue: ModelElement
+ stereotypeConstrain{ *
+ typedvalue | *
* | + stereotype
Stereotype TagDefinition
Icon : Geometry + constrainedStereotype
base Class : Name [1.%] + owner _ tagType : Name +1type
IdefinedTag : TagDefinition PR + definedTag | multiplicity : Multiplicity
IStereotypeConstraint : Constraint «| fowner : Stereotype 1

Figure 1. UML Profile Meta Model

A vaiety of UML extensons, such as [2] and [42] have been proposed to model non-functiona aspects.
Approaches focus on dedling with performance can be found in [3], [25] and [32]. In [2], an UML extenson is
introduced to mode aspects with new design dements added into the current existing UML. By gpplying this
approach, the project is assumed to be developed using aspect-oriented programming language Aspectd. [42]
presents another UML extenson to incorporate non-functionad aspects (eg., performance, reusability,
portability etc) through the use of additiona stereotypes, class compartments and dependencies. Additiona

stereotypes defined in this gpproach are based on the NoFun notation [15] and the OCL is used to establish the
condraints of the incorporated non-functiona attributes. The NoFun notation is developed to describe non
functiond reguirements within the component-programming framework, which limits the UML extension only
suitable for software component applications.

3. Overview of the Formal Design Analysis Framework

The purpose of the FDAF is to support the systematic design of a system that meets its non-functiond
requirements such as performance, security, scaahility, etc. [9]. The framework has a defined process and
product model. An overview of the FDAF isillustrated in Figure 1. In thisfigure, the FDAF is represented with
a cloud surrounded by the stakeholders, inputs, and outputs of the framework. The stakeholders are the
designers, requirements engineers, and forma methodol ogists who use the framework to develop and evauate a
system design that meetsiits functiond and non-functiond requirements.

The inputs include an object- oriented design modd documented in the UML and a requirements specification
that includes the functiona and non-functiona requirements for the system. The framework may be extended
with additiona forma methods; we have included aforma methods toolbox on Figure 2 to represent this. UML
[20],[40] is selected as the notation for the input model because it is a readable, extendable [11], well-known
notation that provides strong support for describing the functiona capabilities of a system. The notation,
however, has limited support for moddling non-functiona properties.

The adtputs include a set of aspect-oriented forma design models and the analysis results. In our work, an
aspect-oriented design is a solution defined to support one or more nor-functiond requirements for the system.
Within the framework there are components including an extended UML notation and tool support. The tool
alows the user to browse and sdlect re-usable aspects, define new aspects, define join points in a design for
gatic and dynamic views of the design, weave an aspect into the design, extract an aspect out of the design,
assig the user in sdecting a formad method, and trandates an extended semi-forma UML design into a formd

I:l |:| Requirements Functional and Non-functional Requirements
] Specification A N
Baselined
Formal Design

UML Design Semi-
\ ﬁ Join Points
Weave
Class Diagrams, FDAF Ext. UML (Aspect 1)

Collaboration Diagram, Design Module
Sequence Diagram

Extended AnalysisResults
UML Design Model (Reguirements Not Met)
Modeling and e (I W -,
? Analysis FDAF Trandation Tqdls : “~.

FDAF % FDAF FDAF
Performance Security Scalability
Module Module Module

..'
',
o

% Formal Design i Formal Design

Formal Design 3 Aspect 2 Aspect 3
Aspect 1 i (eg. Scalability) ; (e.g., Security) Analysis
(e.g. Performance) % Results

Extend with Additional Forma
Methods (e.g., ADLs, Petri Nets,
Temporal logic, etc.)

Existing Formal Method Analysis Tools
—

Figure 2. Overview of Formal Design Analysis Framework

notation.

NFR Framework for Design. Fundamental to software engineering is the concept of meeting the needs of a
customer. As presented in [7], we need to recognize that in redlity a customer is not likely going to be 100%
satisfied with a delivered product, the concept of "satisficing” has been introduced [44]. The term satisficing
means that the customer is satisfied enough with the product to use it (i.e, it is "good enough”). The idea of
satisficing has been adopted in the NFR Framework [8]. This framework supports the description, andyss
and negatiation of multiple, possibly conflicting non-functiona properties. An example of conflicting propertiesis
the need for high security and fast performance.

FDAF adopts the concepts of the NFR Framework [8] while developing an extended UML design for a
system. The concepts adopted include the identification, analys's, and negotiation of design dternatives. In our
work, we extend the NFR Framework to support the design of the system. In this process, non-functiond
agpects are stated and managed through refining and inter-relating aspects, jugtifying and documenting decisons,
and determining their impacts. Addressing the conflicting aspects earlier in an aspect-oriented design process
are expected to reduce the rework needed later. We believe that considering the conflicts and trade-offs
between aspects in a find, weaving step may be too late, as the architectures for each aspect, developed
independently, may not be possible to weave together. Instead, we consider the conflicts and trade-offs earlier
as aconcurrent and interleaving step in FDAF.

Use a Repository of Aspects. The framework provides arepository of aspects defined in UML. The aspects
are defined using class diagrams, sequence diagrams, collaboration diagrams, or OCL. The designer can search
the repository and select parts of the aspects needed in the system design. Examples of aspects are presented in
Appendix A.

Use Existing Formal Methods. The framework assgts the designer in sdecting a forma method for each
non-functiona aspect of the system. Exigting forma notations normaly are only suitable for describing one or a
few types of system properties. By adopting the aspect concept and a set of forma methods, we can select the
most suitable notation and analysi's techniques for a given property.

The need to automate the andlysis of an architecture (to reduce the codt, reduce the time, and improve the
quality of the andlyss), leads to usto consder the use of forma methods. ADLS, Petri Nets, and tempora logic
have aready been proven useful in designing and andyzing specific non-functiona aspects of adesign; we plan
to build on the existing work in the area. Forma methods used to mode software architectures include Petri
Nets [6], tempord logic [18], process agebra[4], and ADLsinduding Wright[30], ACME [30], and RAPIDE
[26].

Currently, we support RAPIDE in the framework as a forma method to support modeling and analyzing
performance aspects of the DNS system. RAPIDE is an event-based, concurrent, object-oriented language
designed for the smulation and behavioral andyss of distributed system architectures [26]. RAPIDE adoptsan
execution model which captures digributed behaviord and timing as precisdy as possble By utilizing
architecture definitions as the development framework, RAPIDE alows gradud refinement of architecturesinto
products, and supports testing and maintenance based on automated comparison with forma standard
architectures. Meanwhile, tool support for RAPIDE is available and can be used to verify the specification for
our example system, the DNS. Additiona forma methods are going to be supported as the work matures.

Aspect-oriented Formal M odels. Using the principle of separation of concerns, a set of smpler models, each
built for a specific purpose (or agpect) of the system, can be defined and anadyzed [38]. Each aspect modd can

be congtructed and evolved relatively independently from other aspect models. Since an aspect model focuses
on only one type of property, without burden of complexity from other aspects, an aspect modd is potentialy
much smpler and smdler than a traditional mixed syslem modd. This is expected to dramaticaly reduce the
complexity of understanding and andyss.

Automate the Trandation from Semi-formal to Formal Notations. An automated trandation ensures the
consstency between the semi-forma extended UML mode and the forma modds. Currently, the extended
UML ismanudly trandated into RAPIDE. In the future, the extensonsin UML are going to be refined such that
we can define and implement agorithms to partidly automate the trandation.

Analyze the Formal M odel. Once trandated, the forma mode can be analyzed for specific properties usng
its exigting tool support (e.g., modd checkers, theorem provers, etc.). If the property does not hold in the
forma modd, then the architects and designers revise and possibly renegotiate the requirements. They need to
modify the semi-forma modds and update the forma modds. The anadlysis and modifications are performed
iteratively until the desired properties hold true. Since NFRs might not be absolutdly achieved, they may smply
be satisfied sufficiently (“satisficed”) [44].

10

4. Formal Design Analysis Framework Process M odel

A process is defined to describe the activities that accomplish the god of sysematicaly defining an aspect-
oriented design that meets the system's functiond and non-functiona requirements (refer to Figure 3). The
activities have entry and exit conditions, inputs, outputs, who performs the activity, and a description of the steps

Create Semi-formal Extended UML
Aspect-oriented Design Model
No <\V>Design
Baselined?

\/ Yes
Create Formal Aspect-oriented
Design Model
/|
/ No)&Design
/ Baslined?

// \l/ Yes

/ o g

/ Analyze Aspect-oriented Design
Need to revise Model
Semi-formal
UML Model

No nalysis Results
Pass?
Yes

Figure 3. Formal Design Analysis Framework Process
in the activity. A symbolic example is used to describe the Steps.

4.1 Activity 1. Create Semi-formal Extended UML Aspect-oriented Design M odel

Entry Condition: A UML desgn modd that meets the functiona requirements of the system is defined. Static
(dlass diagrams) and dynamic (sequence or collaboration diagram) views of the design are available. Although
design patterns [16] are likely to have been sdlected and applied to consider the non-functiona requirements of
the systemn, the design may not explicitly describe how the design meets these requirements.

Exit Condition: Extended UML Design Modd is Basdined

Who performs activity: Requirements Engineer, Desgner

Description:

Step 1.1 The requirements engineer and designer review the UML design modd and the non-functiond
requirements of the syslem and begin to decompose, describe relationships among, and prioritize the non-
functional requirements of the system. The NFR approach is extended and used to accomplish this. Based on

the results, the designer selects a related set of non-functiona requirements, or aspects, to integrate into the
design.

11

Step 1.2 The designer browses the FDAF repository for pre-defined aspects and selects a candidate that
matches the non-functiona requirements for the system. Currently, aspects are defined in UML as subsystem
designs (i.e, class diagrams, capturing the dtatic view of the aspect, and sequence or collaboration diagrams,
cagpturing the dynamic view) or in OCL. The two kinds of definitions are needed because the aspects may be
prescribed properties that permeete dl or part of a system (e.g. meet a response time requirement) or as
capabilities that may be ddivered by developing classes (e.g. provide secure access control). Classes are
defined with invariants, pre-conditions, and post-conditions on public methods. If amatch is not found, then the
designer needs to define the aspect and add it to the repository.

Step 1.3 The designer defines the point cuts points in the dynamic view of the desgn modd. A triangle symbal is
used to indicate where in the dynamic modd dl or part of an aspect needs to be included. The datic view is
updated such that it is condstent with the dynamic view.

Step 1.4 The designer weaves an aspect into the design. Currently, this step is performed manually. Tool
support to automate this step is planned for future work.

These seps areilludrated in Figure 4.
4.2 Activity 2. Create Formal Aspect-oriented Models

Entry Condition: Extended UML Design Mode is Basdined
Exit Condition: Formal Agpect-oriented Modd is Basdined
Who performs activity: Requirements Engineer, Designer
Destription:
Step 2.1 The designer sdlects a forma notation to use. A decison tree is defined to assigt the designer in
selecting aformad notation. Questions that are used to select aformad notation include:
|s the system concurrent?
|s the system real-time?
Are there safety or liveness properties of the system that need to be met?
Are there performance, security, adaptability, etc. requirements that need to be met?

What kind of analysis needs to be performed to demonstrate the performance, security,
adaptability, etc. requirements are met?

The decison tree for the framework is going to be defined as the work progresses. Currently, only the ADL
Rapide is supported in the framework. Rapide is suitable for modeling and andyzing concurrent systems with
condraints, such as performance congraints. When the FDAF is extended with an additiond formal notation,
the decison tree is aso updated.

Step 2.2 The designer trandates the extended semi-forma UML design into aformad notation using the FDAF
tool support.

12

4.3 Activity 3. Evaluate the Quality of the Semi-formal Aspect-oriented Model

Entry Condition: Forma Aspect-oriented Moddl is Basdined
Exit Condition: Qudity of Extended UML Modd is verified
Identify Point cutsin UML Design (e.g. sequence diagram)

Point cut:lKey Point cut: Key
(encryption) (decryption)
Y% \
:Client :Server
| — .
'—P—> Aspect Repository
e —
«—
]
I dentify Aspect to Usein Repository
A 0
Point cut: RSA Point cut: RSA §¢| i' i'
(enCI’yptiOn) (decryp“on) RSA 3DES IDEA
: ; Performanca
% :Client :Server
o
| EEEEE—
| f
Availability
[
]
«—
Scalability
Weave in Selected Aspect to Create the Extended UML Design
Point cut: RSA Point cut: RSA @I
(encryption) (decryption) e
: ~ T
- Reliability
:Client -Server
 EEEEE——
—>
——»
[
«———
]

Figure 4. Creating the Extended UML Design M odel
Who performs activity: Forma Methodologists, Specidized Engineers
Description:

Step 3.1 The forma methodologists and specidized engineering (eg. performance or Security eginesring
specidigts) andyze the forma modds using exigting tool support. For example, if the formd notation Promdlais

13

used then the model checker SPIN is used. If the results of the andyss indicate that the non-functiond
requirements are met, then the process is complete. The designers may need to iterate through this process to
consder additional non-functiona requirements. However, if the results indicate the non-functiond requirements
are not met, then the designer needs to revise the extended UML aspect-oriented design and go through the
process again.

5. lllugration: Create a Semi-formal Extended UML Aspect-oriented Design Model

This section presents an example illustrating the first step in the FDAF process for a DNS example. The base
models for the DNS in UML, the aspect-oriented modd for response time performance in the extended UML,
and the analysis rules for response time performance are presented. The base models, defined in standard
UML, are the input to the FDAF process. In the future, examples are planned to illugtrate extending the DNS
base modd with a security aspect, encrypting and encrypting data to provide data privacy as well as to
demondirate how the framework is used to modd the addition of two tangled, conflicting aspects: performance
and security.

5.1 Base Modelsof the DNS

The DNS provides a way to find an address, such as IP address, from a domain name. |P addresses uniquely
identify every computer on the Internet. However, remembering 32 bits numeric address is hard. Therefore, the
purpose of the DNS is to make it easier for users to access and remember the names of hosts on the Internet.
The DNS alows networks and hosts to be addressed usng common-language names as well as |P addresses
and maps host names to various types of addresses through a distributed database. An example of itsuseisa
sample internet operation--a hypertext page trandfer:

1. A Web browser requested this URL: http:/AMww.FreeSoft.org/Connected/index.html;

The DNS protocol was used to convert www.FreeSoft.org into the 32-bit I P address 205.177.42.129;
The HTTP protocol was used to consiruct a GET /Connected/index.html message;

A table lookup in /etc/services revealed that HT TP uses TCP port 80;

The TCP protocol was used to open a connection to 205.177.42.129, port 80, and transmit the GET
/Connected/index.html message;

The IP protocol was used to transmit the TCP packets to 205.177.42.129;

7. Some media-dependent protocols were used to actudly transmit the IP packets across the physica
network.

o bk~ w DN

o

The main task of name servers is answering queries using their database they maintain. The data name servers
manage in sets are cdled zones, which include local zones and foreign zones, each zone is the complete
database for a particular "pruned” subtree of the domain space. Loca zones are loaded from the name server’s
medter files and foreign zones are from other authoritative servers. A name server periodicaly checks to make
sure that its zones are up to date, and if not, obtains a new copy of updated zones from master files stored
localy or in another name server.

14

5.1.1 DNSUse Case Model

As described, besides processing queries from clients, a DNS server needs to refresh its foreign zone
periodicaly from other corresponding authoritative DNS serves. In addition, a DNS server should provide
database maintenance functiondity for administrators. Functiondities provided by a DNS name server can be
described by Figure 5:

DNS Server

Create Zone

Refresh Zone

Delete Zone
Standard Query N %
DNSClient
Display Zone

Administral

Update Zone

Lo0E

Figure5 DNS Server Use Case Diagram

5.1.2 DNS Architecture Design Model

Subsystemns of the DNS server as well as interfaces they provide are presented in Figure 6. Detailed description
of subsystems are described in Table 1.

15

]

]

[]

<<Subsystem>> <<Subsystem>> <<Subsystem>>
Query Processing Zone Maintenance — Zone Refreshing
i Subsystem Subsystem Subsystem
| / A \)
getRRQueryResponse() N / —
N | getRefreshRequest()
| getRRQuery() /N | getLoadMasterFileRequesi()
I getRefreshResponsy() / N
S
Y /
/ <<Subsystem>>
<<Subsystem>> ’ Encoding
Decoding Subsystem
Subsystem
A \)
‘ |
\ 1
\ getDNSMessage() | -
\ O getDNSMessage()
A | (ﬁ |
<<Subsystem>> <<Subsystem>>
Message Receiving Message Sending
Subsystem Subsystem

Figure 6 DNS Server Subsystems Diagram

Subsystem Name Interfaces Provides Subsystems depends
M essage getDNSMessage(): generates a messages | N. A.
Receiving in the DNS protocol message format for its
received messages;
Subsystem
getRRQuery(): generate a client resource | Message Receiving
record query from a DNS protocol | Subsystemt gets a DNS
message; rotocol message from this
Decoding P bsvstem:
b getRefreshResponse(): generate a refresh | SUOSySiem,
Subsystem response sent by other DNS servers from a
DNS protocol message;
Query getRRQueryReponse(): generate answers | Decoding Subsystem: gets
Processing for a particular client query; client queries from this
subsystem;
Zone N. A. Decoding Subsystem: gets

M aintenance
Subsystem

refresh responses from this
subsystem;

Zone Refreshing Subsystent

16

gets loading master files
request from this subsystem,
Zone Refresh | getRefreshRequest():generates a refresh | N.A.
Subsystem request for other DNS servers,
getLoadMasterFileRequest(): generates
loading master files requests;
getDNSMessage():generates a encoded | Query Processing
DNS protocol message; Subsystem, Zone Refresh
Encodi Subsystem: gets resource
hcoding records responses and
Subsystem refresh requests for these
two subsystems respectively
M essage N.A. Encoding Subsystem gets a
Sending encoded DNS message from
this subsystem
Subsystem

Table 1. DNS Server Subsystems Description

5.1.3 DNSClass Diagram Models

Figure 7 presents the DNS entity class diagram. Descriptions of classes are availablein Table 2.

MagterFile LocdZone
IPMessage |1 contains 1 | PNSMessage updates
* 1
1 1 1 1 | 1 | \/
Header Question Answer Authority Additiona Zone

1 1 <> 1 <>

contains|

T

*

1 RRResponse

ResourceRecord

RRRequestFromClient

ForeignZone

updates

1 T

RRRefreshRequestToDNSServer RRRéponseToCI ient

Figure 7. DNS Entity Class Diagram

Class Name Description

Additional the Additional section of the DNS protocol message, which may
have zero or multiple resource records

Answer the Answer section of the DNS protocol message, which may have
zero or multiple resource records

Authority the Authority section of the DNS protocol message, which may
have zero or multiple resource records

DNSMessage the DNS protocol message

ForeignZone foreign zone of the DNS server, which needs to be updated by
resource records of other DNS servers

Header the Header section of the DNS protocol message

IPMessage messages that received and sent by the DNS server

LocalZone foreign zone of the DNS server, which needs to be updated by the
DNS server’'s master file

MasterFile the DNS server’s master file

Question the Question section of the DNS protocol message

Resour ceRecord resource record

RRRefreshRequestToODNSSeve | refresh request generated by the DNS server

r

RRRequestFromClient

resource record query generated by DNS clients

RRResponse

the answer of the DNS server’s refresh request

RRResponseToClient

the answer of DNS clients' query

Zone

zone of the DNS server

Table 2. DNS Entity Classes Description

Figure 8 presents another class diagram of the DNS. In this diagram, severd control classes have been added

in. As the query processing functiondlity of the DNS is of high interest in this report, the figure only preserts

control objects involved in this scenario.

18

M essageReceiver M essageDecoder generates RRReguestFromClient
generates
d generates
receives & Processss
IPMessage DNSMessage RRResponse RRQueryProcessor
sends generates interacts
<<ADT>>
M essageSender M essageEncoder DomainNameSpace
generates
encodes encodes
RRRefreshRequestToDNSServer RRResponseToClient Zone

Figure 8. DNS Class Diagram

5.1.4 DNSQuery Processing Sequence Diagram

The DNS query processing sequence diagram is presented in Figure 9.

19

I I
| -
I
I
_
_
I
I
I
I
I
I
I
|
for delaberg
writing a thesame
faorereqes) ime if thewite
rescZore (neme Sring) . i
o gogdianiseqrad,
'Sring
wsedd ceato redy
[resourcerecord request | |
restRRS (cortants Sring)
[Sring _
_
- E
_mﬂd&uzmsmmmﬁ (ognt:§ring):Sring _ |
_ loenerate PMlesseoe]
_ meg:DNSMess0g
L IPMessce
I
f
— == e - L |

Figure9. DNS Query Processing Sequence Diagram

20

5.2 Adding a Performance Aspect

The firg example non-functiona aspect selected for the DNS is performance aspect. Performance may refer to
the response time, system’s throughput, as well as efficient utilization of system resources. It isavitd factor in
the success of software systems. To meet performance objectives, performance needs to be considered in an
early stage of the software development life cycle [23], [37], [48].

The current verson of UML, verson 1.5, does not support the definition of an aspect. In the FDAF, a new
UML extenson is presented for this purpose. The UML extenson of the FDAF has following two
characteristics:

1. Serves as agenerd-purpose mechanism to modd aspects/concerns, which includes performance aspect
and other aspects aswdll;

2. Helps designers to automaticaly transform the UML semi-formd design models into appropriate forma
models and then select the andysistoolsin alater stage of the FDAF.

One of the initid gteps of peformance andyds of software systems is identifying the critical performance

scenarios [22], [39], [48]. A senario is a sequence of actions performed by a group of different objects.

Therefore, performance assessment of a key scenario inevitably crosscuts the design modd’s individud

elements. Asthe main task of a DNS server is to answers queries form clients, the query processing scenario is

identified as the key scenario discussed here. Generdly, performance assessment includes the evauations of

both resource utilization and response time. Asin this example, the response timeis the part of the interest.

An example of our UML extension for modeling the performance aspect of the DNS query processing scenario
(the collaboration diagram is selected to illustrate the gpproach) is presented in Figure 10. In our UML
extension, a wedge-like, triangular symbol 5 used to indicate the performance aspect. For each object in an
execution path, the performance impact is assgned. The performance vaue is expressed by usng stereotypes,
tags defined in [39] and then the UML note notation associates them with the corresponding objects. Outside
the package, another note notation is used to denote the performance evauation techniques that are expressed
in the OCL. Performance moddling and analys's techniques of the UML extension are explained in detail below.

21

<<PAcontext>> \
<<PAclosedL oac>> I <<PAstep>> B
{PAarvIRate=5 } {PAdemand=(assm’, 'mean’, (5,
‘ms))}
l 1: IPMessage 2: DNSMessage I
: Client E : MessageReceiver : MessageD ecoder
A <<PAstep> B

<<PAstep>> l : { PAdemand=("assm’, 'mean’, (50, Y
{PAdelay=("assm’, 'mean’, (10, .RRRequestFromCli 'ms))}

'ms))} : /

4: Query. '
‘RRQueryProcessor DNS Name Space
<ADT>>
5:ResourceRecords
8:1P Messagd <<PAstep>> B
{PAdelay=('assm’, 'mean’, (10,
'ms))}
6: RRResponseToClient
<<PAstep>> B
:MessageSender - M essageEncoder :{r::)()j}emand:(‘mn', ‘'mean’, (5,
7DNSMessage
<<PAresource>>

{ PAschdPolicy=FIFO,

PAwaitTime: PAperfValue,
-- decide the source-modifier of PAwaitTime
self.source-modifier=PA context.PAsetp.PAdemand.source-modifier

-- decide the type-modifier of PAwaitTime

-- PAwaitTime is the "mean response time" of the DNS server, using the M/M/1 Queue theory
self.type-modifier="mean’

-- calculate the DNS server service time, using " Sequential-Path Reduction Rule" from SPE
stepSet : set
serviceTime real
stepSet=PA context.Ocl Any->select(PAstep)
stepSet->iterate(step: PAstep; serviceTime=0 |serviceTime@pre+step.PAdemand.timevalue.time)

-- M/M/1 Queue theory to calculate PAwaitTime
self.timevalue.time=serviceTime/(1-serviceTime* PAcontext.PAclosedL oad.PAarviRate)
self.time-val ue.time-unit=PA context.PAstep.PAdemand.timeval ue.time-unit

PArespTime: PAperfValue,

-- PArespTimeis the sum of network delay and sever mean service time
networkDelay:real
self.source-modifier=PAwaitTime.source-modifier
self.type-modifier=PAwaitTime.type-modifier
stepSet ->iterate(step:PAstep; networkDelay=0 hetworkDelay @pre+step.PAdelay.time- value.time)
self.time-value.time=PAwaitTime+networkDelay
self.time-value.time-unit=PAwaitTime.time-value.time-unit

Figure 10. DNS Performance Aspect Modelingin UML

22

5.2.1 Performance Aspect Modeling

The UML extension of the FDAF is based on the principles discussed in [39] and [46]. Software performance
engineering (SPE) [46] is a method for congtructing software systems to meet performance objectives. SPE

methods cover performance data collection, quantitative anadys's techniques, prediction strategies, management
of uncertainties etc. Data required to evaluate software performance in SPE are: performance goal's, workload
specifications, software execution structure, execution environment and resource usage. Furthermore, [39]

describes a component of the profile that is intended for genera performance analysis of UML modds. Severd

performance andysis concepts discussed in [39] are:

Scenarios-- define response paths whose end points are externdly visble:

scenario steps--are elements of scenarios;

resource demands--the execution time taken on its host device by a sep;

resources--smply servers,

performance measures--includes resource utilization, waiting times, execution demands and
response time, which may be specified in four different versons, namdy, “required’, “assumed”,
“egimated” and “measured”.

In [39], sereotypes are used to represent performance anayss concepts. To minimize the possbility of
confusion and conflict with other UML profiles, al extenson eement names related to performance andyss are
prefixed with the string “PA”. This naming convention has been adopted by the UML extenson of the FDAF.
However, in our UML extenson, the prefix “PA” may dso mean “Performance Aspect” related eements.
Additiondly, [39] defined possible tags to associate with each stereotype.

In our DNS example (see Figure 10), we used following stereotypes that dready defined in [39]:

<<PAcontext>>--modes a performance anadlyss context. This stereotype could associate with a
collaboration diagram and has no tags defined;

<<PAclosedLoad>>--modes a closed workload (has a fixed number of active or potentid jobs). It
has four tags dready defined in [39]: PAresTime (response time), PApriority (priority), PApopulation
(population), and PAextDelay (externd dday). We condgdered that many times designers may want to
goecify the arrival rate of jobs directly. Therefore, we added an extra tag, PAarviRate, for this
gereotype, which is dso used in the DNS example,

<<PAstep>>--modds a gep in a performance andyss scenario. Tags of this stereotype include:
PAdemand (host execution demand), PArespTime (response time), PAprob (probability), PArep
(repetition), PAdelay (delay), PAextOp (operations), and PAinternal (interva). In our example, we
sdect the tag PAdemand for those seps indde the query processing scenario. For message
transmission seps, we saect PAdelay teg for them;

<<PAresource>>--models a passive resource and has tags. PAuilization (utilizetion), PAschdPolicy
(scheduling policy), PAcapacity (capacity), PAaxTime (access time), PArespTime (response time),
PAwaitTime (wait time), and PAthoughtput (throughtput). In Figure, this stereotype is used to model
the whole performance of the DNS server’s query processing. As response time is of the interest, tags
PArespTime and PAwaitTime are sdected. Their values are decided by applying OCL rules
(recorded in the note notation outside of the collaboration diagram) to tag vaues of PAclosedLoad and

23

PAstep specified in the diagram by the designer. Detalls about those OCL rules are explained in the
next section.

In order to make performance andyss meaningful, a new type, PAperfValue, is defined in [39] to specify a
complex performance value, which includes not only numerica vaues for performance-related characteristics
but dso the semantics of those values (e.g., average, maximum, prediction, measurement). The vaue typeis an
aray in the following format:

“ (* <source-modifier>", * <type-modifier>",“ <timevalue>")"
Where:

<source-modifier>::= ‘req | ‘assm’ | ‘pred’ | ‘mg’, is a string that defined the source of the vaue
meaning respectively: required, assumed, predicted, and measured;

<type-modifier>::= ‘mean’ | ‘sgmd | ‘kth-mom’, <Integer> | ‘max’ | ‘percentile’, <red> | dis’, isa
specification of the type of vaue meaning: average, variance, k™ moment, maximum, percentile
range, or probability distribution;

<timevalue> isatime vaue which hastwo parts numerica time and time unit.

Seveard tags used in the DNS example take PAperfValue type, such as PAdemand. For example,
{PAdemand = {'msr’, ‘mean’, (20,'ms’))} represents a demand in a scenario step with a measured mean
vaue of 20 milliseconds.

As one important motivation of the FDAF UML extension is to asss designers in andyzing performance, the
OCL is sdlected for this purpose at current stage. In order to conveniently express the PAperfValue typein
OCL, the three part of its vaue (source-modifier, type-modifier, time-value) could be seen as its three
attributes. The same consideration has been applied to the “time-vaue’, snceit indudes numericd time and time
unit two parts. Therefore, time-vaue has two atributes: time and time-unit. For example, PAdemand.time-
value.timerefers to the execution time of a particular PAdemand.

5.2.2 Performance Aspect Analysis

In our extenson, performance analysis rules are expressed by using the OCL and captured in the note notation
(see Figure 10). These rules are based on performance analyss techniques from [46] and [21] and focus on the
response time for a service request.

Software performance engineering (SPE) [46] isawork that prescribes agorithms for quantitetive performance
andyss. Algorithms formulated in SPE are for evauating execution graphs. However, these dgorithms are very
understandable and can be gpplied to many types of software models, even atextual description of the system’s
execution sructure.

Here, we present three basic performance andysis dgorithms from [46]:
Sequential-Path Reduction Rule: this rule denotes that for a sequentid path in the sysem’s execution
structure, the time for the computation of the (i+1)™ step is the sums of timesin sequencein the i step,

whichisti® = § t';

j=1

24

Repetition-Path Reduction Rule: this rule denotes that for a repetition path in the system’s execution
structure, the time for the computation of the (i+1)™ step is the result of multiplying the time of i step by
the loop repetition factor, whichis ;™ =nt, ;

Conditional-Path Reduction Rule: this rule denotes that for a conditiona path in the sysem’'s
execution structure, multiplies each i step by its execution probability, and adds the time for

determining which condition holds, whichis t{™ =ty + § pt} ;
=1

In the DNS example, we need to compute the mean response time (PArespTime of stereotype PAresource) of
the DNS sarver. As the query ariva rate is dready specified in the sereotype <<PAclosedLoad>>,
according to the M/M/1 Queue theory (only one server is consdered in the design) from [21], we need to find
out the service rate, which can be easly caculated trough the service time PAwaitTime of stereotype
PAresource).

Sepsinvolved in computing PAwaitTime and PArespTime are:
1. Decide PAwaitTime

As PAwaitTime has three dtributes (source-modifier, type-modifier, and timevalue) discussed in the
previous section, we have to decide these three parts one by one.

Decide source-modifier: Although designers can use any of the four types of source-modifier vaues
(required, assumed, predicted and measured), for the purpose of consstent analysis, we strongly recommend
that designers should use the same kind of source-modifier through one <<PAcontext>>. In this case, the
vaue for PAwaitTime.source-modifier is smply the source-modifier used in the <<PAcontext>>, whichis
OCL expression:
self.sour ce-modifier= PAcontext. PAsetp.PAdemand.sour ce-modifier;
Decide type-modifier: PAwaitTime refers to mean response time here. Therefore its type-modifier is“mean’:
self.type-modifier="mean’;
Decide time-value: Sequential-Path Reduction Rule of SPE [46] is gpplied to compute the service time vaue
as the DNS server processes queries sequentially. <<PAstep>>s involved here are those who has demand

that executes on the hose and the mean sarvice time is the sum of Al the PAdemand.time-valuetimein this
<<PAcontext>>, whichis OCL expressons.

-- defineasst
stepSet : set
-- define ared varigble
serviceTime: real
-- select PAgtep stereotypes that has demand executes on the host
stepSet=PAcontext.Ocl Any-> sel ect(PAstep)
-- cdculae sarviceTime

stepSet->iterate(step: PAstep; serviceTime=0 | serviceTime@pre+ step.PAdemand.time-
value.time)

25

-- M/M/1 Queue theory to caculate PAwaitTime

self.time-val ue.time= serviceTime/(1-serviceTime* PAcontext. PAclosedLoad.PAarviRate)
-- time-unit is smply the one used by the designer in the PAcontext

self.time-val ue.time-unit= PAcontext. PAstep.PAdemand.time-val ue.time-unit

2. Decide PArespTime

PArespTime has the same source-modifier and type-modifier with PAwaitTime and is the sum of mean service
time and message delays on the network:

PArespTime: PAperfValue,

-- PArespTimeis the sum of network delay and server mean service time
networkDelay: real
self.sour ce-modifier=PAwaitTime.sour ce-modifier
self.type-modifier=PAwaitTime.type-modifier

-- sdlect PAgepsthat involved in network delays
stepSet-> iterate(step: PAstep; networkDelay=0 |networkDelay@pr et step.PAdel ay.time-

value.time)

self.time-val ue.time=PAwaitTime+ networkDelay
self.time-val ue.time-unit= PAwait Time.time-val ue.time-unit

Mean Response Time: Sample Calculation

For example, to calculate the server’ s mean response time for Figure 10, following steps are performed:

1. Cdculate the server's sarvice time, which is the sum of execution time of al those performance
contribution objects in this scenario (e.g., those design e ements associated with the triangle notation in
the diagram). In this case, peformance contribution objects identified ares MessageDecoder,
RRQueryProcess (which searches answers in the DNS Name Space, the time spending on searching
could be viewed as the execution time of RRQueryProcessor), MessageEncoder. Hence, the server's
sarvicetime=5+ 50 + 5 = 60 milliseconds;

2. Cdculate the server’s mean response time without network delay by usng M/M/1 queue theory. In this
example, the requests arrivd rate is 5 per seconds, therefore, the server’s mean response time =
(60* 0.001)/(1-60* 0.001* 5) = 86 milliseconds;

3. Cdculate the totd response time. Tota response time = server's mean response time + network delay
=86 + 10 + 10 = 126 milliseconds.

26

6. Conclusonsand future work

The main contribution of this work is to define a response time performance aspect that incorporates
established, quantitative performance analys's techniques [21][46]. This aspect is used in the Forma Design
Analyss Framework (FDAF) to create a semi-forma extended UML aspect-oriented design model. The
FDAF is intended to support the design and analysis of multiple, non-functiona properties using a combination
of exiging semi-forma and forma methods. The FDAF integrates current research in aspect- oriented design
and uses the concepts of the NFR Framework to support the identification, andyss, and negotiation of
conflicting non-functiona properties. The gods of the framework include asssting the architect to sdect an
appropriate forma method, identify, andyze, and negotiate conflicting properties, define and maintain forma
modd for specific agpects of the system (e.g., performance, security, adaptability, etc.), and andyze formd
models.

In the FDAF, performance is treated as a collection of aspects modeed in the design. Basically, performanceis
a function of the frequency and naure of inter-component communication, in addition to performance
characteristics of those components themsdalves [9]. Based one the research on [21] and [46], we defined
performance aspect as set of subaspects, which can be mathematically expressed as. Performance Aspect =
{Response Time, Rate Throughput, Resource Utilization, Probability, Time between Errors, Durations of
Events, Time between Event}. As a sysem could have its own specia requirements, performance subaspects
are not limited © those listed above. According to the need of a particular gpplication, requirement engineers
and designers might define their own performance subaspects of interest and add them into the set.

We have used a DNS subsystem, the query processing system, to illustrate the UML extension in thisreport. In
this example, we sdect the response time performance aspect as the modeling aspect. Response time is defined
as the interval between a user’s request and the system response. Stereotypes defined in the UML profile for
performance modeling [39] are used here. The cdculation of the response time performance aspect using

performance andysis rules are expressed by using the OCL and is done manudly at current stage. Our

approach provides a way for desgners to modd and analyss interested performance aspect in the design

phase, which enables one to evauate different design aternatives according to some specific performance gods
and sdlect the mogt suitable one for the system to mest its performance requirements.

There are severd interesting directions for the future work. One direction includes investigating the red-time
extenson of UML. This extenson has been developed to address specific problems in modeling red-time
systems such as concurrency and synchronization and may be a more suitable notation for our example system,
the DNS.

A second direction is to investigate the automatic trandation of the extended UML DNS design model into the
notation RAPIDE and Armani [34]. RAPIDE is an event-based concurrent object-oriented language desgned
for smulation and behaviora andyss of architectures of distributed systems a an early sage, which dso
provides timing mode to alow desgners to describe and andyze time sendtive prototypes. There are severd
andyzing tools supported by Repide to smulate a software architecture. Armani is a language for capturing
software architecture design expertise and specifying software architecture desgns. Armani provides core
language congtructs to support design andyss and dso alows designers to build their own analyss methods. It
is used in the ACME tool set [17]. The ACME toolset supports the quantitative performance analyss of an
architecture. Depending on the estimated data (such as request arriva rate, service time) provided by the

27

designer, Armani’s andyss tool can automaticaly evauate the design’s performance results, such as server
mean response time, overloaded component etc. through performance measure techniques presented in [21]
and [46]. The advantage of performing such trandation work includes that the usage of existing tools supported
by Repide and Armani can help designers to andyze their forma mode for a specific system aspect, and
provide valuable analysis results for them to evaluate and improve their design before the system isimplemented.

A third direction is to investigate the modeling and analysis of additional aspects, such as security, and the
interactions among these aspects. The non-functiond requirements (NFR) framework [8] is going to be used to
sysemdicdly andyze the synergistic and conflicting relationships among the aspects. For example, security and
performance represent conflicting properties. In generd, the more secure a system is, the dower the
performance is expected to be unless dternative solutions such as hardware implementations of
encryption/decryption adgorithms are consdered that are likely to increase the cost of the system.

28

7. References
[11 Allen, RJ, “A forma approaches to software architecture’, PhD Thes's, Carnegie Mdlon Univ., CMU
Techinicd Report CMU-CS-97-144, May 1997.

[2] Basch, M. and Sanchez, A., “Incorporating aspects into the UML”, Workshop on Aspect-Oriented
Modeling with UML, March 2003.

[3] Bernardi, S, Donateli, S, and Merseguer, J, “From UML sequence diagrams and statecharts to
andysable petrinet models’. Proceedings of the Third Internationd Workshop on Software and
Performance (WOSP 2002), July 2002, pp. 35-45.

[4] Bernardo, M., Ciancarini, P., and Donatidlo, L., "Detecting architectura mismatches in process algebraic
descriptions of software systems', Proc. of Working IEEE/IFIP Conf. on Software Architecture, 2001,
pp. 77 - 86.

[5] Booch G., Rumbaugh, J., and Jacobson I., The Unified Modeling Language User Guide. Addison
Wedley, 1999.

[6] Buchs D., Gudfi, N., “A forma specification framework for object-oriented distributed systems’, IEEE
Transactions on Software Engineering, Vol. 26, Issue 7, July 2000, pp. 635-652.

[71 Chung, L., Cooper, K., and Yi, A., "Developing Adaptable Software Architectures for Red-Time
Systems’, Proc. of the Int. Conf. on Adapatable Software Architecture, 2002, pp. 43-48..

[8] Chung, L., Nixon, B., Yu, E., and Mylopoulos, J., Non-Functiond Requirementsin Software Engineering,
Kluwer Academic Publishing, 2000.

[9 Clements, P.C., “Coming attractions in software architecture”, Technica report No. CMU/SEI-96- TR-
008, Software Engineering Ingtitute, Carnegie Mdlon University, January 1996.

[10] Cooper, K., Da, L., Deng, Y., and Dong, J, "Defining a Forma Design Anadyss Framework”,
Proceedings of SERP 2003, Las Vegas, Nevada, to appear.

[11] Dong, J., “Representing the Applications and Compositions of Design Pattern in UML”, Proceedings of
the ACM Symposium on Applied Computing (SAC), Mdbourne, Florida, USA, March 2003.

[12] Eastlake, D., “DNS Security Operational Consderations’, RFC2541, March 1999.

[13] Elrad, T., Filman, R.E., Bader, A., “ Aspect-oriented programming: Introduction”, Communications of the
ACM, October 2001, Val. 44, Issue 10, pp. 29 - 32.

[14] France, R., Georg, G. and Ray, |., “Supporting multi-dimensond separation of design concerns’,
Workshop on Aspect-Oriented Modedling with UML (AOSD’ 2003), March 2003.

[15] Franch, X., “Systematic Formulation of Non-Functional Characteristics of Software’,1998 International
Conference on Requirements Engineering (ICRE '98) ,April 06 - 10, 1998

[16] Ganma, E., HEm, R., Johnson, R., and Vlissdes, J., Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wedey, USA, 1995.

[17] Garlan, D., Monroe, R., Wile, D., “ACME: an architecture description interchange language’, Proceedings
of CASCON 97, November 1997, pp. 169-183.

29

[18] He, X. and Deng, Y., "A Framework for Developing and Analyzing Software Architecture Specifications
in SAM", Computer Journal, Vol. 45, No. 1, 2002, pp. 111-128.

[19] Ho, W., Jézéqud, J., Pennaneach, F., Plouzeau, N., “A toolkit for weaving aspect oriented UML
desgns’, Proc. of the 1<t Int. Conf. on Aspect-oriented software development, April 2002, pp. 99 — 105.

[20] Jacobson, 1., Booch, G., and Rumbaugh, J.,, The Unified Software Development Process, Addison
Wedey, USA, 1999.

[21] Jain, R., The Art of Computer Systems Performance Andysis, Wiley, 1991.

[22] Kazman, R., Barbacci, M., Klein, M., S. Carriere, J., and Woods, S. G., “Experience with performing
architecture tradeoff andyss’, Proceedings of the 21t internationa conference on Software engineering,
May 1999.

[23] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and Carriere, J,, “ The architecture
tradeoff analyss method”, Proceedings of the Fourth IEEE Internationa Conference on Engineering of
Complex Computer Systems (ICECCS '98), Aug 1998, pp. 68-78.

[24] Klein, M., Kazman, R., “Attribute-Based Architecturd Styles’, CMU/SEI-99-TR-22, Software
Engineering Indtitute, Carnegie Mdlon Univergity, 1999.

[25] Lindemann, C.,, Thimmler, A. Klemm, A., Lohman, M., and Waddhorg, O.”
Performance andysis of time-enhanced UML diagrams based on stochastic processes’, Proceedings of
the Third International Workshop on Software and Performance (WOSP 2002), July 2002, pp. 25-34.

[26] Luckham, D., Kenney, J., Augudtin, L., Vera, J.,, Bryan, D., and Mann, W., " Specification and andysis of
system architecture usng RAPIDE", IEEE Trans. on Software Engineering, Vol. 21, No. 4, April 1995,
pp. 336-355.

[27] Magee, J., Dulay, N., Eisenbach, S., Kramer, J., “Specifying Digtributed Software Architectures’, Proc.
Fifth European Software Eng. Conf., July 1995, pp. 137 - 154.

[28] Magee, J., Kramer, J., “Dynamic Software in Software Architectures’, Proceedings of the Fourth ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Oct. 1996, pp. 3 - 14.

[29) McUmber, W. E., Cheng, B.H.C,, “A generd framework for formaizing UML with forma languages’,
Proc. of the 23rd Int. Conference on Software Engineering, July 2001, pp. 433 - 442

[30] Medvidovic, N. and Taylor, R.N., "A classfication and comparison framework for software architecture
description languages', IEEE Trans. on Software Engineering, Jan. 2000, Val. 26, Issue 1, pp. 70-93.

[31] Medvidovic, N., Rosenblum, D.S., Redmiles, D., F, Robbins, JE., “Modding software architecturesin the
Unified Modding Language”, ACM Transactions on Software Engineering and Methodology (TOSEM),
Jan 2002, Vol. 11, Issue 1, pp. 2-57.

[32] Merseguer, J., Campos, J, and Mena, E., “Peformance analyss of internet based software retrieva
systems using Petri Nets’, Proceedings of the 4th ACM international workshop on Modding, andysis and
amulation of wirdess and mobile sysems, July 2001.

[33] Mockapetris, P.V., "Domain Names - Concepts and Facilities', IETF STD0013, November 1987.

[34] Monroe, R.T., “Capturing software architecture design expertise with Armani”, Technicd Report No.
CMU-CS-98-163, Carnegie Mdlon University School of Computer Science, October 1998.

30

[35] Netinant, P., C. A. Congtantinides, T. Elrad, M. E. Fayad, “ Aspect-Oriented Frameworks: the Design of
Adaptable Operating Systems’. Poster OOPSL A’ 2000, October 2000.

[36] Netinant, P., Congtantinides, C.A., Elrad, T., Fayad, M.E., Bader, A., “Supporting the design of
adaptable operating systems using aspect-oriented frameworks’, Proceedings of the Internationa
Conference on Pardld and Distributed Processing Techniques and Applications (PDPTA'2000), 2000,
Vol.1, pp. 271 - 277.

[37] Nixon, B.A., “Management of performance requirements for information sysems”, |IEEE Transactions on
Software Engineering, Vol.26, Issue 12, Dec 2000, pp.1122 -1146.

[38] Noda, N., and Kishi, T., “On aspect-oriented design-an approach to designing quality attributes’, Proc.
6th Asa Pacific Software Engineering Conference, December 1999, pp. 230-237.

[39] Object Management Group, Response to the OMG RFP for Schedulahility, Performance, and Time,
OMG Documents ad/2001-06- 14, June 2001.

[40] Object Management Group, The Unified Modeling Language (UML), version 1.5, 03-03-01, 2001.

[41] Pinto, M., Fuentes, L., Fayad, M.E., Troya, JM., “Separation of coordination in a dynamic aspect
oriented framework”, Proceedings of the 1t international conference on Aspect-oriented software
development, April 2002, pp. 134 — 140.

[42] Sdazar-Za&ae, G., and Botdla, P., "Use of UML for modeling non-functiona aspects’, Proceedings of the
13th International Conference on Software & Systems Engineering and their Applications (ICSSEA'2000),
2000.

[43] Shaw, M., "The coming-of-age of software architecture research”, Proc. Int. Conference on Software
Engineering, 2001, pp. 656-664.

[44 Simon, H.A., The Sciences of the Artifical, The MIT Press, Cambridge, Massachusetts, 1981.

[45] Smarkursky, D.L., Ammar, RA. and Shall, HA., "A framework for designing performance-oriented
distributed systems', Proc. 6™ IEEE Symposium on Computers and Communications, 2001, pp. 92 - 98.

[46] Smith, C. U., Performance Engineering of Software Systems, Reading, MA, Addison-Wedey, 1990.

[471 Warmer J. B., and Kleppe, A. G. The Object Consraint Language: Precise Modding with UML.
Addison-Wedey, 1998.

[48] Williams, G. L., and Smith, C. U., “Performance evauation of software architecture; PASA®™: a method
for the performance assessment of software architectures’, Proceedings of the Third internationd
workshop on Software and performance, July 2002.

31

Appendix A. Performance Aspect

As described in [21], a performance study needs a set of performance criteria or metrics. One approach to
prepare this set is list the services offered by the system and categorize the possible outcomes into three groups.
The firg group is the system performs the service correctly. Within this category, the time taken to perform the
sarvice, the rate at which the service is performed, and the resource utilization may be measured. The second
category is the system does not perform the service correctly. Here, the probability of an error occurring and
the time between errors can be measured. The third category is the system cannot perform the service (eg., the
system may be down). In this category, the duration of the event and the time between the events can be

measured.
Performance Aspect
Response Rate Resource Probability Time Between Duration Time Between
Time Throughput Utilization Errors of Event Events

Figure Al. Static View of Performance Aspect (adapted from [21])

32

Appendix B. Security Aspect

Security is a complex aspect that provides design solutions for access, authentication, accounting, privacy, and
integrity. The security aspect is modeled as a set of packages (refer to Figure Al). In this Figure three packages
are defined at the most abstract leve to contain designs for standard reference models, encryption/decryption
algorithms, and protocols. At the lowest level of abstraction, a package's subdiagram is defined with a class
diagram, sequence diagram, or collaboration diagram. For example, a sequence diagram for the NIST BSR
INCITS draft standard for Role Based Access Control is presented in Figure A2. The security aspect is being
refined to include additiond designs.

The security aspect is composed of a
collection of designs that comply with
standards and RFCs for algorithms,
protocols, and reference models. These
provide solutions for access, authorization,
accounting, privacy, and integrity.

Security Aspect

]]

Standard Reference Models = - - Standard Security Protocols
Standard Encryption/Decryption Algorithms

] []
Role Based AC | —| IPSec Protocol

Symmetric (Private Asymmetric (Public
NIST BSR INCITS Key Algorithms) Key Algorithms)
359 Draft 4/4/2003

O ¥ é \ Layer 2 Tunneling
Protocol
IDEA RSA O
Encrypt() 3DES Encrypt() oH
Decrypt() Encrypt() Decrypt()
-0 Decrypt() -0 Encrypt()
.0 Decrypt()
()

Figure Bl . Security Aspect

33

