
THE CATALYST SOFTWARE ENGINEERING ENVIRONMENT
H. E. Romanowsky S . L. Mulholland

Collins Commercial Avionics
Advanced Technology and Engineering

Rockwell International
400 Collins Road NE

Cedar Rapids, IA. 52498

Abstract
Advanced Technology and Engineering of Rockwell In-
ternational, Collins Commercial Avionics, has an on-
going effort to develop an integrated sofiware engineer-
ing environment, named Catalyst, which supports both
government and commercial projects within the Avion-
ics Divisions headquartered in Cedar Rapids, Iowa.
The name Catalyst, a word synonymous with the word
stimulus, was chosen because the use of the environ-
ment-related technology within Catalyst stimulates a
change in the way that sofrware is developed - it pro-
vides the motivation for adopting techniques, methods,
and processes which result in better engineered sofrware.
This paper focuses on some of the challenges in Cata-
lyst’s development, its capabilities, and benefits of its
use.

Introduction
Integrated software engineering environments
(ISEEs) are needed to assist software develop-
ers and managers in light of the increasing
complexity of avionics systems software, con-
tinually increasing software development re-
lated costs, rising demand for high quality soft-
ware, and the necessity for the application of
discipline within software development life
cycle activities. The use of an application do-
main supportive ISEE can be a market discri-
minator with respect to achieving significant
quality and productivity gains while minimiz-
ing cost and needed resources.
In the past, software engineering tool support
has had a tendency to be a collection of tools
which functionally relates to a narrow portion
of the overall software development life cycle,
primarily in the implementation phase. Cur-
rent trends are to provide a comprehensive so-
lution to the needs of software development
teams. Emphasis is now being placed on pro-
viding capabilities for the entire software life

cycle and f o r d project personnel. In the past,
tools might have been purchased and then not
used because of the lack of training on them or
lack of defined work context, or process, with-
in which to use them. Industry is currently ad-
vocating the provision of tool specific training,
as well as training in the procedures of using
a tool or set of tools with respect to the process
used by a project.
In 1989, Advanced Technology & Engineering,
Collins Commercial Avionics, established the
Software Engineering Environment (SEE)
section whose charter is to work with and
transfer to users appropriate environment re-
lated technology. A key effort for the SEE sec-
tion is the definition, implementation, and
support of the Catalyst software engineering
environment.

Backeround and Goals
Prior to the start of work on Catalyst, specific
goals and assumptions were made for its devel-
opment and implementation. Many of them
came as a result of foundation work done in the
1985-1989 time frame.l It has always been an
assumption that tool usage should be coupled
with a definition of the process for how to ap-
ply those tools to a specific development.
Some of the major goals are listed below.

Catalyst is to be platform independent, but
targetted to workstation hosts.
Catalyst is to provide a common,
environment-controlled user interface.
The environment is to be extensible so as to
accommodate an evolutionary growth path.
Catalyst must be useable by projects for
production use at incremental stages of its
evolution.

311
CH3030-4/91/0000-0311 $1 .OO 0 1991 IEEE

Use is to be made of Commercial-off-the-
Shelf (COTS) products as much as possible
and as much as is appropriate.
There is to be support of a heterogeneous
approach which takes advantage of the current
resources and eventually supports truly
distributed development.
Ziilorability should be provided so as to facilitate
support for divisions’ software processes from
both platform and tool points of view.
Catalyst use should be supported with training,
consulting, and follow-up as needed.
The environment should support multiple
software development standards, within both
commercial and government business areas.
Catalyst should make use of industry or de facto
standards where applicable.

The overall goal of the Catalyst environment
effort is to provide a tailorable, platform inde-
pendent, extensible vehicle to be used during
the software life cycle activities. Some of the
goals can be achieved in the short term and
others are used as consistent guidelines in
planning for future versions of Catalyst.
Successful use of the environment is predi-
cated on providing adequate and timely train-
ing with respect to methodologies, tools, and
their use within the context of Catalyst.

Earlv Decisions and Definition
Development of a software engineering envi-
ronment that covers the entire software devel-
opment life cycle is a time consuming and la-
bor intensive undertaking. Therefore, it was
decided early in the Catalyst development pro-
gram, that the largest, initial, positive impact
would occur if the often times hardest and
least automated aspects of the software life
cycle - requirements analysis and design -
were addressed first, particularly with empha-
sis on:

Providing support via Catalyst for project
managers to establish a consistent approach for
their team members to use in development and
documentation activities.

Data Item Deliverables (DIDs) that result from
Automatic generation of DOD-STD-2167A’

engineering work done for the software
requirements analysis and preliminary design
activities.

of project artifacts.
Providing support that would encourage the reuse

Considering the tools already in house to assist
with coding and debugging, it was felt that
projects could continue with the way in which
they were accustomed to performing imple-
mentation and testing tasks, but still take ad-
vantage of new capabilities in the early activi-
ties of the software life cycle.
In conjunction with Catalyst’s development, it
was necessary to determine how the current
software engineering practices, processes, and
tools could be accommodated so as to make
the transition to Catalyst use as non-disruptive
as possible. An approach that was adopted
was to structure Catalyst so that the whole en-
vironment or a subset of its capabilities could
be introduced on a project.

Version 1 Series
Work on Catalyst began under the premise
that its implementors would have between 6 to
12 months to put together its initial capabili-
ties before any of it would be put to production
use. In reality, a program within the Collins
Avionics and Communications Division
started to use initial versions of Catalyst about
three months into the environment’s develop-
ment.
Unexpected early use of the environment led
to an initial version 1.0 capability which ex-
ceeded initial expectations, but has caused an
accelerated rapid prototyping approach to en-
vironment development as more projects have
been signing up to use Catalyst along the way.
One of the biggest challenges to the Catalyst
team is the provision of support to actual users
during the environment planning, develop-
ment and implementation efforts. This experi-
ence has provided an invaluable production
test of the process and capabilities associated
with the environment.

312

The version 1 series of Catalyst will provide full
life cycle coverage. Version 1.0 of Catalyst was
completed in December 1990. Version 1.1 will
follow later this calendar year.

Catalvst Suppo rted Activities
Catalyst support covers four aspects - engi-
neering process, requirements management
process, document generation, and tools, both
COTS and in-house developed, which enforce
the processes and automate document genera-
tion. This section briefly identifies the major
software development life cycle activity capa-
bilities supported by the version 1 series of
Catalyst.

Software R e a a n t s *.
1. Requirements Engineering.

Verification: specifically addressing consistency,
correctness, completeness, and static
performance.
Automatic Generation of Software Requirements
Specification (SRS) and Interface Requirements
Specification (IRS).

2. Requirements Management
Verification: specifically addressing consistency,
correctness, and completeness.
Backing and llaceability at Computer Software
Configuration Item (CSCI) and System levels.
Automatically documented in the SRS for CSCI
and System levels.

3. Requirements Qualification
Verification: specifically addressing consistency,
correctness, and completeness.
Automatically documented in the SRS at the
CSCI level only. The System level is documented
in the Software Test Plan.

4. Project Management
Verification of process usage.
Automatic generation of SRS and IRS supports
incremental, frequent generation of documents
which is utilized for project progress tracking.

Support for Change Impact Analysis. All source
and destination occurrence pairs of data elements
and interfaces are automatically and dynamically
generated and documented in the SRS. All
possible context views of requirements are
automatically and dynamically generated and
documented in the SRS on both a CSCI and
System-level basis.

. . ry D e s l g n i v i t v w.
1. Preliminary Design Engineering

Implements process that supports projects of
varying sizes and is not development language
specific
Automatically documented in Software Design
Document (SDD), version 1, and the Interface
Description Document (IDD).

2. Requirements Transition
Controls requirements transition from software
requirements analysis activity to preliminary
design activity.

3. Requirements Management

correctness, and completeness.

and document objects.

Verification: specifically concerning consistency,

Backing and Baceability of development objects

Automatic documentation in SDD, version 1.

4. Project Management
Verification of process usage.
Automatic generation of SDD, version 1, and
IDD supports incremental, frequent generation
of documents which is utilized for project
progress tracking.

controls placed on requirements transition
facilitate the identification of the extent of impact
upon review of a change request.

Support for Change Impact Analysis. The

Detailed Design Actwty Suppart.

1. Detailed Design Engineering

. .

Implements a process which supports projects of
varying sizes and which are to use either Ada or
C for source code implementation.

313

Automatically documented in SDD, version 2.

2. Requirements Management
Verification: specifically for consistency,
correctness and completeness.
Tracking and 'Ifaceability of development objects
and document objects.
Automatic documentation in SDD, version 2.

3. Project Management
Verification of process usage.
Automatic generation of SDD, version 2,
supporting incremental, frequent generation of
documents which is utilized for project progress
tracking.
Support for Change Impact Analysis. The
requirements management process facilitates the
identification of all objects impacted by a specific
change request.

Code and Unit Test Activity SuDDort.
1. Uniform code creation.

Provides common native code generation for Ada

Allows each project to insert the specific target

. .

or C source.

code generator required by their project.

2. Requirements Management

correctness, and completeness.

objects and document objects.

Verification: specifically for consistency,

Backing and Traceability for development

3. Automatic Generation of White Box test
cases based on the Computer Software Unit
(CSU) and/or Computer Software Component
(CSC) definition.

Facilitates quality review and verification of code
prior to moving to target test environment.

4. Project Management
Verification of process usage.
Automatic generation of Software Development
Files (SDF) and SDF artifacts, facilitating
configuration management.

Support for Change Impact Analysis.

Platforms.
The initial host platform for version 1.0 is the
Apollo workstation running BSD 4.3 Unix.
Porting was then done to the Sun Sparcstation,
again running BSD 4.3 Unix and then to the
DEC VAXstation 3100 utilizing VMS. (Plans
are underway to port to the DEC DECstation
running Ultrix).

Catal V ! €
Definition

In order to achieve the amount of automation,
documentation, and verification that has been
accomplished in the first releases of Catalyst,
a development process had to be established
whose use would result in the uniform, consis-
tent development of high quality project arti-
facts. In developing this process, engineering,
testing, and documentation objectives were re-
viewed to ascertain that the defined process
did not ignore requirements for the accom-
plishment of typical project objectives. From
this effort, a preliminary development process
was defined.
This process definition was then analyzed from
the viewpoints of both commercial and gov-
ernment projects. What was discovered is that
the engineering objectives for commercial and
government projects are essentially the same.
Some differences exist in the testing objectives
due to the application of more or less rigorous
verification requirements. However, most of
the differences existing between commercial
and government projects occurred in the area
of documentation. Upon closer review, it was
found that these differences centered more in
the area of document format rather than con-
tent. Because the proposed development pro-
cess identifies and manipulates data based on
its object classification, and the process exhib-
ited the qualities of flexibility and tailorability,

314

it was found to be appropriate for use in both
commercial and government projects.
Next, the proposed process definition was ana-
lyzed to determine its applicability to multiple
application domains, project sizes and source
language implementations. After ensuring
that the process provided support for all these
issues, the definition was finalized and
adopted as the Catalyst software development
process. This process is documented in the
Catalyst Environment Reference Manual. Proj-
ects that utilize this development process gain
the full benefits of Catalyst. Projects that par-
tially utilize it, or are too far into development
to begin use of Catalyst, still benefit from the
many “stand-alone” capabilities supplied by
Catalyst.

Next Ge nerations
Although the goal for Catalyst is that it be fully
integrated, the first releases of the environ-
ment provide only localized integration with
respect to data exchange between tools. The
key considerations for the next generation of
the Catalyst environment is in the areas of inte-
gration and user interface. In addition to these
areas, there must be decisions made as to the
applicable ISEE standards to consider for ver-
sion 2 and beyond.
Standards to investigate are in a variety of
areas. For example, MIL-STD-l838A,
PCIE + , ATIS (or CIS), and several other ef-
forts target tool integration; DIANA and IRIS
target data structure representation; and MO-
TIF and Open Look target a common window
presentation definition. Attention must also
be given to emerging ISEE standards. Two
such emerging standards are the National In-
stitute of Standards and Technology (NIST)
ISEE Reference Model3 and the European
Computer Manufacturers Association
(ECMA) Task Group TC33/TGRM Reference
Model4. Another effort which may be consid-
ered to have major influence in the establish-
ment of ISEE standards is the government

sponsored Software Technology for Adapt-
able, Reliable Systems (STARS) program.
Catalyst, version 2, will remove the tool-to-
tool interface and replace it with a tool-tw
framework interface. It will also remove the
tool-twplatform interface and replace it with
a framework-to-platform interface. The im-
plementation of an environment user interface
that separates the users from direct communi-
cation with the tools will be the first step to-
wards the full implementation of a user inter-
face generator tool.
With Catalyst, version 2, in place, the next evo-
lutionary step will be to implement a user in-
terface generator tool and to transition the en-
vironment user interface to its control. This
step also requires the transitioning of the
COTS products’ user interface control to this
ISEE component. Because of the technical
and societal complexities involved in achieving
this ISEE characteristic it is unclear whether
or not this will be directly achievable in a
“near” timeframe. If not, Catalyst, version 3
will embody the maximum degree of support
possible for this ISEE characteristic.
Catalyst’s evolutionary environment develop-
ment plan allows Rockwell’s projects to imme-
diately benefit from the use of a SEE and sup-
ports Catalyst’s continued growth towards full
implementation of a standard ISEE concept.

User Suppo rt
A software engineering environment can not
be easily and successfully transitioned into use
without adequate user support. This is a key
assumption in the SEE section. There are
many ways that assistance is given to both new
and current users. They are briefly summa-
rized in the paragraphs below.

Documentation. The main documentation
medium is the Catalyst Environment Reference
Manual. It includes engineering development
procedures, document generation and verifi-
cation procedures, implementor’s guides to as-
sist with project specific tailoring, and model

315

definitions. It is divided into life cycle activi-
ties and tool sets.

lbinhg. Members of the SEE section pro-
vide training for tool use within the Catalyst
process, as well as for individual tools. When-
ever possible, training for methodologies,
workstation specific training, and tool specific
training of a general nature is provided via the
Collins Avionics Divisions' Software Engi-
neering Training Program.

Consultation. SEE group personnel provide
initial demonstrations of CataZ't capabilities
to users, discuss the application of methodolo-
gies within the environment to projects, and
assist with transitioning from previously used
tools and techniques to those within Catalyst.
Tailoring Catalyst to a particular project's
needs is also handled via consultation.

User's G r o w Recently, a user's
group was started in order to acquaint the us-
ers with each other and to facilitate discussion
concerning how various users applied the envi-
ronment's capabilities to their projects. The
group is also to be used as a way for the SEE
section members to discuss future plans and
priorities with active users.

Summary
The Catalyst software engineering environ-
ment provides a workstation-based approach
which gives language independent support for
software requirements analysis and software
preliminary design activities; it then narrows
its scope to the support of Ada and C specific
implementation work for the rest of the life
cycle. Catalyst currently provides a set of
loosely integrated tools which assist project
members in their work as opposed to just using
point solutions.
A significant benefit that has already been
demonstrated by several Rockwell projects is
that even partial usage of CataZyst by one proj-
ect results in the opportunity for project arti-
fact reuse by other projects. This opportunity
for software development artifact reuse has

been taken many times by new Rockwell proj-
ects; and has, in turn, encouraged those new
projects to utilize Catalyst in their develop-
ment.

Users of Catalyst have received benefits in the
areas of automated requirements engineering,
requirements management, software develop-
ment process, and project management as a re-
sult of using version one of Catalyst. There
have been several production projects, both
from the government and commercial sectors
of the Avionics Divisions, using version one
and it has been very well received.

It is emphasized that Catalyst is not only tools,
but also involves the procedures and training
which support its use. Users have assistance
with their learning curve with respect to how
to use the environment capabilities within the
context of the work that they do. Catalyst pro-
vides a baseline for commonality for software
projects - across host platforms, across soft-
ware development projects and assists with re-
use.

References
1. Romanowsky, H. E., Ada Programming Support
Environment Development Plan, Version 1.0, Rockwell
International internal document, August 1985.

2. U. S. Department of Defense, Defense System Soft-
ware Development, DOD-STD-21674 29 FebruaIy
1988.

3. Wong, W.,"SummaIy of the 4th Workshop on Inte-
grated Software Engineering Environments (ISEE),
NIST, October 30, 1990.

4. Earl, A., ECMA "hk Group TC33ITGRM's "A
Reference Model for Computer Assisted Software
Engineering Environment Frameworks," version 4.0,
August 17, 1990.

Apollo is a trademark of Hewlett-Packard. Unix is a
trademark of N & T Bell Laboratories. VMS, Ultrix,
VAXstation, and DECstation are trademarks of Digi-
tal Equipment Corporation. Sun is a trademark of
Sun Microsystems, Inc.

316

