Notes

Following is a short chapter-by-chapter account of other published work that is relevant to
each topic and has, in some way, influenced our work. All these works are listed in the
References. Many of them are good supplementary or follow-up reading. Another good
place to find follow-up reading is at www.catalysis.org.

Part |: Overview

Catalysis has been influenced by many sources, including both authors prior work and
existing OO methods. Some well-known work on object-oriented analysis and design
methods are listed here. Fusion [Colman93] was one of the first methods that had a clear
process and separation of concerns along with a strong foundation in formal methods.
Syntropy [Cook94] made a clear distinction between essential, system, and software
design models and had strong semantics for the authors' state chart-centric behavior mod-
els; their work on viewpoints was very insightful, although it was not made central to their
approach. The OORAM approach [Reen95] pioneered role-centric and collaboration-
based modeling and devel oped ideas of composition and abstraction based on it.

The work of Grady Booch [Booch91, Booch96] and the OMT book [Rumbaugh9l] were
influential and became market leaders; they brought, respectively, a pragmatic description
of design, and a good information-centered object-modeling approach and state charts.
The use case approach of Jacobsen et a. [Jacobsen92] first drew attention to the glaring
lack of focus on user tasksin OO methods; [Jacobsen94] is a more readable account of the
main ideas. ROOM [Selic94] offers an architecture-centric approach to modeling using
executable state charts and makes a component-port-connector model central to the
approach.

de Champeauix and Lea [de Champeaux93] provide awedlth of insightsinto the subtleties
of good object-oriented design. The Shlaer—-Meéllor approach in [Shlaer88] and [Shlaer92],
an early object-modeling approach, was focused on a normalized data model and executable
communicating state-machine models for analysis and a translation-driven approach to
architectural design. A comparison of OO methods is in [D’'Souza93]. Martin Fowler
[Fowler98] provides a good review of the UML notation, and the OMG Web site provides
reference material [UML].

705

706

NOTES

Chapter 1 A Tour of Catalysis

Earlier writeups and presentations on the Catalysis method include [D’ Souza95, 96a,
96b].

Part I1: Modeling with Objects

The useful separation of static, dynamic, and interactive modeling of objects has been rec-
ognhized in formal approaches for some time, although it has not been exploited in main-
stream OO methods. Among OO methods, the idea was used in Fusion [Col93] and in a
less obvious way in Syntropy [Cook94].

Chapter 2 Satic Models: Object Attributesand Invariants

The basic idea of modeling an abstraction of state regardless of concrete dataimplementa-
tion has pristine lineage, including the likes of formal methods such as Z [Spivey86] and
VDM [Jones86], aswell as more recent OO methods such as Syntropy and Fusion. Param-
eterized attributes are a simple variation of the many kinds of functions and relations that
are predefined in Z or that can be user-defined in VDM; these variations can always be
explicitly defined in Catalysis in a generic package.

The observation that a formal model is only a collection of symbols and could equally
represent a physical world or software—and the need for a separate dictionary that maps
the formal model to the things it represents—is well known to model theorists. The ideas
are very well described in [Jackson96].

Logic that can cope with an undefined value—three-valued logic—comes from
[Cheng9l]. Flat sets were used to navigate object models in [D’ Souza94], defined in
[Wills97], and subsequently taken up by OCL.

Chapter 3 Behavior Models: Object Typesand Operations

The concept of type as object behavior, regardless of implementation, is well known to
those working in semantics of OO languages [America90] and in formal approaches such
as [Wills91]. Using pre- and postconditions to specify an operation in terms of an abstract
model of state goes back along way, to work by Hoare and Dijsktra [Hoare94]. More cur-
rent usage in the context of OO methods includes Fusion and Syntropy and, in OO lan-
guages, Eiffel [Meyer88]. Permitting and composing multiple specs for an action is based
on [Wills91].

Our interpretation of a static type model of a component as being what the component
needs to know about the world and happenings around it, and the way we relate a software
system to arefinement of a business model, are fundamental to traceability from business
to code.

Using snapshots to illustrate actions, conceptualizing the type model as a generaliza-
tion of legal snapshots, treating attribute types and associations as defining invariants, the

Notes

707

metaphor of the “film strip,” and the relation between state charts, action specs, and snap-
shots are described in [D’ Souza94].

The idea of joint actions between stateful objects was inspired by the work done in
Disco [Kurki-Suonio90]. These authors describe how joint actions provide powerful
abstractions, provide the first precise semantics for state charts in the context of object
modeling, and show how entire object behavior models might be refined.

Using invariants to factor common static rules that apply to all pre/post conditions
comes from formal methods such as Z and VDM. Our use of “derived specifications’ isa
simplified approach to what formalists might call “theorems’ [Gries96]. Effect invari-
ants—the idea that a dynamic constraint can apply to al actions—is related to a more
powerful formula of temporal logic [Manna92]; temporal logic can sometimes greatly
simplify a difficult specification, and we have used the more-general mechanisms on
occasion.

The two fundamentally different ways of writing multiple specs (pre/post and
pre=>post) were inspired by the work of D. Jackson [Jackson95]. He points out the impor-
tance of having specs from different views that, when composed, do not do so “monotoni-
cally”; we realized we could support both styles with a simple convention on how the
specs should be written, while using a uniform rule about composition.

The idea of subtypes as subsets based on external behavior, independent of implemen-
tation, independent of classes, and with specs that simply extend (without overriding) is
common in type theories, such as POOL [AmericadQ].

State types are discussed in D’ Souza [D’ Souza94]. Our use of a predicate to “ classify”
an object provides some convenient modeling capabilities.

Introducing convenience state modeling elements to simplify a specification is well
known in formal methods; an analogous technique is used frequently by good OO design-
ersin their designs and code. D. Jackson [Jackson95] makes a strong case for allowing
different viewpoints to use different models of the state information; our use of packages
carries this a step further.

Factoring common postconditions is done routinely in Z using schema composition.
Our separation of actions and effects is meant to distinguish these convenience functions
from the actual operations that must be supported. We allow “gray-box” specifications, in
which certain aspects of the internal behavior, such as call sequences, can be exposed as a
part of the specs. In the OO world, related work was done by Helm et al. [Helm90].

Quoting action specs is described in [Wills91] and elsewhere. The distinction between
spec types and design types has long been known in formal methods; our highlighting it,
and factoring effects to specification types, is somewhat unique among OO and CBD
methods.

An excellent treatise on the use of state charts as a primary specification vehicle with
objectsis [Cook94].

The subjective model of containment is unique to our approach. It isrelated to the idea
of subject-oriented programming [Harrison93], which is focused more in composing OO
implementations.

708

NOTES

A discussion of types and classesin programming languagesisin [D’ Souza97]. Specifica
tion aspects of classes and typesis discussed in [Wills95b] and [D’ Souza96h).

Using type models to precisely document the interface between a superclass and its
subclasses is explained in [D’ Souza964g].

Chapter 4 Interaction Models. Use Cases, Actions, and Collabor ations

The idea of a joint action as an abstraction of many possible interaction protocols was
inspired by the work of Disco [Kurki-Suonio90]. We treat |ocalized actions as a degener-
ate case of joint actions. Clarifying the meaning of parameters (and the corresponding
rules and documentation for refinement) in the context of objects, and the treatment of use
cases, we believe to be unique to our approach. Traditional use cases are described by
Jacobsen in [Jacobsen92].

Specifying concurrent actions using rely and guarantee is based on the work of Cliff
Jones [Jones93].

Practical guidelines on how to deal with concurrency in a design—covering issues of
interference (safety) and cooperation (liveness)—and higher-level concurrency design
congtructs are included in [Lea96].

Treating collaborations as first-class design entities has been done by Rom Casselman
and, more informally, in the work of [Wirfs-Brock90]. OORAM [Reenskaug95] was the
first OO method to make this a central way of thinking. The OORAM method is based
almost exclusively on the idea of role models; it is closely related to collaborations, with
an added element of implied object-identity constraints on the diagrams. Using collabora-
tions as a scoping construct for invariants, distinguishing the internal and external actions
for each collaboration it playsarolein, is unique to our approach.

The Ph.D. thesis of D. Beringer [Beringer97] generalizes the concept of scenarios; in
that context, it has a good discussion of refinement (action and object refinement), good
ideas about the systematic depiction of scenario types, and a brief, insightful,, discussion of
the need for more-effective state abstraction.

Chapter 5 Effective Documentation

Our overall approach to clear interwoven documentation, rather than the production of
either pictures or forma mathematics, is based on Knuth'sideas in Literate Programming
[Knuth84] and on the style espoused by Z. Permitting multiple appearances of an element
on multiple drawings, clearly separating models of business from software specifications
and from their internal implementations, would appear to be plain common sense; yet is
not spelled out often enough. The high value we place on clear vocabulary and precise
definintions of terms comes from project experience. Structuring documentation around
package structure, and the emphasis on small fragments of models interleaved with
explanatory prose, has not been emphasized in popular methods.

Notes

709

Part I11: Factoring Models and Designs

The importance of careful factoring and abstracting away details underlies all good OO
programs. Popular methods do not provide well-defined support for composition, and for
factoring medium- to large-grained units.

Chapter 6 Abstraction, Refinement, and Testing

Almost every method, from the most dense and formal ones to those based on the most
loosely defined sketches and drawings, stakes a claim to being “abstract.” The formal ones
have a precise idea of what kinds of things are omitted in the abstraction and exactly what
it meansto correctly implement that abstraction; they also share our idea of a conformance
relation with a justification. Refinement is a well-established technique in the formal
methods community. The ideas of protocol refinement and data reification (model or state
refinement) have been separately but quite thoroughly worked out el sewhere.

Model and operation refinement ideas go back to VDM and Z and to the work of Hoare
and Dijkstra [Hoare94]. Joint actions and state chart refinement are addressed thoroughly
in Disco and ADJ; Syntropy [Cook94] has an excellent account of a subtyping-based
refinement with state charts. Using specifications for testing and debugging implementa-
tions has been long practiced by good software developers; [Meyer88] has a good account
of it and a programming language that directly supports some of it.

Refinement and subtyping in OO implementations are discussed in severa recent
works, including those by [D’Souza96b], [Utting92], [Wills93, 96a, 97a], and
[Mikhajlovad7]. A highly formal approach, suitable for very high integrity systems, is
described by Kevin Lano [Lano95].

Doug Lea defines interaction protocols for open object systems, and their refinement
rules, in [Leads].

Michael Jackson and Pamela Zave [Jackson96a] clearly point out the difference
between effects and operations; their framework is not one of refinement. Rather, it is cen-
tered on how to structure and compose abstract state changing actions (using Z) and finer-
grained protocols (using state machines or other mechanisms) to be confident about the
results. Many of those ideas fit into the rules for documenting a refinement.

The co-author’s book [Wills91] has a good account of refinement based on model and
operation abstraction and subtyping. The need for collaborations as first-class entities and
collaboration refinements beyond subtyping are described in [D’ Souza964] .

We bdlieve the basic forms of refinement to OO methods and the strong link to system-
atic testing are part of our contribution.

Chapter 7 Using Packages

Packages as groupings for pieces of models, designs, or specs, in the sense we use in
Catalysis, go back to the idea of mathematical theories and are exemplified by the specifi-
cation language of Larch [Guttag90] and Mura’s specification tool [Mural91]. The idea of

710

NOTES

extending type information in theory extensions comes from them, as does the definition
of the language semantics from the ground up. [Wills91] describes how these theories,
which he calls “capsules,” can be used to separate specifications from code and to provide
disciplined forms of class inheritance, method overrides, and code updates.

The more straightforward ideas of packages for grouping classes can be found in
Eiffel’'s “clusters’ [Meyer88], Booch's “ categories’ [Booch96], and Wirfs-Brock's “ sub-
systems” [Wirfs-Brock90].

Treating al development artifacts as a part of a package would seem to be common
sense, yet surprisingly few projects practice it and surprisingly few methods require it.
Knuth’'s Web is based on strongly integrating code and documentation but does not
address modeling or specification.

Java packages are clearly documented in [Godling96]. Ways to use them to separate
interfaces, collaborations, and classes, based on Catalysis techniques, are described in
[D’ Souzad6a.

Our treatment of packages as units of version control, configuration management, and
builds is similar to Sun’s Forest project [Jordon97], which scales Java packages to very
large-scal e software development. The idea of being able to say more about any imported
modeling element is supported in code in a limited way by the team-working product
Envy for Smalltalk; it allows different aspects of the same implementation class to be
defined in different “applications.” It is commonly used in formal methods based on traits
or theories [Guttag90]. The ideas behind this are discussed in [Wills91] and [Wills96b].

Chapter 8 Composing Models and Specifications

Composition is an age-old idea in software specification and development; any method
must have clear rules about the outcome of combining designs, specifications, or code.
Popular OO methods do not address this issue in a meaningful way. Exceptions are
Disco’s composition of entire models [Kurth90], Syntropy’s subtyping and viewpoints
[Cook94], and OORAM'’s role-model synthesis [Reenskang95]. Related work in non-O0
approaches are plentiful: Z, Unity, and so on.

Our rules for intersecting types are based on well-known rules of conformance
[Liskov9l, Meyer88]; those for composing separate views in a nonmonotonic way were
influenced by the work of D. Jackson [Jackson95] and Z [Spivey86].

Few OO approaches serioudly support the specification of exceptions; yet exceptions
often form the most complicated part of a complex specification and its implementation.
Our approach to describing exceptions is based on the work on Assertion Definition Lan-
guage [ADL], adapted to fit with our need to compose multiple specifications that can
include exception conditions. Our integration of exceptions with use cases and action
refinement we believe to be unique.

Notes

711

Chapter 9 Mode Frameworks and Template Packages

Theideas of frameworks are akin to how Larch defines the importing of traits with renam-
ing [Guttag90] and are related to the work in FOOPS [Goguen90]. Some of the earliest
OO work related to our collaborations comes from Helm et al. [Helm9Q].

Our initial ideas of frameworks as generic collaborations in Catalysis were written up
in [D’ Souza95a)]. Broader use of model templates using packages in Catalysisis described
in [Wills96b].

The confusion between frameworks, generics, and subtypesis present even in the UML
[UML].

Theideas of aframework at the level of OO implementation are well described in Tali-
gent [Taligent94] and Johnson [Johnson92]. An excellent example of using the frame-
work-like facility of C++ templates is in the Standard Template Library [Saini96]. At the
level of design patterns, the historic GOF book [Gamma95] provides plenty of motivation
for a specification construct like frameworks. Martin Fowler’'s book Analysis Patterns
[Fowler97] elevatesthat need to adomain-specific level. Shlaer and Mellor [Shlaer92] use
an idea akin to frameworks in their approach to recursive design, although they do not
generalize it beyond that.

Framework provisions—constraints on properties an acceptable substitution must have
when applying the framework—are used in Larch, FOOP, and even in well-documented
implementations of the STL [STL96].

Using frameworks to define the meaning of the very modeling constructs themsel ves—
and even to define and encapsul ate known inference rules—is very similar to the approach
in Larch [Guttag90]. Their application to Catalysis modeling constructs, UML stereotype-
based extension, and new modeling constructs and notations is described in
[D’Souza974).

Frameworks seem quite related to some of the ideas of aspect-oriented programming
[Gregor97], but we are not sure how. In particular, we would compose the models from
multiple framework applications in which they would use an “ aspect-weaver” program to
combine implementation code.

A package might define a set of relevant object types with their states and interactions,
but it also explicitly defines (or imports) the very rules that are used to make deductions
about things. This arrangement can be useful in “agent-based” models; an economic simu-
lation of a market might explicitly model the theory each company has of its competitors
actions, including the inference rules it uses. With good tool support, you might then do
simulations and explore different hypotheses within a package.

Part I V: Implementation by Assembly

Many books have been written about good object-oriented design and implementation.
Component-based development and assembly have only very recently become hot topics.
Component and connector technology, effective pluggable design, and a coherent archi-
tecture together enable implementation by assembly.

712

NOTES

Chapter 10 Components and Connectors

Szyperski [Szyperski97] has several clear definitions of component technology, and we
adapted several definitions from that book.

Using components and connectors to define architectural styles was introduced in
[Allen94] and elaborated in [Shaw96]. Component connectors appear in a number of pat-
ternsin [PLoP]. Our definition of them in terms of actions appeared in [Wills974].

Among current component technologies, CORBA technology is described at the OMG
Web site [CORBA]; COM at Microsoft's Web site [COM]; and JavaBeans at the Java-
Beans Web site [EJB].

The approach to treating entire systems and subsystems as objects is something we
have been practicing for many years.

Chapter 11 Reuse and Pluggable Design: Frameworksin Code

A book by [Wong93] gives a clear account of pluggable designs. The idea can be traced
back through the development of the Smalltalk class library. [D’ Souza96a] describes doc-
umenting the interface of up-calls and down-calls using type models. [Gamma95] has an
excellent discussion of decoupling patterns, as does [PLoP].

Chapter 12 Architecture

Some of the early work on systematic description of software architecture was done by
Shaw and Garlan [Shaw96b]. A good description of the breadth of issuesinvolved in soft-
ware architecture, which we have used and adapted, is in [Bass98]. Our informal defini-
tion of architecture was coined in frustration by D’ Souza (we believe).

Architecture Description Languages (ADLSs) have been receiving much study recently.
Important work includes the ABLE project (with the language WRIGHT) [Able] and
Rapide [Luckham95].

ROOM [Selic94] is one of the few OO methods that can be said to be based on an
architecture definition (graphical) language. Shlaer and Mellor [Shlaer92] have long advo-
cated a trandation-based approach to architecture: You define the trand ation patterns and
rules and generate the design from the analysis models.

Doug Lea' s work [Lea95] addresses several architectural issues that arise in the build-
ing of object-oriented systems. And [Gamma95] is important in bringing pragmatic and
proven design patterns to their rightful place in software architecture. Our use of frame-
works for components, and connectors, and for other patterns and rules that describe
architecture, provide additional expressiveness.

Part V: How to Apply Catalysis

Like therest of this book, the processes and techniques have evolved from practical appli-
cation and from the process definitions of many others. Catalysis emphasizes the system-
atic use of package structure, separation of package artifacts from the process and routes

Notes

713

that populate those artifacts, refinement from business models to code, frameworks at al
levels, precise use cases accompanied by clear supporting type models, and multiple
views that can be composed.

Chapter 13 Process Overview

Good general project guidelines can be found in [Cockburn98] and [Goldberg95]. RAD is
discussed in [McConnell97] and DSDM (an excellent RAD approach) is discussed in
[Stapleton97].

Chapter 14 How to Build a Business M odél

Modeling of business processes is often based on a flow-like notation. Examples include
the activity diagram of UML [UML], role-activity diagrams [Holt83], the process flow
(and related relationship and organization structure) of Rummler and Brache
[Rummler90], and functions and information in IDEFO [IDEF093]. These would need a
semantic connection to our other, more-precise modeling techniques.

Martin Fowler and Craig Larman have each written good books on patterns for model -
ing [Fowler97, Larman98].

Chapter 15 How to Specify a Component

The vanilla process is like that followed by many authors such as [Cook94] and
[Colman94]. The use case focus is related to Jackson's [Jackson92], although our empha-
sison refinement is different.

Chapter 16 How to Implement a Component
Some good guidelines for design are in [Reil97], [Gamma95], and [Taligent94].

	Part I: Overview
	Chapter 1�A Tour of Catalysis

	Part II: Modeling with Objects
	Chapter 2�Static Models: Object Attributes and Invariants
	Chapter 3�Behavior Models: Object Types and Operations
	Chapter 4�Interaction Models: Use Cases, Actions, and Collaborations
	Chapter 5�Effective Documentation

	Part III: Factoring Models and Designs
	Chapter 6�Abstraction, Refinement, and Testing
	Chapter 7�Using Packages
	Chapter 8�Composing Models and Specifications
	Chapter 9�Model Frameworks and Template Packages

	Part IV: Implementation by Assembly
	Chapter 10�Components and Connectors
	Chapter 11�Reuse and Pluggable Design: Frameworks in Code
	Chapter 12�Architecture

	Part V: How to Apply Catalysis
	Chapter 13�Process Overview
	Chapter 14�How to Build a Business Model
	Chapter 15�How to Specify a Component
	Chapter 16�How to Implement a Component

	Notes

