
 Chapter 2 Static Models
Object Attributes

and Invariants

Models can be divided into static, dynamic, and interactive parts dealing with, respec-
tively, what is known about an object at any one moment, how this information changes
dynamically with events, and how objects interact with one another. This chapter dis-
cusses the static part of a model, in which you characterize the state of an object by
describing the information known about it at any point in time. It uses the type model dia-
gram to capture the static model and snapshot diagrams to show instantaneous configura-
tions of object state.

The first section is an overview of what a static model is about. Section 2.2 introduces
objects, their attributes, and snapshots and distinguishes the concept of object identity from
object equality. The attributes that model an object’s state can be implemented in very dif-
ferent ways. Section 2.3 outlines some implementation variations using Java, a relational
database, and a real-world implementation.

Section 2.4 abstracts from individual objects and snapshots of their attribute values to a
type model, which characterizes all objects having these attributes. Here, we introduce
parameterized attributes; graphical associations between objects, collections of objects,
and type constants; and type combination operators.

Not all combinations of attributes values are legal. Section 2.5 introduces static invari-
ants as a way of describing integrity constraints on the values of attributes, shows some
common uses of such invariants, and outlines how these invariants appear in the business
domain as well as in code.

The same model of object types and attributes could describe situations in the real
world, for a software specification, or even of code. Section 2.6 introduces the dictionary
as a mechanism for documenting the relationship between model elements and what they
represent.
45

46 PART II MODELING WITH OBJECTS
2.1 What Is a Static Model?

Much of how an object responds to any interac-
tion with its surroundings depends on what has
happened to it up to now. Your success in
checking into a hotel, for example, depends on
whether you have previously called to arrange
your stay. The hotel with which you’ve suc-
cessfully gone through this preliminary cour-
tesy will welcome you with open arms,
whereas others on the same night might well
turn you out into the cold. The response to your
arrival depends on the previous history of your
interactions. So it is with many other encoun-
ters in life: the beverage machine that will not
yield a drink until you have inserted sufficient
money; the car that will not respond to the gas
pedal unless you have previously turned the
starter key and
provided that you have not since switched it off; the file that yields a different character
every time you apply the read operation. The response to each interaction you have with
any of these objects depends on what interactions it has already had.

To simplify our understanding of this potentially
bewildering behavior, we invent the mental notion
of state. The hotel has a reservation for me, the
machine is registering 20¢, the car’s engine is run-
ning, the file is open and positioned at byte 42. The
idea of state makes it easier to describe the outcome
of any interaction because instead of talking about
all the previous interactions it might have had, we
merely say (a) how the outcome depends on the
current state and (b) what the new state will be.

It doesn’t matter much whether the user can
observe the state directly through a display on a
machine, by an inquiry with a person, or by

calling a software function. To provide such a facility is often useful, but even if it isn’t
there the model still fulfills its main purpose: to help the client understand the object’s
behavior. If you take away the numeric display in the cartoon but leave the instructions
and the crucial state attribute Amount, the machine is still more usable than with no such
model.

Nor does it matter how the state is realized. The hotel reservation might be a record in a
computer, a piece of paper, or a knot in the manager’s tie. The same principle applies

Sludge

Money;

Select;

Drink

Regular Sludge

Diet Sludge

Taste-free Sludge

English beer flavour

? 10¢ < 65¢

Sludge

Inserting a coin increases

Amount by value of coin

If Amount

>= price,

selection

yields drink

and sets

Amount=0

Amount

Get drink here

Regular Sludge

Diet Sludge

Taste-free Sludge

English beer flavour

65¢

65¢

80¢

£1.20

Chapter 2 Static Models: Object Attributes and Invariants 47
inside software; the client objects should not care how an object implements its state. State
is a technique that helps document the behavior of an object as seen by the outside world.

In fact, it is important that a client not depend on how the state is implemented. Back in
the olden days of programming when a team would write a software system from scratch,
every part of the system was accessible to every other part. You just had to stick your head
above the partition to shout across at whoever was designing the bit whose state you
wanted to change. But in recent times, software has joined the real business world of com-
ponents that are brought together from many sources, and you shouldn’t interfere with
another object’s internal works any more than you should write directly on the hotel’s res-
ervation book (or the manager’s tie). It would be wrong and inflexible to make assump-
tions about how they work.

2.1.1 Snapshots: Drawing Pictures of States
To illustrate a given state, we use snapshots (see
Section 2.2.2). The objects represent things or con-
cepts; the links represent what we know about them
at a particular time. In this example, we can see that
Jo is currently occupying Room 101 and Dipak is
currently scheduled to occupy Room 101 next
week.

Actions can be illustrated by showing how the
attributes (drawn as lines or written in the

objects) are affected by the action. Here, the rescheduling operation has been applied to
shift Dipak to Room 202 next week. (Although we say that a snapshot illustrates a partic-
ular moment in time, it can include current information about something planned or sched-
uled for the future and also a current record of relevant things that have happened
previously.)

These drawings first and foremost represent
states. The same kind of drawing can be used to
represent specific implementations of a state. For
example, we could decide that each link represents
a row in a relation in a relational database; or they
might be pointers in main memory; or they might
be rows in a chart at the hotel’s front desk. But at
the start of a design the most useful way is to say
that we don’t care yet: we’re interested in describ-

ing the states and not the detail of how they’re implemented. We will make the less impor-
tant representation decisions in due course as the design proceeds.

jo : Person
occupant

101 : Room

where

: Reservation
when = 2005/10/3

who

dipak : Person 202 : Room

jo : Person
occupant

101 : Room

where

: Reservation
when = 2005/10/3

who

dipak : Person 202 : Room

48 PART II MODELING WITH OBJECTS
2.1.2 Static Models: Which Snapshots Are Allowed
Whereas snapshots illustrate specific sample situa-
tions, what we need to document are the interesting
and allowed states: the objects, links, and labels that
will be used in the snapshots. This documentation is
the purpose of a static model, which comprises a set
of type diagrams and surrounding documentation.
Notice the difference in the appearance of type
boxes and

object-instance boxes: the headers of instances are underlined and contain a colon (:). This
example summarizes the ways in which rooms and people can be related.

Most analysts and designers are familiar with the idea of establishing a project glossary
at an early stage as a way to get everyone using the same words for the same things. In
Catalysis, the type diagrams are the central part of the glossary: they represent a vocabu-
lary of terms and make plain the important relationships between them. That vocabulary
can then be used in all the documents surrounding the project and in the program code
itself.

2.1.3 Using Static Models
Static models have different uses in different parts of the development life cycle. If we
decided to start from scratch in providing software support for a hotel’s booking system,
our analyst’s first deliverable would be a description of how the hotel business works, and
a type model would be an essential part of it, formalizing the vocabulary. Later in the life
cycle, the objects in the software can be described in the same notation.

When applied to analyzing the real world, modeling is never complete. There’s more to
say about a Person than which room he or she is in; every type diagram can always be
extended with more detail. This is just as true within software. We saw earlier that as a cli-
ent of an object, you are interested in a model that helps explain the behavior you expect
of it—but you don’t care how it is actually implemented. The model can omit implementa-
tion detail and have a completely different structure from that of the implementation as
long as the client gets an understanding to which the actual behavior conforms.

Some tools and authors use the term class dia-
gram. We reserve class for the most detailed level of
design, representing what’s actually in the code. A
class box (marked «class») shows all the directly
stored attributes and links of its instances. A type is
more general: Its attributes and associations repre-
sent information that can be known about any of its
members, without stating how. We use types much
more than classes in analysis, and both during
design.

Person
occupant

0..1 0..1

0..*0..*

Room

where 1

Reservation

when : Date

who 1

Housekeeping view

Floor
rooms

0..*
Room

cleaned: Date

bed_size

Chapter 2 Static Models: Object Attributes and Invariants 49
A model may focus on one view among many possible views. For example, the house-
keeping staff may be interested in recording when a room was last cleaned. When we
come to implement the software, we will need it to cope with all these different views, so
we must combine them at some stage. Conversely, part of our overall implementation
might be to divide the system into components that deal with different aspects, in which
case we must do the reverse. (We’ll discuss both operations in Part III.)

It’s important to realize that the simplified model is still a true statement about the com-
plex implementation. The attributes and associations tell us about what information is
there; they do not tell us how it is represented. Different models can be written at different
levels of detail, and we can then relate them together to ensure consistency; you’ll find
more about this in Chapter 6, Abstraction, Refinement, and Testing.

A model of object state is used to define a vocabulary of precise terms on which to base
an analysis, specification, or design. A well-written document should contain plenty of
narrative text in natural language along with illustrative diagrams of all kinds, but the type
models are used to make sure that there are no gaps or misunderstandings. More on this in
Chapter 5, Effective Documentation.

2.2 Object State: Objects and Attributes

In this section we introduce the basics of objects and their attributes. Before going any fur-
ther, we’ll introduce an example that will run through the rest of the chapter. IndoctriSoft
Inc. is a seminar company that develops and delivers courses and consulting services. The
company has a repertoire of courses and a payroll of instructors. Each session (that is, a
particular presentation of a course) is delivered by a suitably qualified instructor using the
standard materials for that course, usually at a client company’s site. Instructors qualify to
teach a course initially by taking an exam and subsequently by maintaining a good score
in the evaluations completed by session participants.

2.2.1 Objects
Anything that can be identified as an individual thing, physical or conceptual, can be mod-
eled as an object; if you can count it, distinguish it from another, or tell when it is created,
it is an object. All the things in Figure 2.1 are valid objects, drawn as boxes with under-
lined names for each object. Of course, not all valid objects are interesting. As we will see,
the behaviors that we wish to describe determine which objects and properties are rele-
vant.

© object Any identifiable individual or thing. It may be a concrete, touchable thing, such as a

car; an abstract concept, such as a meeting; or a relationship, a number, or a computer sys-
tem. Objects have individual identity, characteristic behavior, and a (perhaps mutable) state.
In software, an object can be represented by a combination of stored state and executable

code.

50 PART II MODELING WITH OBJECTS
2.2.2 Attributes and Snapshots
The state of an object, the information that is encapsulated in it, is modeled by choosing
suitable attributes. Each attribute has a label and a value; the value may change as actions
are performed. In constructing a model, we choose all the attributes that we need to say
everything we need to say about the object.

© attribute A named property of an object whose value describes information about the object.
An attribute’s value is itself the identity of an object. In software, an attribute may represent
stored or computable information. An attribute is part of a model used to help describe its

object’s behavior and need not be implemented directly by a designer.

For example, session-5 (in Figure 2.2) has the attributes startDate, instructor, course,
and client. The value of an attribute is the identity of another object, whether a big,
changeable object such as IBM or a simple thing such as 1999/7/23. The attributes of an
object link it to other objects. Some attributes are mutable (that is, they can be altered to
refer to other objects); others are unchanging, defining lifetime properties of the object.
For session-5, the value of its startDate and instructor attributes will change as scheduling
needs change; but its client attribute will remain unchanged for the lifetime of session-5.
These snapshots, or instance diagrams, are useful for illustrating a given situation, and we
will use them for showing the effects of actions.

© snapshot A depiction (usually as a drawing) of a set of objects and the values of some of their
attributes at a particular point in time.

The predefined name null or ∅ refers to a special object; the value of any unconnected
attribute or link is null. In Figure 2.2, the catalysisCourse does not currently have an
owner.

2.2.3 Alternative Ways of Drawing a Snapshot
The links drawn between the objects and the attributes written inside the objects are differ-
ent ways of drawing the same thing. We tend to draw links where the target objects are an
interesting part of our own model and draw attributes where the value is a type of object

Figure 2.1 Some objects.

Object

Object name

dipak:

session-5:

7/23/99: catalysisCourse: room-2: 42:

session-32: pc41:

theJavaCourse:

laura:

theClock: ibm:

Chapter 2 Static Models: Object Attributes and Invariants 51
imported from elsewhere, such as numbers and other primitives. To emphasize this point,
let’s look at some alternative ways of drawing Figure 2.2.

It’s worth remembering, especially if you are designing support tools, that a diagram is
a convenient way of showing a set of statements. There is always an equivalent text repre-
sentation:

session-32 . instructor = laura session-5 . client = ibm
session-32 . startDate = 1999/7/23 session-5 . startDate = 1999/7/23
session-32 . endDate = 1999/7/26 laura . rating = A
session-32 . client = hp catalysisCourse . maxSize = 15
session-5 . instructor = laura catalysisCourse . owner = null
session-5 . course = catalysisCourse ibm . balance = $60,000

Alternatively, we could draw the
boxes but write all links as attributes
(see Figure 2.3). Notice that every link
has an implied reverse attribute: if the
instructor for session-5 is Laura, then by
implication Laura has an attribute (by
default called ~instructor) modeling the
sessions for which Laura is the instruc-
tor, which must include session-5.
Attributes in a model are about the rela-
tionships between things; whether we

choose to implement them directly in the software is another question.

Now let’s go to the other extreme and draw all the attributes as links. Picking out part
of Figure 2.2, we could have just as well have shown Dates, and even the most primitive
numbers, as separate objects. An attribute is generally written inside the box when we’ve

Figure 2.2 Snapshot depicts attribute values of objects.

hp:

balance = $60,000

course

Attribute names

laura:

rating = A

instructor

ibm:

balance = $60,000

client
client

session-32:

startDate = 1999/7/23

endDate = 1999/7/26session-5:

startDate = 1999/7/23

endDate = 1999/7/28

maxSize = 15

owner = null

catalysisCourse:

catalysisCourse:

1999/7/28: Date

1999/7/23: Date15:int null

session-5:course

maxSize owner startDate

endDate

52 PART II MODELING WITH OBJECTS
nothing interesting to say about the structure of the object it refers to. Everyone knows
what numbers and dates are, so we have no need to show them in detail.

We regard as objects primitive concepts such as dates, numbers, and the two Boolean
values. You can alter an attribute (such as maxSize) to refer to a different number, but the
number itself does not change. Useful basic and immutable attributes of numbers include
“next” and “previous,” so that, for example, 5.next = 6. (Many tools and languages like to
separate primitives from objects in some fundamental way. The separation is useful for the
practicalities of databases and the like, but for most modeling there is no point in this extra
complication.)

2.2.4 Navigation
Given any object(s), you can refer to other related objects by a navigation expression
using a dot (“.”) followed by an attribute name. The value of a navigation expression is
another object, so you can further navigate to its attributes:

session-5 . course = catalysisCourse
session-5 . course . maxSize = 15
session-5 . client . balance = $60,000

In the preceding and the earlier expressions, session-5, ibm, and 1999/7/23 are names
that refer to specific objects—only names of objects can start off navigation expressions;
startDate, instructor, course, and client are attributes—they occur to the right of the dot.
Usually the “names” that refer to objects are variable names, such as formally named
parameters to actions or local variables, and constants, such as 1999/7/23, A, and 15. We
build navigation expressions from names and attributes.

2.2.5 Object Identity
Every object has an identity: a means of identification that allows it to be distinguished
from others. An identity might be realized in all sorts of ways: a memory pointer, a data-

Figure 2.3 Snapshots with links written as attributes.

hp:

balance = $60,000

client = session-32
 laura:

rating = A

~instructor = {session-5}

ibm:

balance = $60,000

~client = session-5

session-32:

startDate = 1999/7/23

endDate = 1999/7/26 session-5:

startDate = 1999/7/23

endDate = 1999/7/28

course = catalysisCourse

instructor = laura

maxSize = 15

owner = null

~course = {session-5}

catalysisCourse:

Chapter 2 Static Models: Object Attributes and Invariants 53
base key, a reference number or name of some sort, or a physical location. Once again, the
point about making a model is to defer such questions until we get down to the appropriate
level of detail.

If you’ve done any database design, you’ll be familiar with the idea that every entity must
have a unique key, which it is up to you to assign. The key is an explicit combination of the
entity’s attributes, and any two entities with the same attribute values are actually the same
one. But in object-oriented design, we always assume an implicit unique key. If you imple-
ment in an OO language or on an OO database, it provides the key for you; otherwise, you
make it explicit when you get to coding.

An object identity can be assigned to a suitable attribute or program variable. Changing
an attribute value to refer to a different object—for example, the session’s instructor is
changed from dipak to laura—is different from having an attribute refer to the same object
whose state has changed; for example. The maxSize for the session’s course may change,
but that session is still of the same course, and the number 15 itself has not changed.

Two different navigation paths may refer to the same
object; for example, the object referred to as “my boss” may
be the same object as that referred to as “my friend’s wife.”
In Figure 2.2, session-5.instructor and session-32.instructor
both refer to the same object, laura. If both names refer to the
same object, they both see the same attribute values and
changes to those values. “x = y” means x and y refer to
same object; “x <> y” means

that x and y refer to different objects. These symbols are based on the Object Constraint
Language (OCL) in UML; in C++ and Java we’d use == and !=.

But we must be careful about what relationships such as “equal” mean. session-5 and
session-32 may be the same course, for the same client, starting on the same day, and yet
they are two different sessions. The seminar company might choose to call two courses
equal if their courses, dates, and clients are the same. But we know that they’re different
objects because operations applied to one don’t affect the other: if session-5 is resched-
uled, session-32’s date remains unchanged.

Similarity or equality relationships must be defined separately for each type depending
on the concerns of the business. We can attach a definition to each type in the model we
build, picking out the attributes of interest:

Session:: -- For any individual Session-instance ‘self’, we
equal (another:Session) = -- define “equal to another Session” to mean ...

 (self.startDate = another.startDate
and self.endDate = another.endDate
and self.course = another.course
and self.client = another.client)

The meaning of identity for an object type is defined, to a great extent, by constraints
on whether two distinct objects can have the same attribute values. For example, in a nav-
igation application we may deal with a type Location consisting of a latitude and longi-
tude. If part of the definition of this type includes a constraint that no two distinct location

session-3:

course

maxsize=15 12

laura:

instructor
dipak:

54 PART II MODELING WITH OBJECTS
objects can have identical latitudes and longitudes, then an identity check would suffice to
determine same locations; otherwise, we would need to define Location::equal (another:
Location): Boolean, an equality check that would compare the two attributes.

So in some cases “equal” might be defined to mean “identical,” but this is by no means
general. Suppose you’re dining at a restaurant. When your waiter comes up to take your
order, you point at the next table and say, “I’ll have what she is having.” If the waiter inter-
prets your request in terms of object identity rather than your intended “equality” or “sim-
ilarity,” he need not expect a tip from either of you!1

So even though the concept of object identity is fundamental to the object-oriented
world view, there are usually also separate business-defined concepts of similarity or
equality that depend on the values of particular attributes. Section 9.7, Templates for
Equality and Copying, discusses these concepts in detail and provides templates for their
use.

2.3 Implementations of Object State

Snapshots describe the information in a system. It might be about a business or a piece of
hardware or a software component; we might be analyzing an existing situation or designing
a new one. Whatever the case, we’ll call the description a model and the concrete realization
an implementation. Notice that this includes both program code and human organization: the
implementation of a company model is in the staff’s understanding of one anothers’ roles.
We could do an analysis, abstracting a model of the business by questioning the staff, and
then do a software implementation, coding some support tools by implementing the model in
C++.

An implementation must somehow represent information pertaining to the attributes of
each object to describe its properties, status, and links to other objects. To represent the
links between objects, the implementation must also provide a scheme to implement
object identity.

2.3.1 Java Implementation
In a Java implementation, every object is an instance of a class. The class defines a set of
instance variables, and each instance of that class stores its own value for that instance
variable, as shown here:

class Session { class Client {
// each session contains this data String name;
Date startDate; int balance;
Date endDate; }
// a client, instructor, and course class Instructor {
Client client; String name;

1. Anecdote heard from Ken Auer of KSC.

Chapter 2 Static Models: Object Attributes and Invariants 55
Instructor instructor; char rating;
Course course; }
// and some status information class Course {
boolean confirmed; String name;
boolean delivered; int maxSize;

} }

According to this code, every session (an instance of the class Session) has its own
instance variable values for startDate, endDate, client, instructor, and course along with
some additional status attributes. A similar approach is taken for the other objects.

Object identity is directly supported by the language and is not otherwise visible to the
programmer. Thus, the link from a session to its instructor is represented as a direct refer-
ence to the corresponding instructor via the instance variable instructor, implemented
under the covers by some form of memory address.

The methods provided by the object will use, and possibly modify, these instance vari-
ables. Thus, if Session provides a confirm() method, it may set the confirmed flag and seek
an appropriate instructor to assign to itself. The keyword this represents the current session
instance that is being confirmed.

class Session {
....
confirm () {

this.confirmed = true;
this.instructor = findAppropriateInstructor ();

}

2.3.2 Relational Database Implementation
In a relational database, we might have separate tables, Session, Instructor, and Client.
Each object is one row in its corresponding table (see Figure 2.4).

Object attributes are represented by columns in the table. Each session, instructor, and
client is assigned a unique identification tag, ID, which is used to implement links between
the objects. Links between objects are represented by columns that contain the ID of the
corresponding linked object.

Object behaviors have no clear counterpart in this world of relational databases, which
are concerned primarily with storing the attributes and links between objects. The data-
base can be driven with something such as SQL, but the queries and commands are not
encapsulated with specific relations.

2.3.3 Business World Implementation
In a noncomputerized seminar business, all the objects we have discussed still exist but
not in a computer system. We might keep a large calendar on a wall, with the sessions
drawn as bars and positions on the calendar determining the date attributes. Handwritten
client, course, and instructor names would serve as “links”; clients and instructors would
be recorded in an address book.

56 PART II MODELING WITH OBJECTS
If we get two instructors having the same name, we could add their middle initials to
remove ambiguity—a scheme for object identity. The balance owed by each client could
be written into a ledger or totaled from the client’s unpaid purchase orders. Actions would
be procedures followed by the active objects—mostly human roles, in this case—in carry-
ing out their jobs.

2.3.4 Other Implementations
The objects and their attributes are common to all implementations even though the spe-
cific representation mechanisms may differ. Even within a specific implementation tech-
nology, such as Java, there are many different ways to represent objects and their
attributes. For those times when the implementation is as yet unknown or is irrelevant to
the level of modeling at hand, we need a way to describe our objects and attributes inde-
pendent of implementation.

2.4 Modeling Object State: Types, Attributes,
and Associations

This section explains how to describe objects and their attributes independent of any par-
ticular implementation.

2.4.1 Types Describe Objects
Objects and snapshots are concrete depictions, and we will make good use of them in the
chapters ahead, but each one shows only a particular situation at a given moment in time.
To document a model properly, we need a way of saying what all the possible snapshots
are. This is what type diagrams are for (see Figure 2.5).

Figure 2.4 Object state in a relational database.

Client Instructor

Session

ID

3

7

ID

5

32

name

“acme”

“micro”

ID

9

11

name

“laura”

“paulo”

balance

$60,000

$45,000

rating

A

B

start

2001/17/23

2001/7/23

end

2001/7/28

2001/7/28

clientID

3

3

instructorID

9

11

courseID

2

2

Chapter 2 Static Models: Object Attributes and Invariants 57
The boxes in these diagrams are object types (there is
no colon or underlining in the header). A type is a set of
objects that share some characteristics—their attributes
and behavior—although we’ll focus only on attributes
for now. The diagram tells us that every Session has a
startDate, an attribute that always refers to a Date; and
an instructor attribute, which—a piece of imaginative
naming, this—always refers to an object belonging to
the type Instructor.

Attributes drawn as links on a type diagram are usually called associations. In these
examples the association labels might seem a bit redundant, but associations are not
always named for the type of the target object. We might decide, for example, to have two
instructors associated with each session and call them leader and helper.

The attributes in a type model define which snapshots are legal. As shown in
Figure 2.6, the course attribute of a session must link to a valid Course. A given snapshot
need not depict all attributes of an object, so if you omit an attribute from a snapshot you
have said nothing about its value. If you want the attribute to be unconnected, it must be
marked with a null value.

Figure 2.5 Type diagrams generalize snapshots.

Snapshots

All instances of

Type Model

Instructor

rating: Grade

instructor

.....

client

Session

startDate: Date

Client

balance: Money

Type name

client

Session

instructor: Instructor

client: Client

Client

balance: Money

Attribute name
(equivalent)

Attribute type

58 PART II MODELING WITH OBJECTS
2.4.2 Attributes: Model and Reality
We’ve already said that an attribute need not correspond directly to stored data in an
implementation.2 A client is described as having a balance, but its implementation could
be anything from a number tallied by hand in a ledger to a macro that summed selected
purchase orders in a database.

But a model should surely tell us something about the business or design: if we’re
allowed to do things any old way, what’s the difference between a system that conforms to
the model and one that doesn’t? The practical answer is that the information represented by
each attribute should be in there somewhere. It should be possible to write a read-only func-
tion or procedure that retrieves the information from whatever weird format the designer has
represented it. These abstraction or retrieval functions are a valuable aid to both documenta-
tion and debugging. (You’ll find more about this in Chapter 6, Abstraction, Refinement, and
Testing.)

The strict answer is that the static model, without actions, does not tell us enough. The
only real test is whether the system we’re modeling behaves (responds to actions) as a cli-
ent would expect from reading the whole model, actions and all; the static part merely sets
a vocabulary for the rest. This strict view allows some implementations to conform that
might not otherwise. For example, suppose we never specified any actions that used the
balance. By the retrieval function rule, we would still have to implement that attribute
even though it would make no perceptible difference to clients whether or not it was
implemented.

The power of seeing attributes as abstractions is that you can simplify a great many
aspects of a system, deferring detail but not losing accuracy. The idea corresponds to the
way we think of things in everyday life: whether you can buy a new carpet depends, in

Figure 2.6 Attribute types define some snapshots as illegal.

2. Unless you marked the boxes as «classes» when you are documenting your code.

Extra attributes OK

Object name as lowercase type name OK

c1: Course c3: Clients1: Session

startDate = 1999/7/23course client

course: $60,000s32: Sessioncourse client

i: Instructor :Client

balance = 0
s7: Sessioncourse client

Unnamed object OK

Chapter 2 Static Models: Object Attributes and Invariants 59
detail, on the history of your income and your expenditure. But it can all be boiled down to
the single number of the bank balance: that number determines your decision irrespective
of whether your bank chooses to store it as such. The attribute pictures we draw in Cataly-
sis focus on the concepts, which are useful, and not just their implementations, which may
be easier done in code.

2.4.3 Parameterized Attributes
Once you realize that attributes do not directly represent stored information, the uncon-
ventional concept of a parameterized attribute is a natural extension. A parameterized
attribute is one that has a defined value for each of many different possible values of its
parameter(s). Like attributes generally, it is best thought of as a query, or read-only, func-
tion that has been hypothesized for some purpose; it need not be directly implemented.

© parameterized attribute An attribute with parameters such as priceOf(Product). Its value is a

function from a list of parameters to an object identity. Unlike an operation, a parameterized

attribute is used only as an ancillary part of a state description and need not be implemented

directly.

client-3 has a balance due, with amounts due on different dates. Figure 2.7 shows an
attribute parameterized by the due date: balanceDueOn (Date): Money; the snapshot
explicitly shows attribute values for specific interesting parameter values. Similary, client-
3 had a favorite course last year and a (possibly different) one previously; it is modeled by
a second parameterized attribute (depicted as a link). Parameterized attributes abstract
many implementations,3 and an implementation must be capable of determining the bal-
ance due on any applicable date.

Assuming that objects such as 1997/7/23 and $60,000 have appropriate attribute defini-
tions for isLessThan, you can use this notion of parameterized attributes to write useful
statements such as this one:

session-5.startDate.isLessThan (today)
session-5.client.balanceDueOn (1998/3/31).isLessThan (someLimit)

Here is the same thing in a more conventional syntax:

session-5.startDate < today
session-5.client.balanceDueOn(1998/3/31) < someLimit

These constraints simply navigate parameterized attributes; we could use the more con-
ventional syntax a < b instead of a.isLessThan(b). Thus, a predefined type Date has a
parameterized attribute < (Date): Boolean, which yields true or false for any given com-
pared date.

The primitive types of numbers, sets, and so on can be defined axiomatically—that is,
by a set of key assertions about the relationships between them—as outlined in Appendix

3. Traditional data modeling would use data normalization to define a relationship between Client
and Date and describe balanceDue as a relationship attribute; parameterized attributes avoid the
need for such data normalization and result in simpler models and more-natural specifications.

60 PART II MODELING WITH OBJECTS
A. Thus, 1 + 3 could be specified by a parameterized attribute, Number:: + (other: Num-
ber): Number, with the appropriate definitions constraining this navigation. These defini-
tions can be taken for granted by most users. Other immutable types, such as dates, can be
modeled using primitive attributes and operations. The read-only operations of immutable
types should not be confused with attributes: the former are publicly accessible in any
implementation.

It is easy to envisage both immutable and mutable versions of many types: a Date
object whose attributes you can change, or a set you can move things in and out of (see
Figure 2.8). Often a reasonable model could be built with either type. However, models of
a mutable Date object often should instead use a mutable object, such as Clock, whose
today attribute refers to different date objects as time passes.4 Most interesting domain or
business objects are naturally mutable—for example, Customer, Machine, Clock.

Figure 2.7 Parameterized attributes.

4. It’s much more plausible to say, “The clock stopped” than “Time stopped.”

Figure 2.8 Immutable or mutable models of a Date type.

C++: Course
favoriteCourseIn(1996)

 client-3:

balance = $60,000

balanceDueOn(1998/3/31) = $45,000

balanceDueOn(1998/4/30) = $60,000
java : Course

favoriteCourseIn(1997)

false:
isLessThan($30) isLessThan($60,000)

or (true)

45,000 < 30 = false 45,000 < 60,000 = true

$45,000:
true:

False or true = true

Immutable date Mutable date

1996/8/9

1996/8/8

1996/8/7

date

next

next

. . .

. . .

clock today

1996/8/7 8 9

date

increment

clock
today

Chapter 2 Static Models: Object Attributes and Invariants 61
For objects such as dates, we can determine whether d1 < d2 without explicitly storing
all the dates that are less than d1 by using a clever representation of dates, such as a single
number representing the time elapsed since some reference date. The values of these num-
bers effectively encode the information about all dates that are less than d1; we simply
compare the numbers for the two dates. This technique is often used for a value-type
object whose links to other value-type objects are fixed. The 2’s complement bit string
“0110” in your running program is a clever encoding of a reference to the number 6 and,
implicitly, to its links to the numbers 5 and 7; the numbers 6, 5, and 7 themselves existed
before the bit strings appeared in your program.

2.4.4 Associations
An association is a pair of attributes that are inverses of each other, drawn as a line joining
the two types on a type model. For example, each Session has a corresponding Evaluation
on completion (not before); each Evaluation is for precisely one Session. This arrange-
ment eliminates certain snapshots, as shown in Figure 2.9.

Drawing an association says more than simply defining two attributes. If defined by
two independent attributes, the snapshot in Figure 2.9(c) would be legal. With an associa-
tion, the attributes must be inverses of each other: s.eval = e if (and only if) e.session = s.

If an association is named only in one direction—for example, eval—then by default
the attribute in the opposite direction is named ~eval. If no name is written on the associa-
tion in either direction, you can use the name of the type at the other end (but with a low-
ercase letter); the default name for s1.eval would be s1.evaluation. Because two
associations can connect the same pair of types, this practice can lead to ambiguity. It is
good to name the attributes explicitly in both directions if you intend to refer to them.

© association A pair of attributes that are inverses of each other, usually drawn as a line con-
necting two types.

There are several other adornments available for any association (see Figure 2.10).

2.4.5 Collections
Many attributes have values that are collections of other objects. By default, the meaning
of the * cardinality is that the attribute is a set, but we can be more explicit about the kind
of collection we want, including the following:5

• Set: a collection of objects without any duplicates

• Bag: a collection with duplicates of elements

• Seq: a sequence—a bag with an ordering of its elements

For example, each client has some number of sessions, each with one instructor. Each
instructor teaches many sessions in a date-ordered sequence. The rating of an instructor is

5. Based on the Object Constraint Language (OCL) part of UML 1.1.

62 PART II MODELING WITH OBJECTS
Figure 2.9 Associations define rules about valid snapshots.

Figure 2.10 Options for associations.

session.eval can be an Evaluation or null

(a) OK

evaluation.session must be exactly one Session

0..1 eval

session 1

Evaluation Session

eval

eval

session
e1:Evaluation s1:Session

s3:Session

(b) OK; same as (a) (e) OK; session can have no eval
e1:Evaluation

session = s2

s1: Session

eval = e1

(c) Invalid; links must be inverses

e1:Evaluation

session = s2

(f) Invalid; must have a session

e4:Evaluation

session = null

(g) OK; no info about attributes shown

s5:Session

s2: Session

eval = e2 s1: Session

eval = e1

(d) Invalid; exactly one session per evaluation

e2:
eval

session
s2:

s22:

In a design or implementation, used to show that navigation in
this direction is much easier than in the other. Further explicit
annotation can mark it as a stored field.

No defined navigation toward the x; equivalent to an attribute
from the right to the left but not left to right.

A derived or redundant association; can be expressed as a
function of others.

If a:A, then a.b refers to the same object throughout the life
of a.

A
const

B

Chapter 2 Static Models: Object Attributes and Invariants 63
the average of the rating in his or her last five sessions. The type model is illustrated in
Figure 2.11.

Here are some examples of useful navigations on this snapshot.6 Try reading them as
ways to refer to particular objects rather than as operations that are executed on software
objects; they are precise, implementation-free definitions of terms. The operators are sum-
marized later.

• The set of sessions for client3, written Set {element1, element2, ...}

client3.sessions = Set { s1, s5, s9 }

• The instructors who have taught client3.
client3.sessions.instructor = Set { laura, paulo } -- Sets have no duplicates

• The number of sessions for client3.
client3.sessions->count = 3

Figure 2.11 Collections: type model and snapshot.

6. These are also based on the UML’s Object Constraint Language.

Optional (0 or 1)

Many (set)

Many (sequence, ordered by increasing date)

Textual attributes equivalent to “sessions” associations
(redundant—you wouldn't normally show both)

ibm: Client

balance = $60,000

 s1: Session

startDate = 98/7/23

grade = A

1 * sessions

{ordered date }

instructor 0..1

sessions

* Client

sessions:
 Set(Session)

 Session

grade: Grade

date

 Instructor

rating: Grade

sessions:
 Seq(Session)

 s5: Session

startDate = 98/8/02

grade = A

 s9: Session

date = 1998/11/30

laura:

rating = A

paulo:

rating = A

sessions
instructor

instructor

instructor

sessions.at(2)

sessions.at(1)

64 PART II MODELING WITH OBJECTS
• Sessions for client3 starting after 1998/8/1; in the following two equivalent forms, the

second form does an implicit select from the set.
client3.sessions->select (sess | sess.startDate > 1998/8/1) = Set { s5, s9 }
client3.sessions [startDate > 1998/8/1] = Set { s5, s9 }

• Has laura taught courses to ibm (does the set of clients associated with the set of ses-
sions that Laura has taught include IBM)?

laura.sessions.client -> includes (ibm) -- long version
ibm : laura.sessions.client -- short version “ibm belongs to laura’s sessions’ clients”

Equivalently, has ibm been taught any courses by laura?

ibm.sessions.instructor -> includes (laura)

(ibm.sessions is a set of sessions; following the instructor links from all of them gives a
set of instructors; is one of them Laura?)

• Every one of laura’s session grades is better than pass.

laura.sessions.grade -> forAll (g | g.betterThan(Grade.pass))

• At least one of laura’s session grades is a Grade.A.
laura.sessions.grade -> exists (g | g = Grade.A)

Mathematicians use special symbols to combine sets, but we keep to what’s on your
keyboard.

• The courses taught by either Laura or Marty:
laura.sessions.course + marty.sessions.course

• The courses taught by both Laura and Marty:
laura.sessions.course * marty.sessions.course

• The courses taught by Laura that are not taught by Marty:
laura.sessions.course – marty.sessions.course

(+, *, and – can also be written -> union(...), -> intersection(...), and -> difference(...).)

A dot (“.”) operator used on a collection evaluates an attribute on every element of the
collection and returns another collection. So laura.sessions is a set of Sessions; evaluating
the grade attribute takes us to a set of Grades. If the resulting collection is a single value,
it can be treated as a single object rather than a set.

The –> operator used on a collection evaluates an attribute on the collection itself rather
than on each of its elements. Several operations on collections—select, forAll—take a
block argument representing a single argument function evaluated on each element of the
collection. Some operators, such as sum and average, are specifically defined to apply to
collections of numbers.

Collections are so widely used in modeling that there is a standard package of generic
types, extensible by an experienced modeler, as detailed in Appendix A. In Catalysis, col-
lections themselves are immutable objects, although they are not usually explicitly shown
on type models. As usual, collection attributes do not dictate an implementation but are
used simply to make terms precise; they are an abstraction of any implementation.

Chapter 2 Static Models: Object Attributes and Invariants 65
2.4.6 Type Constants
It is often convenient to define a fixed object or value and associate it with a particular
type.7 Often, we want to associate the constant with the type of which the constant is a
member. For example, the Number type has a constant 0, a number; our Grade type has
constants pass, A, B, and so on, each of which is a grade.

A type constant is still an attribute of type members so that all the members share the
same constant value; so myGrade.pass = yourGrade.pass. An implementation would store
this constant only once rather than in each member of that type.

If you want to refer to a type constant you can use the name of the type without any
specific member of that type. Grade is the set of all objects that conform to the Grade type
specification; Grade.pass takes you to the single object they’re all linked to with that
attribute.

Defining a type constant is one of the ways in which it is permissible to mix object
instances (usually seen in snapshots) and types. Figure 2.12(a) indicates that following the
A link from any Grade always takes you to a specific object, which itself happens to be a
Grade. It has an attribute successor, which takes you to the next grade in the list, which
happens to be the type constant Grade.B. Instead of drawing the links between the type
and the objects, you can write an attribute in the type box with the modifier global, as in
Figure 2.12(b).

© type constant A named member of the type—for example, “7” is a type constant of integer.
Type constants can be globally referred to by type_name.member_name.

Type constants can be used to describe what are traditionally treated as enumerated
types. To introduce a type Color whose legal values are red, blue, and yellow,

7. Corresponding to final static class variables in Java (const static pointers in C++).

Figure 2.12 Mixing object instances and types.

:Grade

Grade

betterThan (Grade)

:Grade

:Grade

successor

successor

A

(a) (b)

B

pass

global A : Grade

global B : Grade

global pass: Grade

betterThan (Grade)

successor: Grade

Grade

66 PART II MODELING WITH OBJECTS
use three type constants and an invariant specifying that there
are no other colors (we permit a syntactic shortcut, enum).

Be careful not to use type constants when a regular attribute
of a higher-level object is needed. For example, rather than use
Course::catalog as a global type constant to model the catalog
of courses, it is much better to build an explicit object for the seminar company itself and
use Company::catalog as a normal attribute on the company.

Use type constants sparingly for mutable types. A type constant says that there is only
one object of this name across every implementation in which the type is used. If the
shared object itself is immutable, it can be copied permanently in every implementation.
For example, the relationship of Grade.A to Grade.B is always fixed, just as with Integer.0
and Integer.1 and Color.red and Color.blue; these shared objects can safely be replicated
along with their (immutable) relationships to others. With mutable types you should be
prepared to organize worldwide access to the shared object or replicate the object but have
a fancy scheme to update the cache.

The global attribute is constant in that it always refers to one object even if the
attributes of the target object can change. For example, URL.register could model the
unique and mutable worldwide registry of Internet addresses.

2.5 Static Invariants

Not all combinations of attribute values are legal. We have already seen how the type dia-
gram constrains the snapshots that are allowed (Figure 2.6 and Figure 2.9 showed some
examples). Those constraints were all about the type of object an individual attribute
referred to.

But sometimes we need to disallow certain combinations of attribute values. To do this
we can write an invariant: a Boolean (true/false) expression that must be true for every
permitted snapshot. (We will scope the snapshots by the set of actions to which this
applies in Section 3.5.5, Context and Control of an Invariant.)

© static invariant A predicate, forming part of a type model, that should hold true on every per-
mitted snapshot—specifically, before and after every action in the model. Some static invari-
ants are written in text; other common ones, such as attribute types and associations as

inverse attributes, have built-in notations.

global red, blue, yellow: Color

inv self : { red, blue, yellow }

Color

Chapter 2 Static Models: Object Attributes and Invariants 67
2.5.1 Writing an Invariant
A graphical notation cannot cover all possible constraints
and rules. For example, we have several rules about
which instructor can be assigned to a particular session:
An instructor must be qualified to teach any session he or
she is assigned to.

First, we must model the set of courses an instructor is
qualified to teach; that has been missing from the model so
far. It is easily modeled with a many-many association
between instructors and courses.

Based on this model, Figure 2.13 shows a snapshot that we would not want to admit.
The problem is that session-25, a Catalysis course, is scheduled to be taught by Lee, who
is not qualified to teach it. To ensure that an instructor is never assigned to a session unless
qualified to teach it, qualifiedFor—the set of courses you get to by following the qualified-
For link—includes all the courses of its sessions. Here is how to put it more formally.

inv Instructor:: qualifiedFor -> includesAll (sessions.course)

Or you can write it the other way.

inv Instructor :: sessions.course <= qualifiedFor
--the courses I teach are a subset of the ones I’m qualified for

Notice that we have deferred details of the rules
that determine whether an instructor is qualified for a
course. These details will have to be captured some-
where, but we might defer it for now if we are not yet
considering concepts such as qualification exams and
course evaluations.

To add some of these details later, we would enrich
the model. Then we can define the less detailed

Instructor

Course

qualifiedFor

*

1

0..1

*

* *

 Session

start: Date

end: Date

qualifiedFor

passed

0..10..*

0..*

0..*

0..*

0..*

0..*

 Session

start:Date

end:Date

Exam

date

grade

Instructor

Course

inv Instructor :: qualifiedFor = exams.course

68 PART II MODELING WITH OBJECTS
attribute in terms of the new details by using an invariant. Now it’s clear that being qualified for a

course means having passed an exam for it.

2.5.2 Boolean Operators
An invariant is a Boolean expression. The usual Boolean operators (as used in program-
ming languages) are available; there are different ways of writing them depending on your
preferences. Tables 2.1, 2.2, and 2.3 display them.

Some expressions may have undefined values—for example, attributes of null, daft
arithmetic expressions such as 0/0, or parameterized attributes whose precondition is
false. Generally, an expression is undefined if any of its subexpressions is undefined.
However, some operators do not depend on one of their inputs under certain circum-
stances: 0 * n is well defined even if you don’t know n; so is n * 0. The same applies to
(true | b) and (false & b), again no matter what the order of the operands. (This works no
matter which way you write the operands—we’re not writing a program.)

Figure 2.13 An illegal snapshot requiring an explicit invariant.

 session-5:

start = 1999/7/23

end = 1999/7/27

 session-32:

start = 1999/6/2

end = 1999/6/6

catalysisCourse:

qualifiedFor

qualifiedFor

course

course

instructor
instructor

instructor

laura:

 session-25:

start = 1999/8/23

end = 1999/8/27

lee:

javaCourse:

Chapter 2 Static Models: Object Attributes and Invariants 69
2.5.3 About Being Formal
We said in the introductory chapters that Catalysis provides for a variable degree of preci-
sion, and it is good to repeat it here, among the high-precision stuff. The notation gives

you a way of being as precise as you like about a domain, a system, or a component with-

Table 2.1 Boolean Operators

Long Short Explanation

and & False if either operand is false.
or | True if either operand is true.
a implies b a ==> b True if whenever a is true, so is b.
not a ! a
aSet -> forall (x | P(x)) x: aSet :: P(x) For every member (call it x) of aSet,

the Boolean expression P(x) is true.
aSet -> exists (x | P(x)) exist x: aSet, P(x) There is at least one member (call it x)

of aSet for which P(x) is true.

70 PART II MODELING WITH OBJECTS
out going into all the detail of program code. But you also have the option to use only
informal descriptions or to freely intermix the two. However, it is the experience of many
designers who’ve tried it that writing precise descriptions at an early stage of development
tends to bring questions to the fore that would not have been noticed otherwise. Granted,
the specification part of the process goes into a bit more depth and takes longer than it
takes to prepare a purely text document. But it gets more of the work done and tends to
bring the important decisions to the earlier stages of development, leaving the less impor-
tant detail until later. The extra effort early pays off later in a more coherent and less bug-
prone design.

The formal parts are not necessarily readable on their own by the end users of a soft-
ware product. But the purpose of formal description is not necessarily to be a contract

Table 2.2 Collection Operators

Long Short Explanation

s1->size The number of elements in s1.
s1->intersection(s2) s1 * s2 The set containing only those items in

both sets (math s1 ∩ s2).
s1->union(s2) s1 + s2 The set of all items in both (s1 ∪ s2).
s1 – s2 s1 – s2 Those items of s1 that are not in s2.
s1->symmetricDifference(s2) Those items only in one or the other.
s1->includes(item) item : s1 Item is a member of s1.
s1->includesAll(s2) s2 <= s1 Every item in s2 is also in s1 (s2 ⊆ s1).
s1->select(x|bool_expr) s1[x | bool_expr] Filter: the subset of s1 for which

bool_expr is true. Within bool_expr,
each member of s1 is referred to as x.

s1->select(bool_expr) s1[bool_expr] Same as s1[self | bool_expr].
Less general — gets self mixed up
with self in the context.

s1.aFunction The set obtained by applying
aFunction to every member of s1.

s1->iterate (x, a= initial value | The closure of the function. It is
function_using(x,a)) applied to every member x of s1.

E.g., scores: Set(integer); The result of each application
-- some attribute; becomes the a argument to the

Set(integer) :: average = next. The final value is the overall
(self->iterate (x, a= 0 | result. Write the function so that

x+a)) / self->size; order of evaluation does not matter.
scores->average

-- meaning now defined

Table 2.3 General Expressions in Assertions

Expression Explanation

let x = expr1 in expression In expression, x represents expr1’s value
Type The set of existing members of Type
x = y x is the same object as y

Chapter 2 Static Models: Object Attributes and Invariants 71
between you and the end users; rather, it is to give a clear understanding between your cli-
ent, you, and your colleagues of what you are intending to provide. It is a statement of
your overall vision of the software, and writing it down prolongs the life of that vision,
making it less prone to disfigurement by quick-fix maintainers.

2.5.4 The Context Operator
Some of our examples have attached an evaluation to a session, but this makes sense only
after the session has taken place. This rule can be expressed in informal prose; let’s make
it more precise and testable.

-- A session has an evaluation exactly when it is completed.
inv Session:: self.completed = (self.eval <> null) --‘self’ is optional

The context operator (::) is short for an explicit forall. It says “the following is true for
any member of this type (or set), which we’ll call self”:

inv Session -> forall (self | self.completed = (self.eval <> null))

To capture this invariant we must define the term completed; we
do so by simply adding a Boolean attribute to Session—and, of
course, defining its real-world meaning in the dictionary.

Writing the invariant within the type box is equivalent to writing
it separately after a context operator. The predefined notation
directly captures certain common invariants. Declaring the
course attribute of a Session to be of type Course in Figure 2.5 is
equivalent to

inv Session:: -- for every session, its course must be an
object of type Course

self.course : Course -- “:” is set-membership; Course ->
includes (self.course)

Similarly, the association shown in Figure 2.9 implicitly defines attribute types and an
inverse invariant that is equivalent to this text version:

inv Evaluation:: -- for every evaluation
self.session : Session -- its session must be a Session
& self.session.eval = self -- whose ‘eval’ attribute refers back to me

2.5.5 Invariants: Code versus Business
An invariant captures a consistency rule about a required relationship between attributes.
For example, at the business level, an instructor should never be assigned to a course
unless qualified. For a given implementation, this means that certain combinations of
stored data should never occur. An invariant representing a business rule, such as assign-
Qualified, could look a lot more complex when expressed against an optimized implemen-
tation. For example, to efficiently find replacement instructors as availability changes, the

 Session

completed: Boolean

completeEvals: inv

 completed = eval <> null

Evaluation

grade: Grade

1 session

eval 0..1

72 PART II MODELING WITH OBJECTS
assignment of instructors to courses may be represented by a complex data structure
indexed by both date and course.

Laura’s diplomatically explained position boils down to this: The bottom line when
doing type modeling is this: What does a client need to say about a design or requirement?
State this using terms natural to the client. Make sure that all the underlying terms are well
defined in a glossary. Then make the glossary precise using attributes and invariants in a
type model. Restate what you wanted to say more precisely in terms of this type model.
Then make sure that your implementation has a consistent mapping to these abstract
attributes and invariants.

2.5.6 Invariants in Code
Although an implementation can choose any suitable representation, every attribute in a
type model must have a mapping from that representation. Hence, all invariants in a type
model will have a corresponding constraint on the implemented state.

Consider the invariant assignQualified in Section 2.5.1. Suppose that we choose to rep-
resent the qualifiedFor(Course) attribute by storing in each instructor a list of the qualified
courses and to represent the sessions attribute by storing a list of sessions:

class Instructor {
Vector qualifiedForCourses;
Vector sessions;

Then the assignQualified invariant corresponds to the following Boolean function,
which should evaluate to true upon completion of any external operation invocation. Note
that the code form is the same as that of the type model invariant, with each reference to an
attribute in the type model expanded to its corresponding representation in the implemen-
tation.

boolean assignQualified () {
-- for every session that I am assigned to
for (Enumeration e = session.elements(); e.hasMoreElements;) {

Course course = ((Session) e.nextElement()). course();
-- if I am not qualified to teach that course
if (! qualifiedForCourses.contains (course))

return false; -- then something is wrong!
}
return true;

}

The combination of all invariants for a class can be used in a single ok() function,
which should evaluate to true after any external invocation of an operation on the object.
Such a function provides a valuable sanity check on the state of a running application.
Together with operation specifications, it provides the basis for both testing and debug-
ging.

boolean ok () {
assignQualified() = true
& notDoubleBooked() = true

Chapter 2 Static Models: Object Attributes and Invariants 73
&
}

2.5.7 Common Uses of Invariants
There are several common uses of invariants in a type model.

• Derived attributes: the value of one attribute can be fully determined by other
attributes—for example, the completed attribute in Section 2.5.1. Because an attribute
merely introduces a term for describing information about an object and does not impose
any implementation decision, we are free to introduce redundant attributes to make our
descriptions more clear and concise. However, we define such attributes in terms of others
and optionally use a forward slash (/) to indicate that they can be derived from others.

Suppose we need to refer to the clients taught by a given instructor in the past and to
the instructors who are qualified candidates for a session. We introduce simple derived
attributes on Instructor and Session, defined by an invariant:

inv Instructor:: -- clients taught = clients of past sessions I have taught
clientsTaught = sessions[date < today].client

inv Session:: -- my candidate instructors are those qualified for my course
candidates = Instructor[qualifiedFor (self.course)]

We can now directly use these attributes to write clearer expressions:

instructor.clientsTaught... or session.candidates....

• Derived parameterized attributes: these can also be defined by invariants. If the balance
attributes in Figure 2.7 were defined in terms of some session history, we might have the
following:

inv Client:: -- for every client
-- the balance due for that client on any date is...
balanceDueOn (d: Date)

-- the sum of the fees for all sessions in the preceding 30 days
= sessions [date < d and d > d - 30] . fees ->sum

• Subset constraints: the object(s) linked via one attribute must be in the set of those
linked via another attribute. For example, the instructor assigned to a session must be one
of the candidates qualified to teach that session. This form of invariant is quite common
and has a special graphical symbol shown in Figure 2.14. It could have been written
explicitly instead:

inv Session:: -- my assigned instructor must be one of my qualified candidates
candidates->includes (instructor)

• Subtype constraints: a supertype can introduce attributes that apply to several subtypes;
each subtype imposes specific constraints on the attributes. An example is illustrated in
Section 3.7, Subtypes and Type Extension.

• State-specific constraints: being in a specific state may imply constraints on some other
attributes of an object. From Section 2.5.1:

inv Session:: -- any confirmed session must have an Instructor

74 PART II MODELING WITH OBJECTS
confirmed implies instructor <> null

Other forms of invariants are common enough to merit special sym-
bols:

The const attribute refers to the same object throughout the life of the

“owner.”

The unique attribute means that no other object of this owner type has the

same attribute value. unique can apply to a tuple of attributes.

Association constraints (between the ends of two or more associations) are shown in
Figure 2.15.

© static model A set of attributes, together with an invariant, constitutes the static part of a type

model. The invariant says which combinations of attribute values make sense at any one

time and includes constraints on the existence, ranges, types, and combinations of individual
attributes.

2.6 The Dictionary

When a link is drawn in a snapshot from a course to a session, does it mean that the ses-
sion has happened, that it will happen, or that it is happening? Or does it mean that it
might happen if we get enough customers? Does it mean that this session is an occurrence

Figure 2.14 Derived attributes and subset constraints.

clientsTaught

Client 1 client

candidates *

* sessions

{subset}

instructor 0..1

*

* **
Session

course: Course

Instructor

qualifiedFor(Course)

Car

const incept: Date

unique serial: int

const maker

Manufacturer

*

Figure 2.15 Association constraints.

[subset]

[redefines]

[1]

Between “many” associations or a “1” and a “many” association.

The related associations must have a common source.

Between associations of subtype and supertype. The association

at the subtype end is its name for the association at the supertype

end.

Between two or more optionals. Exactly one of these is non-null at

a time. Similarly, [0,1] and so on.

Chapter 2 Static Models: Object Attributes and Invariants 75
of that course or that it is some other event, intended for people who have previously
attended the course? What is a course, anyway? Does it include courses that are being pre-
pared or only those ready to run?

It’s important to realize that the diagrams mean nothing without definitions of the
intended meanings of the objects and attributes.

The rather precise notation in this chapter gives you a way of making unambiguous
statements about whatever you want to model or design: you can be just as precise with
requirements as you can with a programming language in code but without most of the
complications. But the notation allows you to make precise relationships only between
symbols. fris > bee is fearlessly uncompromising and precise in what it states about these
two things, provided that someone will please tell us what fris and bee are supposed to
represent. We can neither support or refute the statement unless we have an interpretation
of the symbols.

Figure 2.16 could just as well be a model of a seminar business, a database, or a Java
application. When we describe the assignQualified invariant, are we saying that an
unqualified instructor never teaches in the business or that some piece of software should
never schedule such a thing?

The dictionary relates symbolic names to the real world. So if I told you that fris is the
name I use for my age and bee is how the age of the current British Prime Minister is
referred to in my household, then you could find out whether fris > bee is true or false. If
the model in Figure 2.16 were of a database, the dictionary would relate the model ele-
ments to tables, columns, and so on.

Suggestive names help, but they can also be misleading because readers readily make
silent assumptions about familiar names. Should you be dealing with aileronAngle or fuel-
RodHeight you might want to be a little more careful than usual about definitions!8

To use a precise language properly, you must first define your terms; once that’s done,
you can use the definition to avoid any further misunderstandings. There’s no avoiding the
possibility of mistakes with our dictionary definitions, but we can hope to make them as
simple as possible and then get into the precise notation to deal with the complex relation-
ships between the named things.

Figure 2.16 Is this a model of a business? a database? an application?

8. Safety-critical systems place much more stringent demands on precise definitions.

Client

1 * sessions

{seq date}

instructor 0..1
sessions

*
 Session

grade: Grade

date

 Instructor

rating: Grade

76 PART II MODELING WITH OBJECTS
Our dictionary contains named definitions for object types, attributes (including associ-
ations), invariants, action types and parameters, and other elements (which we’ll discuss
later). A typical dictionary is shown in Figure 2.17. Some of its contents are automatically
derived from the models themselves.

© dictionary The collected set of definitions of modeling constructs. The definitions must
include not only the formal modeling and specification bits (relating the formal names and

symbols to each other) but also the (usually informal) descriptions that relate the symbols

and names to things in the problem domain. Dictionary definitions are scoped according to

package scope rules.

2.7 Models of Business; Models of Components

So far, we have used static modeling to describe the objects that exist in some world, but
we can also use a static model to describe the state of a complete system. We said at the
beginning of this chapter that this was the ulterior motive for making a static model. Fig-
ure 2.18 shows a model of a simple type.

This is the type of a system or component. The amount represents the money stored
inside the machine and credited toward the current sale. We don’t know how it is repre-
sented inside. Maybe it keeps the coins in a separate container, or maybe it counts the
coins as they go into its takings pool. So Money isn’t a type representing real coins; rather,
it’s the type of this component’s internal state.

To represent the type of a more complex component, we could just add attributes. It
may be easier to do it pictorially. For example, a system that helps schedule instructors for
courses would clearly need to know all the concepts we have been discussing in the train-
ing business. That knowledge will form the model of the component’s state, and we can
then define the actions in those terms (see Figure 2.19).

Figure 2.17 A typical dictionary.

Type

Instructor

Session

Description (narrative, with optional formal expressions)

Attr, Inv...

The person assigned to a scheduled event

rating

sessions

assign-

Qualified

One scheduled delivery of a course

date

Description (narrative, with optional formal expressions)

Attribute: a summary of recent instructor results

Attribute: The sessions assigned this instructor

Invariant: Only qualified instructors are assigned to a session

Created by (actions)

written by (actions)

hireInstructor

deliverCourse, passExam

scheduleCourse

scheduleCourse

rescheduleCourseStart date of the session

sessions->forall (s I self.qualifiedFor (s.course))

Chapter 2 Static Models: Object Attributes and Invariants 77
2.8 Summary

A static model describes the state of the business or the component(s) we are interested in.
Each concept is described with a type, and its state is described with attributes and associ-
ations; these lead in turn to other types. The formally defined types are related to the users’
world in a dictionary.

Invariants express constraints on the state: combinations of values that should always
be observed. They can represent some categories of business rules.

The main purpose of a static model is to provide a vocabulary in which to describe
actions, which include interactions in a business, between users and software, or between
objects inside the software. We use snapshots to represent specific situations, and that
helps to develop the static model (see Figure 2.20). Snapshots are an important thinking

Figure 2.18 Simple type model with one attribute.

Figure 2.19 Complex model—pictorial.

Static model

Behavior described
in terms of model

Vending Machine

amount : Money

insert_coin (value : Money)
post amount has been increased by value

buy_drink
pre amount is more than $0.65
post amount is decreased by $0.65

get_change
post coins to value amount appear;
 amount is now 0

Static model

Behavior described
in terms of model

Course Scheduling Machine

* full_schedule

check_availability (instructor, date)
post find whether instructor is doing a session on that date

schedule course (date, client)
post set up a new session and assign an instructor

Client

1 * sessions
{ordered date}

instructor 0..1
sessions

*
 Session

grade:

Instructor

rating: Grade

* staff

tool, but they are not fully general descriptions and therefore play only an explanatory role
in documentation.

Figure 2.20 Snapshots and the static type model.

Snapshots

All instances of
Type Model

Type Cardinality
Association

Instructor

rating: Grade

0..1

instructor

schedule Session

startDate: Date

Attribute name
Attribute type

Role name runs *

1
Course

level: Grade
For Instructor,
schedule: Set(Session)

equivalent to

Invariant expresses business rule

Dictionary
An instructor is a member of staff who . . .

inv Session:: instructor.rating >= course.level

*

.....

	Part II� Modeling with Objects
	Chapter 2 Static Models Object Attributes and Invariants
	2.1 What Is a Static Model?
	2.1.1 � Snapshots: Drawing Pictures of States
	2.1.2 � Static Models: Which Snapshots Are Allowed
	2.1.3 � Using Static Models

	2.2 Object State: Objects and Attributes
	2.2.1 � Objects
	2.2.2 � Attributes and Snapshots
	2.2.3 � Alternative Ways of Drawing a Snapshot
	2.2.4 � Navigation
	2.2.5 � Object Identity

	2.3 Implementations of Object State
	2.3.1 � Java Implementation
	2.3.2 � Relational Database Implementation
	2.3.3 � Business World Implementation
	2.3.4 � Other Implementations

	2.4 Modeling Object State: Types, Attributes, and Associations
	2.4.1 � Types Describe Objects
	2.4.2 � Attributes: Model and Reality
	2.4.3 � Parameterized Attributes
	2.4.4 � Associations
	2.4.5 � Collections
	2.4.6 � Type Constants

	2.5 Static Invariants
	2.5.1 � Writing an Invariant
	2.5.2 � Boolean Operators
	2.5.3 � About Being Formal
	2.5.4 � The Context Operator
	2.5.5 � Invariants: Code versus Business
	2.5.6 � Invariants in Code
	2.5.7 � Common Uses of Invariants

	2.6 The Dictionary
	2.7 Models of Business; Models of Components
	2.8 Summary

