
 Chapter 3 Behavior Models 

Object Types 

and Operations

In component-based development you must separate the external behavior of a component
from its internal implementation. You describe behavior by specifying the component’s
type: a list of actions it can take part in and the way it responds to them. The kinds of
actions we focus on here are the operations that the object may be requested to perform.
The type specification in turn has two parts:

• The static model of an object’s internal state and of information exchanged in the oper-
ation requests, using attributes, associations, and invariants 

• Specifications of the effects of the actions on the component, using the vocabulary pro-
vided by the static model

This chapter describes how to derive and write a type specification.

We dealt with the static model in Chapter 2; we next want to specify actions in a way
that abstracts from the model’s many possible implementations. An action is specified by
its effect on the state of the object and any information exchanged in the course of that
action. This state is described as a type model of the object and of its in/out parameters;
the effect is specified as a precondition/postcondition pair. Effects can either be written
textually or depicted as transitions on a state chart.

At this stage, the objective is only to specify the actions and not to implement them
(although we will look at some program code as examples). The latter part of this chapter
also briefly discusses programming language classes and explains how they relate to the
specifications. 

The key to designing an implementation is to choose how the objects inside the compo-
nent collaborate to provide the specified effects. Such collaborations are the subject of
Chapter 4.
79



80 PART II MODELING WITH OBJECTS
3.1 Object Behavior: Objects and Actions

In component-based development, you must construct software from components whose
insides you can’t see; you must treat them as black boxes. When you construct your own
components, you m ust build them so that they will work with a wide variety of others
even as their internal implementations change or are upgraded. Components that aren’t
interoperable have little value. For that reason, we are interested in separating external
specification of behavior from the internal works. (This has been the situation in hardware
for years; that it’s novel to our profession should perhaps be an issue of some embarrass-
ment for us.)

© object behavior The effects of an object on the outcomes of the actions it takes part in along 

with the effects of the actions on the object.

3.1.1 Snapshot Pairs Illustrate Actions
Object state changes as a result of actions. Given the object snapshot in Figure 3.1(a), if a
client requested a session of the javaCourse, we end up with Figure 3.1(b). The new ses-
sion is assigned to paulo, because he is qualified to teach that course. A scheduleCourse
action occurs between the two snapshots. These before-and-after snapshots sometimes
provide a useful way to envisage what each action does. Looking at the diagram, can you
see what cancel(session-32), reschedule(session-5, 2000/1/5), or qualify(paulo, catalysis-
Course) would do?

This is the primary reason for making a static model: we choose objects and attributes,
whether written inside the types or drawn as links, that will help us define the effects of
the actions. It would be difficult to describe the effect of schedule course without the
model attributes depicted on the snapshots.

© action occurrence A related set of changes of states in a group of objects that occurs 

between two specific points in time. An action occurrence may abstract an entire series of 
interactions and smaller changes.

3.1.2 Pre- and Postconditions Specify Actions
The limitation of snapshots is that they show particular sample situations; we want to
describe the effect an action has in all possible situations. We can do that by writing post-
conditions—informal statements or formal expressions that define the effect of an action,
using—the same navigation style as invariants in Section 2.5, Static Invariants. For exam-
ple:

action schedule_course (reqCourse: Course, reqStart: Date)
pre: Provided there is an instructor qualified for this course

who is free on this date, for the length of the course.
post: A new confirmed session has been created, with course = reqCourse, 

startDate = reqStart, and endDate – startDate = reqCourse.length.
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Notice that we have stated only some parts of what this action does. In fact, this is one
of the nice things about specifying actions rather than designing them: you can stipulate
only those characteristics that you need the outcome to have, and leave the rest unsaid,
with no spurious constraints. This is exactly what’s required for component-based devel-
opment: we need to be able to say “A plug-in component must achieve this” but should
not say how it achieves it or what additional things it might do, permitting many realiza-
tions. It is easy to combine requirements expressed in this way. Different needs can be
anded together, something you can’t do with chunks of program code. Moreover, different
versions, expressed in different subtypes, can add their own constraints to the basic
requirement (see Section 8.3.5, Joining Type Specifications Is Not Subtyping).

© action type The set of action occurrences that conform to a given action spec. A particular 
action occurrence may belong to many action types. 

Figure 3.1 An action occurrence causes a change in state.
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© action spec A specification of an action type. An action spec characterizes the effects of the 

occurrences on the states of the participating objects (for example, using a postcondition).

Actions can be joint (use cases): They abstract multiple interactions and specific proto-
cols for information exchange, and describe the net effect on all participants and the sum-
mary of information exchanged.

Actions can also be localized, in which case they are also called operations. An opera-
tion is a one-sided specification of an action. It is focused entirely on a single object and
how it responds to a request, without regard to the initiator of the request.

3.1.3 Types
Different objects react in different ways to the same action. But rather than describe each
object separately, we group objects into types: sets of objects that have some (but not nec-
essarily all) behavior in common. A type is described by a type specification, which tells
how some actions affect the internal state of the object and, conversely, how the state
affects the outcome of actions. 

Usually, types are partial descriptions. They say, “If you do X to one of my members,
the resulting response will have this property and that property.” But they don’t always tell
you everything there is to know about the outcome, and they don’t tell you what will hap-
pen if you perform actions that aren’t mentioned. This incompleteness is important,
because it means that type specs can be easily combined or extended, essentially by and-
ing them together. A type is quite different from a class in a programming language, which
is a prescription telling the object how to do what it does.

A client defines the type it expects of any other object it will use: the minimal set of
actions it must exhibit. An implementor of an object defines the type(s) she provides: that
set of actions she guarantees to meet now and through subsequent releases. This imple-
mentation can be used by the client if the provided type can be shown to conform to the
expected one.1

Types often correspond to real-world descriptions. An Employee is something that does
work when you give it money; a Parent is something that does work and gives you money;
a Shopkeeper gives you things when you give it money. All these descriptions are partial,
focusing on the behavior that interests certain other objects that interact with them. In
object design, we build systems from interacting objects, so these partial perspectives are
crucial. Each object could play several roles, so we need to easily talk about Employee *
Parent: someone who does work when paid (by the appropriate other person) and also pro-
vides money (ditto).

1. Even if the implemented type was not declared a priori as implementing the expected one, spe-
cific programming languages may impose stronger restrictions. See Chapter 6, Abstraction, Refine-
ment, and Testing.
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Because these descriptions are “black box” (“I don’t care
how my parent gets the money as long as she or he provides
it”), it would be nice if we could describe the actions entirely
without reference to anything inside the object. That is possi-
ble for simple behaviors but not for complex ones. “Why will
my employees not work when I ask them to?” “Because their
pockets are empty.” “How can their pockets be filled?” “You
pay them.” In this conversation, it is implicit that an Employee
can have a pocket representing an amount of money. It
doesn’t 

really matter to the Employer how or where employees keep their money; it is just a
model, a device to explain the relationship between the actions of payment and request to
work.2

In a complex model, we find a few attributes, such as pocket,
insufficient, and we tend to use pictorial attributes instead. But
the idea is the same: the model is principally there to explain the
effects of the actions. We can use the same principle to describe
small, simple objects and large, complex systems. Of course, the
large complex systems will need a few more tools for managing
complexity and structuring a specification, but the underlying
ideas will be the same.

© type A set of objects that conform to a given type spec throughout their lives.

© type spec A description of object behavior. It typically consists of a collection of action 

specs and a static model of attributes that help describe the effects of the actions. A type spec 

makes no statement about implementation.

3.1.4 Objects and Actions Model Business and Software
In Section 2.7, Models of Business; Models of Components, we remarked that a type
model can deal with things in the real world, or it can model the internal state of a larger
object such as a computer system or component. We showed this graphically by drawing
the type of the component containing the types of the objects it “knew” about.

The techniques in this chapter can be used to specify either changes in the real world or
changes inside a component (see Figure 3.2); but what both situations have in common is
that we are specifying only the outcome, or effects, of the actions rather than what goes on
inside. We close our eyes between the start and end of every change and describe only the
comparison between the two snapshots of the business or system state.

Our terms object and action cover a broad range:

Employee




pocket : Money




pay (amt : Money)

post: pocket increased by amt



work (...)

pre: pocket > 0 ...

2. Legal contracts have the same structure (and are far more muddled): title, terms and definitions, 
actual contractual conditions using those terms

Course

Session

TrainingScheduler

schedule (Instructor, Course)

Instructor
*

* *

*
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• Object includes not only individual programming-language objects but also software 

components, programs, networks, relations, and records as well as hardware, people, 
and organizations—anything that presents a definable encapsulated behavior to the 

world around it or can be usefully thought of as such.

• Action includes not only individual programming-language messages or procedure 

calls but also complete dialogs between objects of all kinds. We can always talk about 
the effects of an action even without knowing exactly who initiates it or how it works in 

detail, as in this schedule_course example. 

The diagram in Figure 3.1 can be seen in two ways. First, it can be a picture of the real
world. The objects represent human instructors, scheduled sessions, and so on. The
attributes represent who is really scheduled to do what, as written on the office wall plan-
ner and the instructors’ diaries. An action is an event that has happened in the real world,
and, invariably, it can be looked at in more detail whenever we wish. Scheduling a course
involves several interactions between participants and resources. 

Alternatively, the diagram may be about what a particular object knows about the
world outside it (which may be different from some other object’s view). In particular, it
can be a model of the state of a software component.

The occurrence of the schedule_course action could represent a dialog between players
in the real world. A representative from the client’s company contacts the course scheduler
in the seminar company, negotiates the dates and fees for a new session of the course, and
updates the office wall planner.

Equally, the action could be an abstraction of a dialog with a software system. In that
case, because of the Golden Rule of OO design (that we base the design on a domain
model), we can use the same picture to denote objects (whether in a database or main
memory) that the system uses to represent the real world. The interesting actions are then
the interactions between the system and the rest of the world: They update the system’s
knowledge of what is going on in the world, as represented in the attributes. 

Figure 3.2 Real world through software.
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Now schedule (paulo, javaCourse) can refer to whatever dialog someone must have
with our system to get it to arrange the session, and we can use snapshots of the system
state to describe the effect the action has on the system (see Figure 3.3). In turn, the sys-
tem’s state (as described by the snapshots) will have an effect on the outcome of future
actions, including the outputs to the external objects (including people!) who interact with
it.

3.1.5 Two Kinds of Action
There are two main kinds of actions we are concerned with in this book. They correspond
to individual and collective behaviors of objects.

The first kind, a localized action (often called an operation in code), is an action which
a single object is requested to perform; it is specified without consideration of the initiator
of the action. You can recognize localized actions by their focus on a single distinguished
object type: 

action Type::actionName (...) ...

In program code, one object requests that another object perform an
operation; the result is a state change, and some outputs. The interac-
tions are illustrated with a sequence diagram: Objects are vertical
lines, and each operation request is an arrow. This also applies outside
of code; objects a,b, and c could be real-world objects such as client,
company, and instructor; or 

Figure 3.3 Models of domain and system.
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they could be instances of software classes, such as session, calendar, and event. This is
the subject of the current chapter.

The second kind of action is a joint action To describe behavior and interactions of a
group of objects, we focus on the net effect of interactions between multiple objects, and
we specify that effect as a higher-level action with all objects involved. A joint action is
written

action (party1: Type1, party2: Type2, ...) :: actionName (...) 

Notice that the joint action is not centered on a single distinguished object type. There are
directed variations of joint actions in which a sender and a receiver are designated, but the
action effect is still described in terms of all participants.

At the business level, it takes a sequence of interactions between
client and seminar company, including enquire, schedule, deliver, fol-
low-up, and pay, to together constitute an abstract purchaseCourse
action. This sequence has a net effect on both client and seminar
company: not only has the seminar company delivered a service and
gained some revenue, but also the client has paid some fees and
gained knowledge. In software, it may take a sequence of low-level
operations via the user interfaces (UIs) of multiple applications and
databases to complete a scheduleCourse operation. Such a joint
action, also called a use case, is the subject of Chapter 4.

Each occurrence of such a joint action is shown as a horizontal
bar with ellipses in a sequence diagram, whereas the finer-grained
operations were depicted as simple arrows. Note that each action
occurrence could be realized by many different finer-grained
interactions, eventually reducing to a sequence of operations.

3.2 More-Precise Action Specifications

Well-written postconditions can be used as the basis for verification and testing. For this
purpose, we should write the postconditions in a more precise style: as test (Boolean)
functions. You can use the Boolean expression part of your favorite programming lan-
guage; we will use a general syntax from UML called Object Constraint Language (OCL).
It translates readily to most programming languages but is more convenient for specifica-
tion.

The other benefit of writing the postconditions more formally is that doing so tends to
make you think harder about the requirements. The effort is not wasted. You would have
had to make these decisions anyway; you’re just focusing on the most important ones and
getting a better end result. 

B

C

Joint action’s
effect on all
parties

a 2

a 1

a 1

b:B c:C
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The rest of this section deals with key features of the more precise style. It is applicable
to both business and component modeling. Later sections differentiate the two and discuss
action specification in greater detail.

3.2.1 Using Snapshots to Guide Postconditions
A postcondition states what we want an end result to be. For example, let’s suppose one
instructor can be the mentor of one other instructor; perhaps some of them get too outra-
geous in class from time to time. The action of assigning a mentor is, informally, as fol-
lows:

action assign_mentor (subject: Instructor, watchdog: Instructor)
post: The watchdog is now the mentor of the subject.

This can be shown in a pair of snapshots (Figure 3.4).

There wasn’t any mention of mentors in the model we drew earlier, so we needed to
invent a way of describing them. Every instructor might or might not have a mentor, so
this fragment of static model seems appropriate.

Now we can write the action in terms of this association:

action assign_mentor (subject: Instructor, watchdog : Instructor)
post -- the watchdog is now the mentor of the subject

subject.mentor = watchdog

Notice the following points.

Figure 3.4 Assigning a mentor.

paulo: Instructor laura: Instructor
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jo: Instructor crispin: Instructor

An action occurrence(a) “Before” snapshot
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mentor

jo: Instructor crispin: Instructor

assign mentor (paulo, crispin)
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• The postcondition states what we need; it doesn’t say anything about aspects we don’t 
care about (although we might want to be more explicit about what happens to any 

existing mentee of the watchdog). Looking at the snapshot, you can see how the exam-
ple we illustrated corresponds to the change.

• Associations are by default bidirectional, so it isn’t necessary also to write watch-
dog.mentee = subject. However, that would be an alternative to what we wrote.

• Navigation expressions in an action spec should generally start from the parameters. 
(So mentor=watchdog would be wrong—whose mentor?) Other starting points are self 
(in actions performed by a particular object) and variables you have declared locally, 
in, for example, forAll and let clauses (see Section 2.5.2).

Informal → snapshot → formal. This basic procedure is the general way to formalize
a postcondition. However, you must be careful of alternative cases: a snapshot illustrates
only one case, and so you may need to draw several to get a feel for the gamut of possibil-
ities. It’s the action postconditions you’re really trying to determine; the snapshots are
mainly thinking tools.

3.2.2 Comparing Before and After
A postcondition makes an assertion about the states immediately before and after the
action has happened. For every object there are therefore two snapshots and two complete
sets of attribute values to refer to. By default, every mention of an attribute in a postcondi-
tion refers to the newer version; but you can refer to its prior value by suffixing it with
@pre.

• subject.mentor@pre refers to subject’s old mentor.

• subject.mentor.mentee@pre refers to subject’s new mentor’s old mentee.

• subject.mentor@pre.mentee@pre refers to subject’s old mentor’s old mentee.

• subject.(mentor.mentee)@pre refers to same as previous.

• subject.mentor@pre.mentee refers to subject’s previous mentor’s new mentee.

Each navigation expression is a way of getting from one object to another. By default, the
navigation is within a single snapshot; @pre can be applied to an expression to evaluate it in
the preceding snapshot. But what you get from an expression is the (constant) identity of an
object; and unless you keep applying @pre, further expressions will always evaluate in the
newer time. Figure 3.5 shows a before-and-after snapshot and the object referred to by
subject.mentor.mentee@pre. The before-and-after times are immediately before and after
an action occurred. Here is an example:

action assign_mentor (subject: Instructor, watchdog : Instructor)
post subject.mentor = watchdog and -- watchdog is now subject’s mentor,

-- and if watchdog had a previous mentee, they now have none
let ex_mentee = watchdog.mentee@pre in

ex_mentee <> null ==> ex_mentee.mentor = null

Here are some points to note.

• null is used to represent “no object” when an association permits it.
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• ==>, also written implies, is used to mean: if ... then ... .

• @pre takes you back to the previous value of a changeable attribute; parameters refer 
to the same object, so there is no point in writing subject@pre. 

• An action spec deals with just two states, so x@pre@pre is undefined.

Precise abstraction raises pertinent questions. The level of detail here is enough to draw
out debate. When this example is discussed in groups, this is often a point when discussion
arises about what should happen to the ex-mentee (dreadful expression! I hope never to be
one). For example, should the static model be revised to allow more than one mentee per
mentor? 

Whatever the answer, this is a business question; but it might not have arisen at this
early stage if we hadn’t tried being more precise. And yet we have done so without wait-
ing until we are wading in reams of program code. 

3.2.3 Newly Created Objects
As a consequence of an action, new objects can be created. The set of these objects has the
special name new in a postcondition,3 and there are some special idioms for using it. After
drawing the snapshot in Figure 3.1, we can write

action schedule_course (reqCourse: Course, reqStart: Date)

Figure 3.5 The kebab model of object history.
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post: let ns: Session.new [course = reqCourse and startDate = reqStart
and endDate – startDate = reqCourse.length ]

in ns.instructor.available@pre(startDate, endDate)
-- there is a new Session—call it ns—with the attributes specified; and 
-- its instructor was initially available for the requested period

Notice the following points.

• The power of the postcondition is that it lets you avoid unnecessary detail. We have not 
said which instructor should be assigned nor how one should be chosen from the avail-
able ones. We have limited our statement to only the requirements we need: that the 

person chosen should have no prior commitment.

• We have deferred some complexity by assuming a parameterized attribute available 

defined with instructors. We can define its value later.

3.2.4 Variables an Action Spec Can Use
An action spec tells about the outcome of a named action happening to a set of parameter
objects and (for localized actions) a receiver. The spec of an action can use the following:

• self, referring to the receiver object whose type is written 

• The parameter names referring to those objects

• A result object

• The attributes of the type of self written or drawn as associations

• The attributes of the parameters and the result

• Local names bound in let, forAll, exists, and so on.

3. Postconditions have no sequencing, solving an age-old problem: 
action which_came_first?() post: Chicken.new <> 0 & Egg.new <> 0
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3.2.5 Collections
In the superposed pair of snapshots in Figure 3.6, the new state is shown in bold. Many of

the associations in a model are of multiple cardinality and by default represent sets (with-
out nested sets—we call these flat sets). We can use the collection operators (see Section
2.5.2):

action reassign_course (session : Session, new_inst: Instructor)
post: -- An existing Session is taken off one instructor’s schedule and placed 

onto this new one
let ex_instructor = session.instructor@pre
in

ex_instructor.schedule = ex_instructor.schedule@pre – session
and new_inst.schedule = new_inst.schedule + session

Notice the use of + and – with collections—only the set union and difference. (The
construct collectionAttribute= collectionAttribute@pre + x is so common that some of us
have taken to writing collectionAttribute += x. But if you do this, please remember that this
is not an assignment but is merely a comparison between two states. Also, a few extra key-
strokes are usually better than the overloading of +, +=, and so on.)

We could perhaps more simply have asserted

session.instructor = new_inst

Because the static model tells us a session has only one instructor, this might have been
adequate. However, a designer might mistake the meaning of this and make this session
the only one the new instructor is assigned to, deleting all the instructor’s other commit-
ments. So we choose to be more explicit.4

Figure 3.6 Snapshot for action reassign_course.

4. There is a deeper issue concerning “framing.” In a fully formal spec such as for safety-critical 
systems, you would be more explicit about which objects are left untouched.
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3.2.6 Preconditions
Many of the action postconditions we define make sense only under certain starting condi-
tions, which can be characterized by a precondition. The precondition deals only with one
state, so it doesn’t have @pre or new. For example:

action assign_mentor (subject : Instructor, watchdog : Instructor)
pre -- happens only if the subject doesn’t already have one

subject.mentor = null
post ...as before ...

The precondition is also a purely Boolean expression and has no side effects; it can
refer only to inputs and initial values of attributes. The corresponding postcondition is not
guaranteed by the implementor if the precondition did not hold.

Precise preconditions are essential for system safety properties—the things to guard
against to avoid undefined behaviors. The postconditions are primarily used to document the
state changes and outputs guaranteed by the implementation.

3.2.7 More-Precise Postconditions: Summary
This section has looked at the basics of writing action specifications precisely enough to
form the basis for testing a component and to make the model explicit enough to uncover
business issues.

The techniques we have seen can be used to describe the interactions that occur within
a business; or they can describe the actions performed by a software system or component;
or—the simplest case—they can describe the operations performed by an individual
object within a software design. That is what we will look at next.

(The syntax of action specs and postconditions is shown later in Exhibits 3.1 and 3.2.
Specifying requirements for a complete software system, with a user interface and so on is
the topic of Chapter 15, How to Specify a Component. Specifying the interface to a sub-
stantial component is covered in Chapter 10, Components and Connectors.)

3.3 Two Java Implementations of a Calendar

This chapter is about specifying types: what a component does as seen from the outside
and ignoring what goes on inside. But “brains work bottom up,” so it will be easier to
understand what the specification means if we can see the kinds of implementation that it
can have. Let’s start the time-honored way: we’ll hack the code first and write up the spec
afterward.5

5. If this offends your sense of decency, please skip to the next section. You may wish to avert your 
eyes from the naked code on display.
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Our seminar scheduling application will have many classes in its implementation. One
likely class is a calendar that tracks various scheduled events for various instructors. We
start with two different Java implementations of the calendar. Then we show how the
external behaviors can be specified independent of implementation choices and even of
implementation language and technology. We will ignore any UI aspects.

Both implementations support just four external operations on a calendar; they may
introduce other internal operations and objects as needed.

• addEvent adds a new event to the current calendar schedule.

• isFree determines whether an instructor is free on given dates.

• removeEvent deletes an existing event from the schedule.

• calendarFor returns the scheduled events for a particular instructor. It is returned as an 

Enumeration—that is, a small object that has operations to step through the collection 

until the end.

3.3.1 Calendar A Implementation
The implementation of calendar A keeps a separate unordered vector of events for each
instructor in a hashtable, keyed by the instructor. The calendar’s internal interactions are
described in the sequence diagram in Figure 3.7, with each arrow indicating an operation
request. Upon receiving an addEvent request, the calendar first creates a new event object.
It then looks up the event vector for the current instructor in its hashtable, creating a new
vector if none exists. The new event is added to this vector, and the hashtable is updated.
The Java code for this design is shown on the next two pages.

Figure 3.7 Internal design interactions of calendar A.
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import java.util.*;

// This calendar organizes events by instructor in a hashtable keyed by instructor
class Calendar_A {

private Hashtable instructorSchedule = new Hashtable();

// provided no schedule conflict, this creates and records new event
public Event addEvent (Date d1,Date d2, Instructor p, Object info){

if (! isFree (p, d1, d2)) return null;

Event e= new Event (d1, d2, p,info);
Vector v = (Vector) instructorSchedule.get (p);
if (v == null) v = new Vector ();
v.addElement (e);
instructorSchedule.put (p,v);
return e;

}

// Answer if the instructor free between these dates
// do any of the instructor’s events overlap d1-d2?
public boolean isFree (Instructor p, Date d1, Date d2) {

Vector events =(Vector) instructorSchedule.get (p);
for (Enumeration e = events.elements(); e.hasMoreElements (); ) {

Event ev = (Event) e.nextElement ();
if (ev.overlaps (d1,d2)) return false;

}
return true;

}

// remove this event from the calendar
public void removeEvent (Event e) {

Vector v = (Vector) instructorSchedule.get (e.who);
v.removeElement (e);

}

// return the events for the instructor (as an enumeration)
public Enumeration calendarFor (Instructor i) {

return ((Vector) instructorSchedule.get(i)).elements();
}

}

// internal details irrelevant here
class Instructor { }

// represents one session
// Just two public operations: delete() and overlaps()
class Event {

Date from;
Date to;
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Instructor who;
Object info; //additional info, e.g. Session
Calendar_A container; // for correct deletion
Event (Date d1,Date d2, Instructor w, Object i) {

from = d1;
to = d2;
who = w;
info = i;

}

// does this event overlap the given dates?
boolean overlaps (Date d1, Date d2){

return false;
}

public void delete() { /* details not shown*/ }
}

3.3.2 Calendar B Implementation 

This version uses a more complex representation, not detailed here, to maintain the events
so that they are indexed directly by their date ranges. This data structure is encapsulated
behind an interface called EventContainer that does all the real work.

The internal interactions for this calendar implementation are shown in Figure 3.8, and
the Java code starts below and continues on the next two pages.

import java.util.*;

// Organizes events by their dates using a fancy event container
class Calendar_B {

privateEventContainer schedule;

// create the event and add to schedule
public Event addEvent (Date d1, Date d2, Instructor p, Object info) {

Event e= new Event (p,info, schedule);

Figure 3.8 Internal design interactions of calendar B.

Just add the new event
to the event container,
indexed by dates

addEvent(d1, d2, p, i)
new()

v = addEvent(e, d1, d2)

:Calendar B

e: Event

:Event

Container
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schedule.addEvent (e, d1, d2);
return e;

}

// is instructor free between those dates?
// are any of the events between d1-d2 for this instructor
public boolean isFree (Instructor p, Date d1, Date d2) {

for (Enumeration e = schedule.eventsBetween (d1, d2); 
e.hasMoreElements (); )

if (((Event) e.nextElement()).who ==p) return false;
return true;

}

// remove the event from the schedule
public voidremoveEvent (Event e) {

schedule.removeEvent(e);
}

// return the events for the instructor (as an enumeration)
public Enumeration calendarFor (Instructor i) {

// implementation not shown
// presumably less efficient, since tuned for date-based lookup
// e.g. get all eventsBetween (-INF, +INF)
// select only those for instructor i
return null;

}

}

// internal details of instructor irrelevant here
class Instructor { }

// Just one public operation: delete() shown
// dates not explicitly recorded; container maintains date index
class Event{

Instructor who;
Object info;
EventContainer container; // for correct deletion
Event (Instructor w, Object i, EventContainer c) {

who = w;
info = i;

}

public void delete() { /* details not shown*/ }
}

// event container: a fancy range-indexed structure
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interface EventContainer {
// return the events that overlap with the d1-d2 range
Enumeration eventsBetween (Date d1, Date d2);
// add, remove an event
void addEvent (Event e, Date d1, Date d2);
void removeEvent (Event e);

}

3.4 Type Specification of Calendar 

A client could use either implementation of the calendar; both of them implement the
same type. We must describe this type so that a client can use either implementation based
solely on the type specification (this example is small enough to illustrate the details).

Figure 3.7 and Figure 3.8 show that the internal representation and interactions differ
widely between the implementations. Our behavior specification must abstract these irrel-
evant “internal” interactions and include only interactions with objects that the client
should be aware of.6 What we really want to specify is the calendar together with some
abstraction of its (hidden) event container, hashtable, vector, and so on (see Figure 3.9).

Our type specification must be precise enough that the client understands what assump-
tions the implementations can make and what guarantees they provide in return. For
example, are the events returned by calendarFor ordered by increasing dates? When you
delete() an event, is a separate call to removeEvent on the calendar required? If it is, which
one should be done first? What happens if the dates d1,d2 are not in the right order on a
call to isFree?

6. Try understanding a bureaucratic government office in terms of its internal interactions.

Figure 3.9 External object behavior abstractions internal details.

1.  What operations does the object support?

2.  What is required of the inputs?

3a.  What state change does the object undergo . . .      3b.  . . . ignoring “internal” interactions?

4.  What outputs does it produce? To whom?

A X

B

C
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3.4.1 From Attributes to Operation Specification
Following is a sequence of steps to arrive at a precise type specification of the calendar.7

We assume that the calendar can return output values to the client and that all other inter-
actions are internal details that should not be known to the client. We omit discussion of
error conditions and exceptions for now; they are covered in more detail in Section 3.6.3,
Multiple Action Specs: Two Styles, and Section 8.4, Action Exceptions and Composing
Specs.

1. List the operations: addEvent, isFree, removeEvent, and calendarFor.

2. Write informal operation descriptions of each one.

– addEvent creates a new event with the properties provided and adds it to the cal-
endar schedule.

– isFree returns true if the instructor is free in the date range provided.
– removeEvent removes the event from the calendar.
– calendarFor returns the set of events scheduled for the instructor.

At this stage, it’s usual to start sketching a static type diagram (see Figure 3.10), even
though completing it is the focus of a later step. Draw a diagram that includes the nouns
mentioned in the action specs and their associations and attributes. 

3. Identify the inputs and outputs. At the level of individual operations in code, these
are usually straightforward, perhaps already known.

addEvent (date1, date2, instructor, info): Event

7. Thanks to Larry Wall for pulling apart the steps involved.

Figure 3.10 A snapshot pair for an action occurrence.
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isFree (instructor): Boolean
removeEvent (event)
calendarFor (instructor): Enumeration

4. Working from your initial type diagram, sketch a pair of snapshots before and after
each operation. Draw them on one diagram, using highlights to show newly created
objects and links and X and for objects or links that do not exist in the “after” snapshot.
Name the input and output parameters to the action occurrence consistently with the snap-
shots.

After an addEvent, the highlighted objects and links are created; the output is e3. On
the same snapshot, after a calendarFor (i1), the snapshot is not changed, and the output
enumeration will list {e1, e2}. For read-only functions such as isFree, check whether there
is some way the information could be extracted from every snapshot.

5. Draw a static type diagram of the object being specified, generalizing all snapshots
(see Figure 3.11).8 Here are the attributes mentioned by each operation.

– addEvent: Calendar schedule represents events currently in the calendar. Each 

event has attributes instructor and start and end dates. The overlaps attribute will 
be convenient.

– isFree: Instructor has an attribute free on a given date, constrained by the events 

scheduled for that instructor as described by the instructor’s schedule.

– removeEvent: No new attributes are needed; schedule on calendar suffices.

8. Not all tools can draw one type inside another. An alternative is given in Section 3.11.

Figure 3.11 Type model attributes are used to specify operations.
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– calendarFor: Use a schedule attribute on instructor; note that the externally pro-
vided operation is not the same as the attribute that models the required state 

information.

6. Document the invariants that the model should satisfy.

-- the start of any event must be before (or at) its end
inv Event:: start <= end

-- instructor free on any date means “no event on his schedule overlaps that date”
inv Instructor:: free(d: Date) = ( self.schedule [overlaps(d)] ->isEmpty )

-- event overlaps (d) means same as “d between start and end, inclusive”
inv Event:: overlaps(d: Date) = (start <= d & end >= d)

7. Specify operations. Make the operation specs more precise. 

-- the addEvent operation on a calendar
action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object): Event

pre: -- provided dates are ordered, and instructor is free for the range 
of dates

d1 < d2 & {d1..d2}->forAll (d | i.free (d))
post: -- a new event is on the calendar schedule for those dates and 

that instructor
result: Event.new [ info = o &

start = d1 & end = d2 & instructor = i & calendar = self]

A function is an operation that may return a result and causes no other state change.

-- is a given instructor free for a certain range of dates?
function Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean

pre: -- provided the dates are ordered
d1 < d2

post: -- the result is true if that instructor is free for all dates between 
d1 and d2

result = {d1..d2}->forAll (d | i.free (d))

-- remove the given event
action Calendar::removeEvent (e: Event)

pre: -- provided the event is on this calendar
schedule->includes (e)

post: -- that event has been removed from the calendar and instructor 
schedules

not schedule->includes (e) and 

not e.instructor.schedule@pre->includes (e)

-- return the calendar for the instructor; also a function or side-effect-free 

operation
function Calendar::calendarFor (i: Instructor): Enumeration

pre: -- none; returns an empty enumeration if no scheduled events
true

post: -- returns a new enumeration on the events on that instructor’s 
schedule

result: Enumeration.new [unvisited = i.schedule]
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8. Create parameter models. Describe (by a type model) any input and output parame-
ter types and their attributes and operations to the extent that the client and the implemen-
tor need to understand and agree on them.

The Enumeration returned by calendarFor could also be modeled
explicitly. It provides two operations, informally specified next. These
operations could be made more precise by using the two attributes on
the enumeration.

action Enumeration::nextElement() : Event
pre: -- provided the enumeration is not empty
post: -- returns (and visits) an unvisited event, in no particular order

function Enumeration::hasMoreElements() : Boolean
post: -- true if all events have been visited

Event has a delete() operation that is visible to the client. Clearly, the
client needs to know the effects of this operation—for exam-

ple, does delete also remove it from the calendar? They can be specified directly using the
same type model:

-- deletion of an event
action Event::delete ()

pre: true
post: -- the event is no longer on the calendar’s or instructor’s schedule

not (calendar.schedule)@pre->includes (e) and 

not (instructor.schedule)@pre->includes (e)

Or, more concisely (as discussed in Section 3.8.5):

-- deletion of an event
action Event::delete ()

pre: true
post: -- the same effect as removing the event from the calendar 

-- (though not necessarily by calling the removeEvent method)
[[ calendar.removeEvent (self) ]] 

Note that an adequate specification of Calendar requires a specification of other object
types that are client-accessible, such as Event and Enumeration.

9. Write a dictionary of terms and improve your informal specifications. 

instructor the person assigned to a scheduled event
schedule the set of events instructor is currently scheduled for
free if an instructor is free on a date, it means that no event on his 

schedule overlaps with that date

Calendar the collection of scheduled events
schedule the set of events currently “on” the calendar

Event a scheduled commitment (meeting, session, etc.)
when the range of dates for this event
instructor the instructor assigned to this event
overlaps if an event overlaps a date, it means that date lies within the

range (inclusive) of dates of the event

unvisited   * *   visited

Event

Enumeration

nextElement()

hasMoreElements()
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Even if invariants and operation specifications will not be formalized, you can con-
cisely define the terminology of types and attributes and consequently of operation
requirements. Contrast the following updated informal operation specifications with the
ones we started with. (Which is worse: reams of ambiguous narrative, or tomes of formal
or pseudoformal syntax with no explanatory prose?)

-- add an event to a calendar
action Calendar::addEvent (d1: Date, d2: Date, i: Instructor, o: Object)

pre: -- provided dates are ordered, and instructor is free for range of dates
post: -- a new event is on calendar for those dates and that instructor

-- is a given instructor free for a certain range of dates?
function Calendar::isFree (i: Instructor, d1: Date, d2: Date) : Boolean

pre: -- provided the dates are ordered
post: -- return is true if instructor is free for all dates between d1 and d2

-- return the calendar for the instructor
function Calendar::calendarFor (i: Instructor): Enumeration

pre: -- no assumptions; could return an empty set enumeration if no 
scheduled events

post: -- returns an enumeration on the events on that instructor’s 
schedule

-- deletion of an event
action Event::delete ()

pre: -- no assumptions
post: -- the same effect as removing the event from the calendar 

-- (though not necessarily by calling the removeEvent method)

10. Improve the model or design by some refactoring. For example, we can remove the
repeated constraint d1<d2 by introducing a DateRange type, with attributes start,end dates
and overlaps(date), and an invariant on these attributes.

3.4.2 The Resulting Object Type Specification
Calendar requirements have been specified in such a way that they can be fulfilled by either
implementation—or indeed by any other that behaves suitably. The actions have been listed,
and we have described the effect of each action on our model of the calendar state. Figure 3.12
shows the specification task’s main products.

3.5 Actions with Invariants

Actions cause changes in attributes. Invariants are rules about relations that must hold
between attributes. How are actions and invariants related?

3.5.1 Actions Need Not Duplicate Invariants
Operation specifications can be simplified by taking advantage of constraints in the type
model. Consider the type model of Scheduler in Figure 3.13 with these invariants:

inv Instructor:: -- only assigned to sessions I am qualified to teach
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qualifiedFor -> includesAll (sessions.course)
-- never double-booked; no 2 assigned sessions that overlap

sessions ->forAll (s1, s2 | s <> s1 implies not s1.overlaps(s2))
inv Session:: -- only confirmed with assigned instructor

confirmed ==> instructor <> null and
-- session dates cover course duration
end = start + course.duration -- assume suitable “Date+Duration: Date”

Let us try to define an operation against this model.

-- change the dates of a session
action Scheduler::change_dates (s: Session, d: Date)

pre: s.start > now and -- (1) not from the past
s.course <> nil and -- (2) has a valid course
s.course.duration : Days -- (3) course has a valid duration

post: s.start = d and -- (4) start date updated
s.end = d + course.duration -- (5) end date updated

Which parts of the specification are necessary, and which are unnecessary?

Figure 3.12 The product of behavior modeling is an object type spec.
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1. Necessary: One cannot change the dates of a session from the past.

2. Unnecessary: It would not make sense to change the dates of a session that did not
have a course. However, the type model already uses a multiplicity of 1 to state that any
session object must have a corresponding course. The operation parameter already
requires s to be of type session, so we do not need to repeat (2); using the type name Ses-
sion implies all required properties of session objects. 

3. Unnecessary: The postcondition refers to start + course.duration, which makes
sense only if duration was a valid Duration. Once again, the type model already stipulates
that every course has a duration attribute that is a valid Duration.

4. Necessary: This is the essential part of the postcondition.

5. Unnecessary: It seems reasonable that the end date of the course is also changed.
However, the relationship between the start and end dates and the course duration is not
unique to this operation, so it has been captured in the type model as an invariant. It is suf-
ficient to state that the start date has changed; the invariant implies that the end date is also
changed.

The unnecessary parts would not be incorrect, only redundant. Removing them leaves a
much simpler operation specification:

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- not from the past
post: s.start = d -- start date updated

A more interesting example is schedule_course.

-- this spec deals with scheduling a confirmed course
action Scheduler::schedule_course (who: Client, c: Course, d: Date)

Figure 3.13 Scheduler type model with invariants.
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pre: -- Provided there is an instructor qualified and free for these dates
c.qualifiedInstructors ->includes (i | i.free (d, d+c.duration))

post: -- A new confirmed Session has been created for that course, client, 
dates

s:Session.new [ confirmed & client = who & course = c & date = d ]
-- assigned one of the course qualified instructors who was free
instructor : c.qualifiedInstructors [free(d, d+c.duration)@pre]

It is already an invariant that any confirmed course must have a qualified instructor and
that instructors cannot be double-booked. Hence, the italicized parts of the postcondition
are redundant, and the last line in this specification can be omitted. Implementations may
choose among the available qualified instructors in different ways.

3.5.2 Redundant Specifications Can Be Useful
We have seen how certain elements of an operation specification are implied by the invari-
ants. Writing them would not be incorrect, only redundant. It can still be useful to write
them down; note the change_dates example earlier. However, it is worth distinguishing
those parts of the specification the designer should explicitly pay attention to—the invari-
ants and necessary parts of operation specs—from those parts that would automatically be
satisfied as a result.

Just as we can introduce derived attributes—those marked with a / that could be omit-
ted because they are defined entirely in terms of other attributes—we can also introduce
derived specifications: properties we claim would automatically be true of any correct
implementation of the nonderived specifications. Using /pre: /post:, we can more explic-
itly define the change_dates operation:

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- necessary

/pre: s.course <> nil and -- derived: multiplicity 1
s.course.duration : Days -- derived: attribute definition

post: s.start = d -- necessary
/post: s.end = d + course.duration -- derived: session invariant

The same holds for derived invariants. Of course, we would write only those claims we
consider important to explicitly point out.

inv Session:: end = start + course.duration
/inv Session:: start = end – course.duration -- derived: definition of +, –

© redundant specs A specification (including invariants and pre- and postconditions) that is 

implied by other parts of the model but is included for emphasis or clarity. Such specs are 

prefixed with a /.

3.5.3 Static Invariants 

A static invariant is implicitly anded to the precondition and the postcondition of every
action within a defined range of actions. In the simplest case, the range of an invariant
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means all operations on members of the type it is defined for (see Figure 3.14). Consider
this code: 

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- not from the past
post: s.start = d -- start date updated

It combines with the invariant that every confirmed session has an assigned instructor;
and an instructor is assigned only to a course she is qualified for; and she is never double-
booked, to effectively yield

action Scheduler::change_dates (s: Session, d: Date)
pre: s.start > now -- not from the past

& provided other invariants hold at start of action
post: s.start = d -- start date updated

& s.confirmed ==> -- if still confirmed
(s.instructor <> null -- will have an assigned instructor
 & s.instructor : s.title.qualifiedInstructors -- who is qualified
 & s.instructor is not double-booked )

However, the private operations of any implementation may see situations in which the
invariant is “untrue.” For example, suppose the user assigns an instructor to a session
whose dates overlap an existing assigned session. One acceptable implementation would
be to deassign the existing session, but in the actual code, this might happen after assign-
ing the new one. Thus, the invariant is temporarily broken between internal actions in the
code, making it even more important to have the invariants properly scoped to a given set
of externally available operations.

3.5.4 Effect Invariants
A static invariant is expected to hold before and after the actions in its range. Sometimes,
an effect is required to be true of all the actions in its range. For example, suppose we want
to count every operation invocation on our calendar. An effect invariant defines an effect
that is invariant across all actions in its range and is implicitly anded to the postconditions

Figure 3.14 Invariants hold before and after a range of actions.
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of those actions. Unlike a static invariant, it can refer to before and after states. An invari-
ant effect does not need to be named and cannot use parameters.

inv effect Calendar::count_invocations post: count += 1

An effect invariant is anded to the postcondition of all actions in its range; it implicitly
adds the last clause to this spec:

-- remove the given event
action Calendar::removeEvent (e: Event)

pre: -- provided the event is on this calendar
schedule->includes (e)

post: -- that event has been removed from the calendar and instructor 
schedules

not schedule->includes (e) and 

not e.instructor@pre.schedule->includes (e)
-- and the effect invariant is implicitly applied
and count += 1

By using effect invariant conditions in the postconditions, we can describe effects that apply
selectively to any action that meets the condition. For example, here’s how to keep a count of all
actions that create or remove an event on the schedule:

inv effect count_event_creations_and_deletions
post: -- if the set of Events before and after differ, count this action 

occurrence
schedule@pre <> schedule ==> count += 1

© invariant effect A transition rule that applies to the postcondition of every action in the 

range of the invariant; by writing a conditional (eff1 ==> eff2) you can impose the rule 

selectively on those actions that have effect eff1.—for example, “all operations that alter x 

must also notify y.”

3.5.5 Context and Control of an Invariant
The type in which an invariant is written is called its context. It applies only to the opera-
tions of that type. (In Chapter 4 we will also see contexts of actions between groups of col-
laborating objects.) 

Any object claimed to conform to the type should make it look to clients as if the
invariant were always true. While the client is waiting for an operation to complete, the
invariant can be broken behind the interface that the type describes; but it must be restored
when the operation is complete. Behind that interface are components of the design that
have their own nested contexts and invariants that govern them (see Figure 3.15).

As with any specification, it is possible to write invariants that cannot be satisfied by an
implementor. In your spec of a Sludge vending machine, you can write an invariant that
the weather is always sunny in northern England; but I cannot deliver such a device.9 But

9. Although, come to think of it, with the right concoctions in the cans ...
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if you write an effect invariant that the machine’s cashbox will always fill as the can stack
decreases, I believe I can do that.

To achieve it, you must employ certain techniques in your design. For example, if you
forget to include a stout metal case around the outside, your assets will monotonically
decrease: people can get directly at the cans (and any cash that others may have been fool-
ish enough to insert). Similarly, the developer of an alphabetically sorted list of customers
cannot guarantee that the list will remain sorted if other designers’ code can directly
update customers’ names. You can guarantee only what you have control over.

In designing to meet an invariant, then, you must think not only of your own immediate
object but also of all the objects it uses; and you must be aware of any behavior they have
that might affect the specs you are trying to meet. Fundamentally, objects must be
designed in collaborating groups—the subject of Chapter 4.

3.6 Interpreting an Action Specification

An action specification generalizes all occurrences of the action; in other words, it should
hold true for every snapshot pair (Figure 3.16), much as a type model generalizes all snap-
shots in Figure 3.11. Given a type T with operation M whose operation spec has a precon-
dition P and postcondition Q, we interpret this operation spec as follows:

If you examine the history of any object that correctly implements T and find in that history any 

occurrence of the operation M, then if P was true of the invocation parameters and attribute 

values immediately before that invocation occurred, Q should have become true immediately 

after that invocation completed.

Figure 3.15 Invariants outside their contexts.
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3.6.1 An Action Spec Is Not an Implementation
Writing a specification for an operation is very different from writing an implementation.
The spec is simply a Boolean expression: a relation between the inputs, initial state, final
state, and outputs. An implementation would choose a particular algorithmic sequence of
steps, select a data representation or specific internal access functions, and work through
iterations, branches, and many intermediate states before achieving the “final” state. Con-
sider the specifications of these operations in contrast to their possible implementations:

function Calculator::squareRoot (in x: Real, out y: Real)
pre: not (x < 0)
post: y > 0 and y * y = x -- more realistically, allow rounding errors

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre: Provided there is an instructor qualified for this course

who is free on this date, for the length of the course.
post: A new Session has been created, with course = reqCourse, 

startDate = reqStart, and endDate – startDate = reqCourse.length,
and with one of the qualified free instructors assigned

action FlightRouter::takeShortestPath (f: Flight)
pre: provided there is some path between the source and destination of f
post: f has been assigned a path from its source to its destination

there is no other path between f.source and f.destination shorter than 
f.path
(needs a supporting definition of path and its length)

These operations, and their corresponding type model attributes, have many possible
implementations. Instructor qualification and schedules can be represented and calculated

Figure 3.16 Action specification generalizes snapshot pairs.
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post: Postcondition expression
What will become true of attributes, inputs, and outputs

a1[1] a1[2] a1[3]
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in many ways, as can flight paths and square roots. No matter how we implement these
operations, they must conform to this specification. If we were to run any test data, which
met the preconditions of the specification, through an implementation, we would expect
the postcondition to be satisfied; if it is not, we have found a bug in either the implementa-
tion or the specification. 

Some specifications fully determine the outcome of an operation. Our specification of
squareRoot allows many implementations and even more than one result: 2* 2 are 4, but
so are –2 * –2. If we want to exclude the latter, we would add y>0. Similarly,
schedule_course constrains the new session to be assigned a qualified, available instructor
but does not specify which one be assigned. And takeShortestPath does not say which
path should be selected in the event there were multiple paths with the same length; it says
only that there is no path with a shorter length.

What should squareRoot do in the case of a negative input? or schedule_course in the
case when a qualified instructor is not available? Our specs, as written, do not cover these
other conditions but rather leave these behaviors unspecified. If we said nothing further
about these operations, the implementations could ignore these other conditions. However,
we can have multiple specs for an action (see Section 3.6.3, Multiple Action Specs: Two
Styles).

A good operation specification is much like a test specification. With a little infrastruc-
ture support—such as query functions to map from concrete data representations to the
abstract attributes used in the specifications and some means to capture initial values of
attributes—these operation specifications can be mapped to test code that is executable at
runtime, at least during testing or debugging.

The operation specs often map directly to tests. Thus, the spec for squareRoot easily
translates into test code; so does schedule_course, after we write query functions to deter-
mine attributes related to instructor qualification and availability in terms of the concrete
implementation. Some specifications may need to be refactored a bit to be tested effec-
tively. A literal usage of takeShortestPath as a test specification would require generating
all possible paths to show that the computed path is the shortest, but that’s not a very prac-
tical test strategy.10

3.6.2 Parameter Types
Parameter types are an implicit part of pre- and postconditions. Our spec of squareRoot
could be rewritten so as to make this explicit, although this is not the normal style:

action squareRoot (in x, out y)
pre: x: Real & not (x < 0)
post: y: Real & y*y = x

10. You can reformulate the spec to solve this; or you could design it in steps, specify each step, 
show that the specified steps yield the shortest path, and test only the steps.



Chapter 3 Behavior Models: Object Types and Operations 111
We permit a shorthand for parameter types. A parameter that is not explicitly typed has
a name that is a lowercase version of its type name. The following spec implicitly types all
three parameters:

action Scheduler::schedule_course (course, client, date)

3.6.3 Multiple Action Specs: Two Styles
The effect of an operation can be specified with an explicit pre/post pair of conditions or
with a single postcondition and no explicit precondition. The main difference is that
within the explicit precondition (starting with pre:) all references are implicitly to the ini-
tial values of attributes; within a single postcondition clause we must explicitly indicate
initial values using x@pre. These two are11 equivalent:

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
pre: a qualified instructor available for those dates
post: a new confirmed session with ....

action Scheduler::schedule_course (reqCourse: Course, reqStart: Date)
post: (qualified instructor available for those dates)@pre

 ==> (a new confirmed session with ....)

Notice the ==>, also written implies or if...then.... If the precondition is not met, we have
said nothing about the outcome. 

If you have just one specification of the action, both forms are equivalent. The main
difference arises when you have multiple specifications of the same action,12 such as for
different views of an action. (For details, see Section 8.1, Sticking Pieces Together.) Fol-
lowing are the guidelines for choosing.

• To write a single complete spec for the action—for example, to define in one contract
what the implementor must code, and the caller must be careful of before invocation—
both forms are equivalent. The explicit pre/post form makes the client responsibility a bit
more visible. The caller is responsible for invoking this operation only when the precondi-
tion is true; the implementor can assume the precondition is satisfied and must then guar-
antee the postcondition.

• To write a partial spec, which will be automatically composed with others for the same
action,13 things are a bit more complicated.

– To define an outcome that must be guaranteed if your precondition holds, regardless 

of other partial specs, use a ==> b.

11. Different specification languages have used different approaches, including entirely implicit 
preconditions.

12. As we all know, your write_the_code action must (a) meet the specs, (b) run fast, (c) have 
wonderful documentation, (d) be completed tomorrow.

13. If the distinction between an explicit pre/post and a single post seems too subtle, use pre/post 
with explicit keyword restrictive.
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Given another partial spec:—c==>d—the combined result is obtained by anding 

each one, so a client can fully rely on each partial spec:

(a==>b) and (c==>d)

– To define a precondition that can restrict (and be restricted by) the precondition of 
other partial specs, use pre a post b.

Given another partial spec—pre c post d—the combined result strengthens the 

precondition and postconditions of both specs:
pre a and b post c and d

Thus, here’s how to write two specs for sqrt: one for a valid call and the other for the
exception behavior required for negative numbers. (Specifying exceptions is described in
more detail in Section 8.4, Action Exceptions and Composing Specs.)

action squareRoot (in x:Real, out y: Real)
post: not (x < 0) ==>  y*y = x

action squareRoot (in x:Real, out y: Real)
post: x < 0 ==>  (y = NAN)

An operation can be constrained by multiple specifications. Alternatively, the multiple
specs can be combined into a single, more complex specification. Here, first, is an opera-
tion constrained by multiple partial specifications:

-- this spec deals with scheduling a confirmed course
action Scheduler::schedule_course (client, course, date)

post: (there is an instructor qualified for this course
 who is free on this date, for the length of the course.) @pre
==> A single new Session has been created for that course, client, 
dates and confirmed with one of the qualified free instructors 
assigned to it

-- this spec deals with a “loyalty program” for frequent course schedulers
action Scheduler::schedule_course (client, course, date)

post: (the client is above some volume threshold) @pre
==> The client has received a certificate for a free course

Any reasonable tool should relate multiple specifications for an operation and be able
to present some combined form. Here is the same operation written with a single specifi-
cation.

-- this spec deals with combined aspects of a request to schedule a course
action Scheduler::schedule_course (client, course, date)

post: (instructor available)@pre ==> single new session for that course, ...
and (client above threshold)@pre ==> client has received free 

certificate
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3.7 Subtypes and Type Extension

Because a type spec is just a description of behavior, an object can be a member of
many types. In other words, it can play several roles. (In fact, an object is a member
of every type whose specification it conforms to even if the type specification was
written after the object was created.) And one type can be a subset, or subtype, of
another even if they were defined separately. To say that all sheep are animals is the
same as saying Sheep is a subtype of Animal. You expect of Sheep everything
expected of Animals in general; but there is more to say about Sheep. Some objects
that are Animals—that is, they conform to the behavior specification for that type—
may exhibit the additional properties of Sheep.

Putting more into a specification, raising the expectations, reduces the set of objects
that satisfy it. It’s often useful to define one type specification by extending another, add-
ing new actions, or extending the specifications of existing ones; subject to certain restric-
tions, this will result in the definition of a subtype.

© subtype A type whose members form a subset of its supertype; all the specifications of the 

supertype are true of the subtype, which may add further specifications. (Note that we use 

subclass to mean inheritance of implementation.)

3.7.1 Attributes and Invariants
A type defines a set of objects by specifying certain aspects of those objects; every object
that conforms to that specification, regardless of its implementation, is a member of that
type, and vice versa. For example, a ServiceEngagement type could define any object that
constitutes a service engagement with a client. Any object with a suitable definition of the
five attributes is a ServiceEngagement.

A subtype extends the specification of its supertype. It inherits all properties (attributes
and invariants) of the supertype and adds its own specifics. Because all supertype proper-
ties still apply to it and because its members must conform to all properties, every member
of a subtype is also a member of its supertype; a subtype’s members are a subset of its
supertype members.

Subtype->forAll (x | x.isTypeOf (Supertype))

The types CourseEngagement and ConsultingEngagement could both be subtypes of
ServiceEngagement (see Figure 3.17). Objects of the CourseEngagement type have a
total of six attributes defined on them; these objects may have different implementations
of these attributes as long as they map correctly to the specified attributes and are related
consistent with all invariants. Their fees are determined by the fees set for the course; the
margin must factor in travel expenses and production costs for student notes. Engagement
dates are fixed by the startDate and the standard course duration.

Animal


weight


eat

grow

Sheep


wooliness


chew cud


go baa
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Clearly, attributes students and course do not apply to consultingEngagements. The
rules that constrain dates, fees, and margins could be quite different. Still, all five common
attributes can be defined for any consultingEngagement. 

We could well discover further commonality between the subtypes: both of them fol-
low the same basic rule for their margin.

margin = fees - travelExpenses - additionalCosts

Parts of this invariant are defined differently for each subtype. Consulting fees are deter-
mined by the expertise of the consultant and the length of the engagement. Additional
costs for a course reflect the per-student production costs; additional costs for consulting
may reflect the preparation time required for the engagement and the actual cost for the
assigned consultant. Despite these differences, the broad structure of the invariant is the
same and can be defined only once in the supertype.

A type is not a class. A class is an object-oriented programming (OOP) construct for
defining the common implementation—stored data and executed methods—of some
objects, whereas a type is a specification of a set of objects independent of their imple-
mentation. Any number of classes can independently implement a type; and one class can
implement many types. Some programming languages distinguish type from class. In
some languages, writing a definition of a class also defines a corresponding type.14

Figure 3.17 Subtype extends definition of supertype.

14.  Java distinguishes interface (type) from class (type and class). A C++ class is also a type. In 
Smalltalk, type corresponds to a message protocol; class is independent of type.
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A subtype is not a subclass. Specifically, a subtype in a model does not imply that an
OOP class that implements the subtype should subclass from another OOP class that
implements the supertype. Subclassing is one particular mechanism for inheriting imple-
mentation with certain forms of overriding of implementation; however, with subtyping
there is no overriding of specifications, only extension.

As with objects and attributes, there are many ways of partitioning subtypes. Service-
Engagements could be viewed based on their geographic location (domestic versus inter-
national), taxation status (taxable or not), nature of service provided (consulting versus
training), and so on. Which of these are relevant is determined primarily by the actions
that we need to characterize and the extent to which the subtyping helps describe these
actions in a well-factored way.

3.7.2 No Overriding Behavior Specifications
When one type is defined as an extension of another type, the sub-
type cannot override any behavioral guarantees of the supertype.
The postcondition written for nurse on Cow does not override the
corresponding specification for all Mammals; rather, it is an addi-
tional description about how cows nurse their young. In contrast,
in an implementation class, a 

superclass can provide an implementation of some method that a subclass then overrides.

3.7.3 Common Pictorial Type Expressions
There are several commonly used combinations and variations of subtyping in models.
This section outlines them and the corresponding notations.

3.7.3.1 Subtype

Cow extends Mammal and it inherits all Mammal attributes and action specs. Cow
may add more action specs for the same or different actions. Here it is viewed as
sets of objects:

Cow ⊆ Mammal

3.7.3.2 Multiple Supertypes

Bat has all the properties specified on the supertypes. Any action with
specifications in more than one supertype must conform to them all.
Viewed as sets of objects:

Bat ⊆ Mammal * Flier

The subtype conforms to all the expectations that any client could have based solely on
the guarantees of both supertypes. Further requirements particular to this subtype may be
added. It’s perfectly possible to combine two types that have conflicting requirements so
that it would not be possible to implement the result.

Mammal




nurse


  post M

Cow




nurse


  post C

Mammal

Cow

Mammal Flier

Bat
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3.7.3.3 Type Exclusion

The two types are mutually exclusive—that is, no object is a member of
both.

TA1 * TA2 = ∅

3.7.3.4 Type Partitioning

Every member of TA is a member either of TA1 or TA2 but not both.
There may be more than one partitioning of a type, each drawn with a
separate black triangle.

TA = TA1+TA2

Figure 3.18 shows an example.

3.7.3.5 State Types

TA1 and TA2 are sets (not true types) to which members of TA belong when in a given state
defined by a predicate on TA (usually in terms of attributes of TA, but see Section 3.11). If
the determining attributes are not const, then objects can migrate across the state types;
otherwise, the classification of an object is fixed by the determining attributes at the time
of its creation: a TA is also a TA1 if it has property x<a, in which case it also has these
other properties (z etc.).

For example, suppose an employee is a person with an employer; employees have a
salary (see Figure 3.19) and can get fired. This lets us classify objects based on a condition
and define resultant properties they will have. For example, we could define two state

TA1 TA2

TA

TA1 TA2

TA

Figure 3.18 Type partitioning.

Figure 3.19 State types.
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types of Person: Teenager (age in the range 13 to 19) and Baby (appropriate baby predi-
cate), ascribing each with appropriate attributes to define:

RockConcert::admit (t: Teenager)
post: t.stipend.depleted

RockConcert::admit (b: Baby)
pre: b.accompanyingAdult <> null-- only if accompanied
post: b.isBawling

© state type A set of objects defined by a predicate: unlike a true type, objects may move into 

and out of it during their lives. The predicate is defined within a parent true type; for exam-
ple, “caterpillar” is a state within “lepidopter.”

3.7.4 General Type Expressions
Because types define sets of objects, we can use set operations to combine types and to
define new types without drawing new boxes every time (see Table 3.1).

© type expression An expression denoting a type using set-like operators—for example, 
Women + Men.

3.8 Factoring Action Specifications

As behavior specs become complex, we need ways to factor them so that they are still
understandable and maintainable. 

3.8.1 Invariants
We saw in Section 3.5, Actions with Invariants, that invariants are implicitly conjoined
with action specifications. Static invariants factor those constraints that apply to every
state, and effect invariants capture rules about every state change. Both of them simplify
action specs by making them less redundant.

Table 3.1 Type Expressions

Type Explanation

jo : Student Object jo is a member of the type Student and conforms to the 
behavioral requirements set by Student; this notation is the same 
as the (short form) notation for set membership.

Tutor * Student The type whose members are in both these types.
Tutor + Student The type whose members are in either or both types. We might 

define a type CollegeMember = Professor + Student.
Person – Pilot The type whose members behave according to the first type’s 

definition but not according to the seconds.
Object The type to which all objects belong; all other types are its subtypes.
Impossible The empty type to which no object belongs, characterized by any 

type definition that is inconsistent. 
NULL Has only one member, null (or ∅ ), the value of an unconnected link.
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Seq(Phone) Application of a generic type Seq(X) to a specific type Phone. 
Other standard generic types include Set and Bag.

[T] The same as T + NULL; all “optional” attributes, including 0..1 
associations, are of this form: their value could be either null or a 
valid member of T.

enum {on, off} An enumerated type whose only members are the two listed. You 
can name this type Status = enum {on, off}.

3.8.2 Convenience Attributes Simplify Specs
Because invariants can simplify action specifications and because attributes themselves
simply represent a precise terminology for use in action specs, we can often simplify specs
by introducing suitable attributes and invariants.

-- cancellation of a session: might need to reassign the instructor to something else
action Scheduler::cancelCourse (s: Session)
pre: -- if s was confirmed 

s.confirmed
-- and if there was a tentative session within those dates
and sessions->exist ( s1 | s1.tentative s1.datesWithin (s)

-- for which the instructor who was assigned is qualified
and s.instructor.qualifiedFor (s1.course) )

post: -- then the instructor is assigned to one such session

To simplify this specification, we introduce a new term. The
precondition refers to a set of sessions that need an instructor for a
particular range of dates—in this case, the dates of the session
being canceled. Why not introduce a parameterized attribute alter-
nateSessions(dates) and simplify the operation spec?

inv Instructor:: alternateSessions (d: DateRange) =

-- all tentative sessions within that date range (assuming necessary 
attributes!)

sessions->select (s | s.tentative & s.dates.within (d)
-- and that the instructor would be qualified to teach
& self.qualifiedFor (s.course))

action Scheduler::cancelCourse (s: Session)
pre: -- if s confirmed and any alternate sessions for that instructor on those 

dates
s.confirmed and s.instructor.alternateSessions (s.dates)->notEmpty

post: -- then the instructor is assigned to one such session

Judiciously chosen auxiliary attributes like this one can be quite effective in simplifying
actions and invariants by introducing precisely defined terms that express the requirement
in a natural way that’s close to what a client might use (despite the formal syntax).

© convenience attribute A redundant attribute (possibly parameterized) that is introduced to 

simplify the specification of actions or invariants—for example, age defined as well as 

birthday.

alternateSessions (DateRange)

*

Instructor

Session
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3.8.2.1 Parameterized Attributes versus Read-Only Operations

A parameterized attribute, such as alternateSessions(dates), is an abstraction of state.
When it is implemented, there will be a way to determine the value of that attribute for
each applicable value of the parameter in its range. In this sense, it can be easily confused
with a read-only operation: a query that can be invoked as a service returns a value and has
no side effect. We choose to distinguish clearly between state abstractions (attributes) and
invocable operations.

Specifically, parameterized attributes are constrained by static invariants. In contrast,
any operation is defined by its pre- and postcondition (see Section 3.1.2, Pre- and Postcon-
ditions Specify Actions); a read-only operation would have a postcondition that defined
the returned value in terms of the inputs and current state.

Parameterized attributes can sometimes be modeled using a Map collection type:

Instructor:: -- alternate sessions maps a daterange to a set of sessions
alternateSessions: Map(DateRange, Set(Session))

You can conveniently refer to the domain and range as attributes of this map type:

alternateSession ->domain : Set(DateRange)
alternateSession ->range : Set (Set(Session))

3.8.3 Effects Factor Common Postconditions
Another kind of convenience construct is called an effect. This function can use @pre and
so can be used to factor out the parts that are common among some of the action specs. For
example, schedule_course is an action; we have decided there will be some interaction for
a client to schedule a course. Two possible outcomes of this action are
schedule_confirmed_course and schedule_unconfirmed_course. We define these as
named effects with a single postcondition; referring to them by name is exactly equivalent
to writing their specifications directly. Effects can be listed on the type box, marked with a
stereotype <<effect>>, along with the actions.

-- saying that a schedule_confirmed_course has happened is exactly the same 

as saying...
effect Scheduler::schedule_confirmed_course (course, date) 

-- that there was some available instructor initially
post instructorAvailable@pre (course, date)

-- and a confirmed session is created
and Session.new [confirmed] → size = 1

-- saying that a schedule_unconfirmed_course has happened is exactly the same 

as saying...
effect Scheduler:: schedule_unconfirmed_course (course, date)

-- that there was no available instructor initially
post not (instructorAvailable@pre (course, date))

-- and an unconfirmed session is created
and Session.new [unconfirmed] → size = 1
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We can now simply use these two effects to specify the action schedule_course. The
resulting spec means exactly the same as though we had written the full specifications of
the two effects.

-- when a scheduler schedules a course
action Scheduler::schedule_course (course, date)

pre: true -- no precondition, because the postcondition covers all cases
post: -- either a confirmed course has been scheduled

schedule_confirmed_course (course, date)
-- or an unconfirmed course has been scheduled

or schedule_unconfirmed_course (course, date)

© effect A convenience postcondition introduced (and named) to factor parts of postconditions 

that are common across more than one action. Unlike ordinary predicates, an effect can con-
tain the special postcondition operator @pre.

3.8.4 Pre ==> post versus pre & post

In the preceding example, the two alternative situations and the associated outcomes are
represented in two different effects. Within the effect, the @pre part is anded with the
post. This means that when we bring the two effects together in the eventual action spec,
we can say, “Either this happens or that.”

An alternative style is to write the effects so each of them is a self-contained specifica-
tion: “In this case ==> always do this” and “In that case ==> always do that.” This style
means that the two specifications are anded, because they are both instructions that we
want the implementor always to observe:

-- If an instructor is available, the course must be confirmed
effect Scheduler::when_instructor_available_confirm (course, date) 

-- if the instructor is available:
post instructorAvailable@pre (course, date)

-- then a confirmed session is created
==> Session.new [confirmed]

-- If an instructor is not available, the course must be unconfirmed:
effect Scheduler:: when_no_instructor_reject (course, date)

-- if there was no available instructor initially ...
post not (instructorAvailable@pre (course, date))

-- then an unconfirmed session is created
==> Session.new [unconfirmed]

And we then explicitly compose these two effects differently:

-- You must always confirm or unconfirm a course depending on instructor 
availability:

action Scheduler::schedule_course (course, date)
pre: true -- no precondition, because the postcondition covers all cases
post: -- either a confirmed course has been scheduled

when_instructor_available_confirm (course, date)
-- or an unconfirmed course has been scheduled

and when_no_instructor_reject (course, date)
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Which style should you choose? Nice examples can be found to support either style;
they have different meaning, and the choice also influences the composition of specs,
errors and exceptions, and so on.15 Experience suggests the following guidelines.

• Write the effect postcondition in a (pre ==> post) style when you wish to ensure that 
there is no getting out of the contract and that if the precondition is true, then the post-
condition will be met. Then combine them into actions using and. This approach is 

generally better when you’re combining several separately defined requirements—for 
example, when you’re building a component that conforms to the interfaces expected 

by several different clients. 

• Write the effect postcondition in a (pre & post) style when you wish each to describe 

one of many possible outcomes. Then combine them into actions using or. This style is 

generally better when you’re building a specification model from different parts within 

the same document. You must combine these effects with your eyes open: none of them 

makes any guarantees that the outcome it describes will be met, because they may 

restrict each other.

3.8.5 Referring to Other Actions in a Postcondition
Whenever any action is specified, it implicitly defines an effect. That effect can be
referred to from another action. Sometimes you want to say, “This operation does the
same as that, but also ...”—in other words, to reuse the specification of another action.
Specifications can be quoted within others’ postconditions (this is analogous to calling
subroutines in code). However, you need not do this too eagerly. Specifications must be
clearly understandable, and abstract attributes and effects can be used quite freely; it is the
implementations that must use careful encapsulation and hiding.16

Suppose there were an operation by which an assigned instructor could be explicitly
unassigned:

action Scheduler:: unassign_instructor (s: Session)
-- s was previously confirmed, and its instructor is no longer assigned to s

post: s.confirmed@pre ==> s.instructor <> s.instructor@pre
-- and various other “unassign” things take place

You may find that the action of canceling a session might also need to accomplish all
the effects of unassigning. You can quote the spec of another action in [[...]]:

action Scheduler:: cancel_session (s: Session)
post: s.confirmed ==> [[ unassign_instructor (s) ]]

The quoting syntax [[...]] is a predicate, possibly involving initial and final states, that
says, “This action achieves whatever unassign_instructor would have achieved, with these
parameters,” but not necessarily by invoking that action. It doesn’t say how this must be
achieved; the designer might know another way to achieve the same effect. If you want to

15. This was a major difference between the specification languages Z and VDM.

16. Try telling a client, “I won’t tell you what that operation does; it is encapsulated.”
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go into the semantics a little more, the quotation is the same as rewriting [[...]] with all the
((pre)@pre � post) of the quoted operation, with appropriate parameter and self substitu-
tions.

If you decide that a part of what this action must do is to actually invoke a specific
operation, you can record that decision by inserting an arrow in front of the operation:

[[ –> self.cancel_session (s) ]]

This technique alters the postcondition to mean “The cancel_session operation has been
invoked on self.” The end result is no different, but we’re now pinning down how to
achieve it. You can quote operations on objects other than self with or without the ->.

© quoted action A postcondition can refer to another action by naming it within brackets: 
[[action(...)]]; this is called quoting, and it means that the effect specified for that action is a 

part of this postcondition. If written as [[->action(...)]], then the action must actually be 

invoked as part of the postcondition; if further prefixed with sent, it indicates that an asyn-
chronous invocation must be made.

3.8.6 Specification Types versus Design Types
Specifications describe how a client can use a component. What we really want to say
about a component is what it does: its behavior, or the actions it takes part in. We have
seen how to specify the externally visible behavior of a type by specifying actions in terms
of a type model of attributes. Because the component doesn’t necessarily have to be
implemented along the same lines as its model, the implementation need not explicitly
represent distinct objects that belong to the types used within that model. Those types are
used to structure the static model and relate it to the business.

It is possible to implement the Scheduler without a
Session class and without unique and distinct objects
for each session; such an approach would be quite com-
mon when you’re assembling existing implementation
components or legacy systems, such as a calendar (with
events) and an employee database (with employees).
When designing, some people like to distinguish those
types they have decided to implement—design types—
from those that are used simply to help write a specifica-
tion—spec types. Design types can be drawn with a
heavier border.

Clients are not interested in how it works inside: only
the designer is interested in that, and the 

designer should be in a considerable minority. But to describe the actions clearly, we must
write a model of the component’s state. Here is a typical dialog or thinking process
involved.

“This command creates a session.” What’s a session? “It’s a thing with dates, courses, and 

instructors.” What can I do with it? “Oh, you can’t get hold of one directly, but you can list all 
the sessions there are and cancel any of your own.” So there is one big list of sessions in there? 

Design type
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Session
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“Yup.” Isn’t that a bit inefficient, considering we would need to search the whole list to deter-
mine schedules? Wouldn’t it be better to organize by date and instructor? “Uh, well yes, that’s 

how it’s really done, of course; and actually, there’s really no such thing as a session. We just 
append the course and instructor names to events in the calendar. And actually, there’s this 

hashtable...” But if I think of it as a list of sessions, I’ll understand how to use the system? 

“Yes.” Thanks, that’s what I need.

In this scenario, not only the attributes of the scheduler system—the list of sessions—
but also the type of objects they contain (Session) amount to a convenient fiction hypoth-
esized to describe its behavior aside from all the implementation complexities. Session is
a specification, or model, type. It is there only for the purpose of modeling. Types that are
“really” there (in the sense that they are separable and take part in actions and we intend to
implement them) are design types.

Many types are used for both purposes. For example, Date is often used in specifica-
tions and also has many implementations, and a good design would often have direct
implementation of the specification types. Also, in some situations the specification
requires an implementation not only of a primary type but also of related types required
for input and output parameters. An example is shown in Step 8 in Section 3.4.1.

Typically, a design type will be specified with a model drawn inside it using specifica-
tion types. Only a design type can participate in an action, and every type that is specified
as participating in an action is a design type. Specification types do not really have actions
of their own, but partial specifications (effects) can be attached to them for convenience,
as shown in Section 3.8.7.

However, there is nothing to stop you from using a type in a model even though the
type happens to have an implementation somewhere. In fact, good implementations of
domain objects will often have their specs reused in this way. The more important design
decision hinges on how the types in an implementation will be used, and those decisions
involve joint actions recorded in collaboration diagrams.

© specification type versus design type A specification type is one that is introduced as a part 
of the type model of another type to help structure its attributes and effects in terms closer to 

the problem domain. The behaviors of the spec type are not themselves of interest, and the 

type may never be implemented directly.
A design type, in contrast, is one that participates directly in actions; its behaviors are of 

primary importance, and it is not just a means to factor the specification of some other type.

3.8.7 Factoring to Specification Types
In many cases the outcome of an action depends on the type of object, or objects, to which
it is applied; indeed, this is one of the mainstays of the object-oriented approach. If our
seminar system dealt with training and consulting engagements, the rules for canceling an
engagement might be different. The appropriate parts of the effect of cancellation should
be localized on the engagements (see Figure 3.20).

The outcome is different for each type of engagement: training sessions have the course
material production canceled and instructor reassigned; consulting jobs may be charged
for, confidential materials must be returned, and the consultant must be reassigned.
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Although the spec is simplified by factoring it across the different types of engagements,
the action is simply on the scheduler system; committing to more would be a matter of
internal design.

Does this mean that we are doing some design—assigning responsibilities and deciding
internal interactions to the modeling types? Not really. We’re only distributing the action
spec among the concepts on which it has an effect. If there happens to be an implementa-
tion of, say, ConsultingEngagement, we are not referring to that implementation and the
particular properties of its code: we’re referring only to the specification. That said, the
most straightforward design approach would parallel this spec localization.

3.8.8 Factoring: Specify Effects Abstractly
The earlier example placed very different outcomes in each type. But where possible, it
pays to look for something common among the supertypes. The cancel operation could be
defined abstractly:

effect ServiceEngagement:: cancel ()
post: can_be_cancelled@pre ==> 

reassign_resources() &
cancel_preparations()
..etc.

Figure 3.20 Localizing effects on specification types.

  ServiceEngagement




effect cancel ()

    ConsultingEngagement




effect cancel ()

	 post not_completed ==>


		 charge_costs() &


		 return_materials() &


		 reassign_consultant()

          CourseEngagement




effect cancel ()

	 post not_started @ pre ==>


		 cancel_production() &


		 reassign_instructor()




effect cancel_production ...

*  engagements

Scheduler

action cancel (s: ServiceEngagement)

  post      s.cancel ()
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The subtypes would detail their own specs for
can_be_cancelled and the other effects. This kind of factoring
is the specification analog of the “template method” design pat-
tern when you’re implementing methods in superclasses. A
straightforward design approach would parallel this factoring in
the implementation, but alternative design choices would not
invalidate the factored specification.

In some cases, we can even provide a complete spec in the
supertype, with the subtypes simply defining the abstract
attributes in more detail. For example, moving a Shape in a
graphical editor is very different in terms of the attributes of
each subtype; but we can express in common terms the required
effect of what happens to the points contained within each
Shape.

Although the most natural attribute models for circle, rectangle, and triangle would be
quite different, we can abstract them into a single parameterized query, contains (Point);
any shape is defined by the points it contains. We define move in terms of this abstract
attribute and then simply relate the different shapes to this attribute.

3.9 State Charts

State charts, and their simpler cousins, “flat” state diagrams, can be useful modeling tools.
In Catalysis, states and transitions that appear in a state chart are directly related to the
attributes and actions in a type specification. The state chart merely provides an alternative
view of the spec.

3.9.1 States as Attributes and Invariants
Sometimes it is easy to see distinct states that an object progresses through over its life-
time. A Session may go through tentative, confirmed, or delivered; if it is either confirmed
or delivered it is considered sold. From another perspective, the session may be pendingIn-
voice, invoiced, or paid. 

States are often drawn in a state chart showing the states and the relationships between
them, as in Figure 3.21. Each state is a Boolean attribute17: an object either is or is not in
that state at any time. The structure of states in the state chart defines invariants across
these attributes.

• States in a simple state chart are mutually exclusive, with exactly one state true at a 

time, such as within sold; this is what the xor invariants mean.

Shape




contains (Point): Boolean




move (v: Vector)

post: (p: Point, -- any point, p


	 contains(p) @pre


		 ⇔ contains(p+v))

Circle




radius: Length


centre: Point

inv contains (p: Point)

  ⇔ p-centre < radius




// Move needs no further spec

17. We qualify the state name with superstate names to deal with nested states.
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• A state chart can be nested inside a state. While the containing state is false, none of the 

nested states is true; while it is true, the nested state chart is live, meaning that one of its 

states (or one from each of its concurrent sections) must be true. This is the or invariant 
defining sold.

• A state chart can be divided into concurrent sections by a dashed line. Each of these sec-
tions is a separate simple state chart. The object is simultaneously in one state from each 

of the sections. No explicit invariants are needed because the two sets of states are inde-
pendent. There is no paradox in this, nor necessarily any concurrent processing in the 

usual sense: it’s just that a state simply represents a Boolean expression, and there is no 

reason that two such statements should not be true at the same time. 

To represent business rules, we can separately introduce invariants that eliminate cer-
tain combinations, For example:

Figure 3.21 A state chart defines state attributes and invariants.

State chart

Super state

“Concurrent” states
always in one of each

State structure implicitly
defines invariants

States implicitly define attributes Attributes and invariants

Session

pending


Invoiced

invoiced

tentative

confirmed

paid delivered

sold

Session

tentative, sold :Boolean


-- always in exactly one of these states
inv xor (tentative, sold)




-- sold is a superstate of two others
sold: Boolean


inv sold = confirmed or delivered


inv sold ==>xor (confirmed, delivered)




pendingInvoice, invoiced, paid: Boolean


inv xor (pendingInvoice, invoiced, paid)
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inv Session:: invoiced ==> sold
-- A session can be invoiced only if it is sold

Because states simply define Boolean attributes, it is easy for states to be tied to the
values of other attributes and associations via invariants. So for example, we can write

inv Session :: -- an invoiced or paid Session always has an attached invoice
(invoiced or paid) = (invoice <> null)

thereby tying the state to the existence of a link to another object. 

© state A Boolean attribute drawn on a state chart. The structure of the states defines invariants 

on those attributes (such as mutually exclusive states, inclusive states, or orthogonal states); 
additionally, you should write explicit invariants relating the state attributes to other 
attributes in the type model.

3.9.2 State Transitions as Actions
In addition to defining state attributes and their invariants, state charts depict transitions
between states. An example state chart for Session is shown in Figure 3.22: A session can
be confirmed, tentative, or delivered; changing the dates might switch between tentative
and confirmed.

The change_dates action has multiple transitions, which translate into multiple partial
action specifications. The transition from the confirmed state is translated next. For brev-

Figure 3.22 Session state chart with transitions.

Session

change_dates (self,d)

   /unAssignInstructor,

   setDates


 [not confirmable]
tentative

[confirmable]


/assignInstructor




confirmed

deliver (self)
delivered

change_dates (self,d)

   /unAssignInstructor,

   setDates

Precondition

Postcondition

Decision

Transition

Action[confirmable]

/assignInstructor

[not confirmable]
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ity, the state chart omitted the parameters used in the pre- and postconditions, but we fill
these in the textual action specs.

action change_dates (s: Session, d: date)
-- if s was confirmed, i.e., transition coming out of the confirmed state
pre: s.confirmed
post: unAssignInstructor(s)  & -- assuming an effect with that name

setDates (s, d) & -- assuming effect is defined
(confirmable (d) @pre ==> s.confirmed & assignInstructor (s, d)) &
(not confirmable (d) ==> s.tentative)

A state chart is part of the model of a type. The elements of state chart notation are shown
in Figure 3.23.

The arrows indicate the sequences of transitions that are possible.  indicates the state
that is first entered when the state predicates first become well defined. This can mean
when the object is first created or when this nested state chart is entered.  indicates
where state predicates become undefined: when the nested state chart is exited or the
object is no longer of any interest. Until reaching the “black hole,” all the predicates for
the states in the diagram should be well defined, either true or false.

 is exactly the same as 

The decision point is not a branch point in the programming sense but instead says that
there are two possible outcomes of this action: its postcondition includes (s1 or s2). With-
out the preconditions, either outcome would satisfy this spec. Decision points can some-
times simplify transitions: Figure 3.22 could be simplified to a single decision point, with
creation and date change actions transitioning via that shared point.

State transitions share the machinery of action specs clauses, which are described in
Section 3.6. State transitions can be used to specify actions as well as named effects; a
transition labeled with the keyword effect represents a named effect (Section 3.8.3) rather
than an action.

Figure 3.23 State chart notation.

[precond] action


/post
s0

SomeType

[pre1]  ↑ r1

[pre1]

/post2

s1

s2↑ r2
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s
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a [b]
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[pre] is a precondition: the transition is guaranteed to occur only if pre was true before
the action commenced. Notice that this does not say that this transition definitely does not
occur if the precondition is false; to say that, make sure you show transitions going else-
where when it’s false.

With /post, some effect is achieved as part of executing this transition.

↑action means that a (more abstract) action is completed as part of executing this tran-
sition. We’ll have more to say about this in Chapter 6, Abstraction, Refinement, and Test-
ing.

[[ receiver.action ]] means that part of the effect of this transition is the same as the doc-
umented effect of action on receiver (which is self, the state chart object, by default).

[[ –>receiver.action ]] means that part of the effect of this transition is that action is
actually performed by an invocation on receiver.

3.9.3 Translating State Transitions to Actions
A transition illustrates part of the spec of an
action.

action Type::a1
pre: s1 & precond
post: s2 & postcond

If there are several transitions involving one event, the effects are conjoined. State charts
give a different way of factoring the description of an action, and a good tool would move
readily between two views: state chart and textual action specification. Each state must be
defined in terms of other attributes. 

When you’re using superstates, being in any substate implies being in the superstate.
So any arrow leaving the superstate means that it is effective for any of the substates.

Transitions indicate the completion of the actions with which they are labeled.
Although accomplishing the actions may take time, the transitions themselves are instan-
taneous; this will become more significant in Chapter 6, Abstraction, Refinement, and
Testing.

© state transition A partial specification of an action, drawn as a directed edge on a state chart. 
The initial and final states are part of the pre/post condition in the spec, and additional pre/
post specs are written textually on the transition.

© state chart A graphical description of a set of states and transitions.

Type

s1 s1
a1 [precond]


/postcond
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3.9.4 State Charts of Specification Types
When you’re drawing state charts, be aware of the primary type
that is being modeled. In simple cases the states and transitions are
directly of the primary type being modeled. If we are trying to
specify the behavior of a gas pump, the states and actions labeling
the transitions are those of the pump itself. It translates directly into
action specs such as these:

action Pump::hangup pre: ready post: idle
action Pump::pickup pre: idle post: ready

But when the primary type being modeled is complex, its states cannot necessarily be
enumerated in the simple form required for representing it as a single state chart. The
behavior of a Scheduler component such as the one in Figure 3.13 cannot be described on
a single state chart (except with the most trivial states, exists, and all the interesting effects
described in text on the transitions). This is because the state of the scheduler is defined by
the states of its multiple sessions, instructors, and courses.

Instead, you should draw separate state charts for the specification types that constitute
the type model of Scheduler. In reality, we are defining the states of the scheduler in terms
of the states of its specification types. The transitions in the individual state charts show
what happens to those objects for each of the scheduler’s operations (see Figure 3.24).

Each individual state chart effectively specifies how every action on the primary type
affects that one specification type. In contrast, a complete action specification defines how
one action on the primary type affects any specification type member. The composition of
all change_dates transitions, on any and all specification types, constitutes change_dates
operation specification for the scheduler. Do not confuse this state chart view with internal
design, when we will actually decide internal interactions between objects within the
scheduler, the primary types whose behavior we describe will be these internal objects. 

hangup

GasPump

pumping

release

pickup

squeeze

ready

idle

Figure 3.24 State charts of specification types.

Primary type Specification or model type

Scheduler::Session

change_dates

cancel_course

Scheduler::Instructor

change_dates

cancel_course

Scheduler

schedule_course (...)

cancel_course (...)

change_dates (...)

Instructor

Session
Course



Chapter 3 Behavior Models: Object Types and Operations 131
A useful technique in specifying a large compo-
nent is to draw a state chart that focuses on all the
elements of a particular type within a larger
model—for example, showing what happens to the
shapes in a drawing editor for each of the editor’s
operations. select(self) is a shorthand for select(s)
[s=self]. It’s important to realize that this is really a
state chart for the editor, in which the states are
defined in terms of the states of its shapes. 

We can translate this to text form as follows.

It is slightly more convenient to use a single postcondition clause than to separate the pre/
post style.

action Drawing_Editor::select (shape:Shape)
post: -- every shape in the current document is affected as follows

current_doc_contents ->forAll ( s |
-- if it’s the target and was selected, unselect it
((s.selected & s=shape)@pre ==> s.unselected)
-- if it’s the target and was not selected, select it

& ((s.unselected & s=shape)@pre ==> s.selected)
)

3.9.5 Underdetermined Transitions
Sometimes a state chart is deliberately vague about the outcome of an action. The reason
is usually to allow subtypes to make different choices, within broad constaints given by
the supertype, or simply to define a minimal partial constraint.

At any moment, a transition is said to be feasible if, before the current action began, the
system was in the state at the arrow’s source end and if any precondition it is labeled with
was true. You are allowed to write a state chart for which there are several feasible transi-
tions at any moment; this is called an underdetermined set of transitions. When this is the
case, what state will you end up in?

The answer is that you will end up in one of them, but as a client you can’t make any
assumptions about which one it might be. This doesn’t mean it’s random, only that there
are forces at work that you, based solely on the current spec, are unaware of. As a designer
you might be able to choose whichever you like; but you will probably be constrained by
the requirements from another view or a particular subtype.

For example, dialing a phone number—dial_number—has several possible outcomes.
As users we are unaware of the factors that will influence the outcome (see Figure 3.25).

There is an engineer’s view in which you can describe what the outcome will be in
terms of the capacity of the lines and whether the other end is engaged on a call; but from
the point of view of the phone user at one phone, these factors are unknown.

Drawing_Editor

current_doc_contents

Shape

selected
select(self)

unselected
select(self)

select(Shape)

*
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Isn’t it a bit pedantic to insist on drawing the picture that doesn’t show the precondi-
tions on dial_number? After all, moderately educated phone users know what really causes
these outcomes, and even when they don’t, there is always a cause that we, the designers
of the phone system, know about. 

Perhaps that’s true in this case. But indeterminate state charts will be important when
we discuss components. This component may be combined with a wide variety of others,
including ones not yet known of; so we actually don’t know what the causes are, only
what the possible outcomes can be. This situation might happen if we allowed our phone
instrument to be connected to a new kind of switching system. As long as we have a way
of reusing this underspecified model and adding to it in another context, it is worthwhile to
make this separation.

3.9.6 Silent Transitions
The phone example shows one other way in which state charts can show nondeterminate
behavior. It is possible for a system to change state without your knowing why or when
and without your doing anything to it. Again, silent transition does not imply randomness.
Instead, it means either that we don’t know what might cause the change (as when we’re
waiting for public transport, which no mortal understands) or that, if we do know, we
don’t know whether or when that cause will happen (as when we’re hanging on to see
whether the phone will be answered). 

Silent transitions also let us describe systems that are not purely reactive, because the
partial descriptions permit transitions with unknown causes.

3.9.7 Ancillary Tables
State charts themselves provide a useful view of behavior that is different from the view
provided by action specifications. State charts focus on how all actions affect one specifi-
cation type, highlighting sequences of transitions, as opposed to focusing on the complete

Figure 3.25 Underdetermined transitions.
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effect of one action on all affected types. Two related tables can be helpful in conjunction
with state charts to check for completeness and consistency.

First, a state chart can be represented by a state transition matrix, as shown in Figure
3.26. In the matrix, X means shouldn’t happen; | means nothing happens; and [ ] means
determined in subtypes. Writing the matrix is a valuable cross-check to ensure that each
action has been considered in each state. This matrix can be generated automatically from
the state charts themselves; it better highlights combinations that may have been over-
looked.

The second type of table is a state definition matrix. Each state should be defined in
terms of attributes and associations in the model. Frequently, these boil down to simple
conjunctions of assertions about them and so are easy to show in a table (see Figure 3.27).
Even if this table is never written, it is always useful to define each state as a function of
the existing attributes and associations. 

Figure 3.26 State transition matrix.

Figure 3.27 State definition matrix.

3.10 Outputs of Actions

Much of the focus of a typical postcondition is on the effect of an action on an object’s
internal state. But we also need to describe the information that results from an action and
is returned to the invoker as well as any output signals or requests that are generated to
other objects. There are several approaches to this.

State e1 e2 e3 

S1 [g1] S2 X I

S2 X S3 / pp X

S3 S2 [ ] S1

State attr1 assn1 assn2 Full Definition of State

S1 >30 null <> null attr1>30 & assn1=null & assn2 <> null

S2 >2, < 3 null <> null 2 < attr1 < 3 & assn1=null & assn2 <> null

S3 > 0 <> null 0 < attr1 & assn1 <> null
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3.10.1 Return Values
An action can have a return type whose return value is the identity of a new or preexisting
object used by the sender. Within the postcondition, result is the conventional name given
to this value. Any actions can have a return value; those that have no other side effects are
called functions.

function square_root (x:float)
post: abs (result * result – x) < x/1e6

3.10.2 Out Parameters
Input parameters represent object references that are provided by the caller; return values
represent object references returned to the caller to deal with as needed. Although out
parameters can be broadly considered similar to return values, the details are somewhat
different. The postcondition of the operation will determine the value of the out parameter
and its attributes; however, the client will call this operation with these out parameters
bound to an attribute selected by the client. 

action Scheduler::schedule_course (course, dates, out contract)
post: .... & contract: Contract.new [...]

action Client::order_course
post: scheduler.schedule_course ( c1, 11/9, self.purchase_order.contract)

An ordinary parameter refers to an object; an out parameter refers to an attribute, which
might be as simple as a local variable of the caller. An out parameter can therefore be used
to specify that a different object is now referred to by the bound attribute; an ordinary
parameter can only change the state of the object it refers to.

out is like a C++ reference parameter. Other programming languages, such as Java and
Eiffel, do not have these features, showing that it is possible to do without them in an
implementation language. However, the idea of having multiple return values is itself con-
venient in both specification and implementation.

3.10.3 Raised Actions
It is also possible to state as part of a postcondition that another action has been invoked
either synchronously or asynchronously.

• Synchronously: The sent action will be completed as part of the sender. Its postcondition
can be considered part of this one. It is written

[[ r := –> receiver.anAction(x,y) ]]

r is a value returned from the message.

• Asynchronously: The request has been sent; the action will be scheduled for execution
later, and its completion may be awaited separately.

– Request sent to a specific receiver; action has been scheduled.
[[ sent m –> receiver.anAction(x,y) ]]

m is an event identifier that can be used elsewhere.
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– Request sent to an unspecified receiver; action has been scheduled.
[[ sent m –> anAction(x,y) ]]

– A previously sent action has been completed and returned r.
[[ m ( ... ) = r ]]

3.10.4 Specifying Sequences of Raised Actions
When you specify raised actions, it is sometimes necessary to specify that they happen in
a particular sequence—to describe the protocol of a dialog. You might want an
open_comms action to send certain messages to a modem object in a particular order. You
might wish to specify this while retaining your basic premise of using only initial and final
states in postconditions.

In effect, you are telling your designer something about the type of the intended
receiver. Even if you tell me absolutely nothing else about it, I know that it can accept
messages a, b, and c in a particular order and that at certain times you require me to have
sent all three in that order.

This is equivalent to saying that I have been asked to get it into the state of “having
received message c.” I haven’t been told what that state might signify as far as the receiver
is concerned, only that I must get it there. But also, you tell me that I must first send mes-
sage b: In other words, the modem has a state—as far as I am concerned—of “having
received message b,” which is a precondition of c. 

So the simplest way to specify that a sequence of messages must be sent as part of the
outcome of an action is to make a minimal local model of the state transitions for the
receiver and specify that the final target state is reached:

action OurObject:: open_line(m:LocalViewOfModem)
pre: m.idle
post: m.ready

& various effects on our own state

By using the full apparatus of state charts, we can specify
linear, branching, and concurrent sequences.

Used in this way, states shown as separate in this local
view may turn out not to be separate in an implementation of
the modem; they are, however, separate in our object’s
implementation, because it must generate them in sequence.
OurObject would work if we pro-

vided a modem that ignored operations a and b but went straight from idle to ready on c.
Provided that the intermediate states are purely specification attributes and that there are
no operations for actually finding out its state, that’s OK. 

Sequential outputs are sometimes better dealt with as refinements, as described in
Chapter 6, Abstraction, Refinement, and Testing. State charts are also used to describe a
collaboration refinement (in which zooming in on an action shows it to be a dialog of
smaller ones). 

OurObject

idle
a

c
b

open_line(m)

s1

ready s2

ModemLocalView
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Occasionally it is useful to write a spec that refers to more than just the before-and-after
moments in time—say, i, j and j, k. Putting the time indexes in [...] sets the scope within
which the states are referred to.

action [i, j, k] T::m (...)
post: (x@j = x@i +3 ) & -- x@j means value of x at time “j”

(x@k = x@j +2 ) 
==> (x@k = x@i + 5)

The main use for this would be in complex specs where you want to say, “The overall
effect is the same as doing this followed by that” and in program proofs. Without explicit
time indexes, you simply assume before and after and use @pre to distinguish them.

3.10.5 Sequence Expressions
Occasionally it is useful to write a sequencing constraint in text form, although it could
usually be described using the preferred state chart technique from the preceding section.
For example:

action Scheduler:: cancel_session (s: Session)
post:

[[ free_instructor (s.instructor@pre) ;
reassign_instructor (s.instructor@pre) ;

]]

© sequence expression A textual representation of a temporal composition of actions; some 

sequence expressions can be translated into an equivalent state chart.

Sequence-expression [[..; ..; ..]] shows the permitted sequence of more detailed
actions—not a prescribed program. The elements of the syntax are as follows, where S1
and so on are usually expressions about actions:

• S1 ; S2 S1 always precedes S2

• S1 | S2 S1 or S2

• S1 * Any number of repetitions of S1

• S1 || S2 S1 concurrent with S2

All such sequence expressions [[ ... ]] are an abbreviation for a state model with the
implication

(start ==> done)

The two states are defined by a state model as shown in Figure 3.28.

3.11 Subjective Model: The Meaning of Containment

When we specify a type, we often depict its attributes and specification types with a distin-
guished root type by using a form of visual containment, as shown in Figure 3.29(a). (An
equivalent, alternative form distinguishes type nodes marked with «root» and selected
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Figure 3.28 State chart equivalents for sequence expressions.
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associations marked with «cross<Root>» in (b).) This is more than a cosmetic choice; it
has a specific semantic meaning. Both diagrams in Figure 3.29 are equivalent to the

expanded model in Figure 3.30.

In the enclosure rule, all paths from A back to A that use only associations defined
within the box (or that do not use any links marked «cross<A>») are guaranteed to get
back to the same instance of A; that is, all links lie within the tree of objects that is rooted
at self:A. By contrast, although a.b.x.d is certainly a member of type A, it need not be = a. 

Thus, an engine is connected to a transmission, provided that they are within the same
vehicle. This rule works as expected across multiple levels of nesting. 

In the subjective model, the types locally named B and C, and their associations b, c,
and d, all form part of a A’s model; they are really state types. In other words, those mem-
bers of B (or C) that happen to be contained within an A also satisfy any additional proper-
ties stated about B or C on this diagram. (Specifically, those additional properties do not

Figure 3.29 Type model: (a) with containment, (b) with root.

Figure 3.30 Interpretation of containment.
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universally apply to all B or C objects.) Brought outside the boundary of A, they have pre-
fixes to their names. 

In a different context, not every B will necessarily be linked to a C. For example, to the
Invoicing department, customers are linked to products, whereas Warehousing knows only
that products have parts; customers, universally, may not be required to have either associ-
ation. Containment represents a localized view, which is a state type of the common usage. 

In addition, local usages can also directly refer to attributes or operations on their con-
tainer.18 This makes it simple to write localized specifications of actions and effects, as
discussed in Section 3.9.4.

As a matter of style, we use containment to depict specification types that have been
introduced simply to describe operations on the primary type of interest. Sometimes we
also need to describe operations on the input or output parameters of these operations, as
shown in Figure 3.11.

Without such a mechanism, it becomes difficult to know whether the properties defined
on B are intrinsic (that is, apply universally) to all Bs, or whether those properties are
defined only on those Bs that happen to be within an A. When an engine runs, does it
always turn the wheels of a car? How about when it is propelling a boat? Or when it is
mounted on a test jig at the mechanic’s?

3.12 Type Specifications: Summary

This chapter deals in detail with the business of specifying actions—what happens in
some world or in some system—while deferring the implementation. Indeed, we have
seen an example (Section 3.4) of how two different implementations can have the same
behavioral specification. The action specifications use the terms defined in a static model
(as in Chapter 2). The static and action models together make up the specification of a
complete type (see Figure 3.31). In the chapters that follow, we will use these ideas to
build specifications of complete software systems and interfaces to components. 

• An object’s behavior (or part of it) can be described with a type specification.

• A type specification is a set of action specifications; they share a static model that pro-
vides a vocabulary about the state of any member of the type.

• An action spec has a postcondition that defines a relationship between the states before 

and after any of its occurrences takes place.

• A precondition defines when the associated postcondition is applicable.

In Chapter 4 we deal with the interactions between objects—both inside the object we
have specified (as part of its implementation) and between our object and others—to
understand how it is used by our (software or human) clients.

18. In the manner of inner classes in JavaBeans and closures or blocks elsewhere.
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Exhibits 3.1 and 3.2 show the syntax of action specs and postconditions.

3.13 Programming Language: Classes and Types

Our focus in this chapter has been on specifying the behavior of objects using types and
not on how to implement them with classes. This section briefly describes the link
between modeling with types and implementing with classes.

© class (a) A language-specific construct defining the implementation template for a set of 
objects, the types it implements, and the other classes or types it uses in its implementation 

(including by class inheritance). 
(b) An implementation concept that defines the stored data and associated procedures 

for manipulating instances of that class; the implementation construct can be mapped to OO 

languages and to procedural and even assembly language.

A class is an implementation unit that prescribes the internal structure of any object that
is created as an instance of it. Class is an OO programming concept but not necessarily an
OO programming language concept. There are patterns for the systematic translation of
OO designs to other data and execution models. You can employ these patterns if, for
example, you need to write in a traditional language such as Fortran or assembler, perhaps
for special control of performance. In that way, you still get the benefits of OO design
(modularity, reuse, and so on). Of course, OO programming languages best support object
design. OO-to-non-OO patterns must also be applied outside the scope of your program-
ming language. 

For example, C++ works with an OO model in main memory but leaves persistent data
up to you; you can’t send a message to an object in filestore. If you can secure a good OO
database you’re in luck; but otherwise, typically you’re stuck with plain old files or a rela-
tional database and must to think how to encode the objects. Your class-layer design
should initially defer the question of how objects are distributed between hosts and media.

So there is a class layer of design described entirely in terms of classes, with related
types, which can be implemented directly in a language such as Java, Eiffel, or C++ or
otherwise by judicious application of class-to-nonclass patterns (see Figure 3.32).

Not all OOP language (OOPLs) have classes. In Self, an object is created by cloning an
existing one. Objects delegate dynamically to others rather than statically based on their
class inheritance; and methods can be added dynamically. Nevertheless, Self designs cer-
tainly use the idea of Type. Contrary to many early popular writings, polymorphism is
about types—multiple implementations of the same interface—and not about classes and
implementation inheritance.
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Exhibit 3.1 Action Specifications

There are five constituents which may be part of an effect spec:

ReceiverType :: ( parameter1 : Type1, parameter2 :Type2) : ResultType

Signature: a list of parameters—named values (references to objects) 
that may be different between different occurrences of the action(s) the 

spec governs.

• Some parameters may be marked out, denoting names bound 

only at the end of the operation.
• May also define a result type and a receiver type.

pre: condition Precondition is a read-only Boolean function that defines the situa-
tions in which this effects spec is applicable. If the precondition is not 
true when an action starts, this spec doesn’t apply to it, so we can’t tell 
from here what the outcome will be. There might be another applicable 

spec defined somewhere else.

The parameter type constraints are effectively terms in the precondi-
tion: d1>3 and d2:Date and d1<d2 ...

May refer to the parameters, to a receiver self, and to their attributes, 
but not out parameters or any result.

post: postcond Postcondition is a read-only Boolean function that specifies the out-
come of the action (provided the precondition was true to begin with). 
The postcondition relates two states, before and after, so, the prior state 

of any attribute or subexpression can be referred to using @pre. 

A postcondition may refer to self, all the parameters, any result, and 

their attributes.

rely: condition For concurrent or interleaved actions, if the rely clause ever becomes 

false during the execution of the action, the implemention is no longer 
guaranteed to meet the specification 

(Section 4.5).

guarantee: cond The implementor will maintain this true while executing the action 

concurrently with others, provided the pre and rely conditions hold 

(Section 4.5).

Pre, post, rely, and guarantee conditions are called assertions. Two further assertions 

appear in a type specification, outside any one action spec:

inv condition True before and after every action in the model. Effectively anded to 

each pre- and postcondition.

inv effect effect A “global” effects spec that applies to all actions conforming to its sig-
nature, pre, and rely conditions.
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Exhibit 3.2 Special Terms in a Postconditions

A postcondition relates together two moments in time. By default, every expression 

denotes its value once the action is complete.

x@pre The prior value of attribute x (there is no need to use them in a precon-
dition). Here’s an example of moving rooms:

jo.room@pre -- jo’s old room
jo.room@pre.isDirty@pre -- prior state of jo’s old room
jo.room@pre.isEmpty -- current state of jo’s old room
jo.room.isEmpty@pre -- prior state of jo’s new room

new The set of all objects that exist in the after state that did not exist in the 

before, so T*new=(T – T@pre). Common usages with new in a post-
condition:

Egg*new -- all new Eggs from this action
Egg*new [size>5] -- all new Eggs satisfying the filter
Egg.new -- more familiar syntax for Egg*new
Egg.new [size>5] -- new Eggs, with size>5
e : Egg.new[size>5] -- e is a new Egg with size>5
This is most commonly used within a let; it implies that there is at least 
one new Egg.

[[an action]] Action quoting, equivalent to copying its specification into the present 
postcondition. It does not imply a necessary actual invocation of the 

action — just that the same effect is achieved. If there are several 
effects-specs applying to the quoted action, they are all implied.

[[->an action]] The quoted action will definitely be invoked in an implementation.

result Reserved names for the value denoted by an operation that a program-
mer can invoke as an expression. Here’s an example:

action square_root ( x : int ) post: x = result * result
... y = square_root (64); // y == 8
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3.13.1 Messages and Operations
A class contains code for the operations the object “understands”—that is, the operations
for which there are specifications, and hence clients could expect to send it.

• A message is an invocation of an operation. It consists of the name of the operation, the
identity of the recipient, and a set of arguments. A message is like a procedure call except

Figure 3.31 Type models and behavior specification.
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that it is a request to an object; the same message sent to different classes of object can
have different outcomes. “Who performs this operation?” has an interesting answer in an
OO program; in a conventional program, it’s just the computer!

• An operation is a procedure, function, or subroutine. The traditional OO term is method,
but we prefer to avoid confusion with the method you follow (hopefully) to develop a pro-
gram. In analysis, and at a more abstract level of design, we talk about actions: an action
occurrence may be one or more operation invocations.

• A receiver is the object distinguished as determining which operation will be invoked by
a given message. It is usually thought of as executing the operation, which has access to
the receiver’s variables.

Not all OOPLs have a receiver. In CLOS, it is the combination of classes of all the
parameters that determines what method will be called; methods are not specifically
attached to classes.

3.13.2 Internal Variables and Messages
There are four primary kinds of variables in an object-oriented program.

• Instance variables: Data stored within fields in each object

• Parameters: Information passed into, and out of, methods

• Local variables: Variables used to refer to temporary values within a method

• Class variables: Data stored once per class and shared by all its instances.

Operations read and write variables local to each object. A variable refers to an object. It is
important to distinguish variables from objects, inasmuch as one variable may be capable
of containing at different times several types of object (for example, different kinds of
Shape) that will respond to messages (such as draw) differently. In some cases, several
variables may refer to one object.

Every variable has several key features.

Figure 3.32 Class models.
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• Type: The designer should know what types of object can be held in a variable—that is,
the expected behavior of the object to which it refers. In Self and bare Smalltalk, this is
left to the design documentation; in C++, Java, and Eiffel, it is explicit and some aspects
are checked by the compiler. Explicit typing is allowed in some research variants of
Smalltalk because it makes it possible to compile more-efficient code; other compilers try
to deduce types by analyzing the code.

• Access: This refers to which methods can get at a variable. In Smalltalk, all variables are
encapsulated per object: Methods cannot get at the variables of another object of any class.
In Java, variable access can be controlled within a package (a group of classes designed
together) or at a finer grain. This arrangement makes sense, because each package is the
responsibility of one designer or team; any changes within the package can readily be
accommodated elsewhere within the same package. Encapsulation is important only
between different pieces of design effort. C++ has access control per class: an intermedi-
ate position, making an intermediate amount of sense.

• Containment: In Smalltalk, Eiffel, and Java, all variables contain references to other
objects—implicit pointers that enable objects to be shared and allow the uses of an object
to be decoupled from its size and the details of its internal declaration. In C++, some vari-
ables are explicit pointers, and others contain complete objects. The latter arrangement
yields faster code but no polymorphism;þthat is, one class is tied to using one specific
other. This is not a generic design. In general, we consider containment to be a special and
less usual case.

Within this book, we assume that variables are typed, that access can be controlled at
the package level, and that variables contain implicit references—in other words, the
scheme followed by Java, Eiffel, and others.

3.13.3 Class Extension
Inheritance, derivation, or extension mean that the definition of one class is based on that
of one or more others. The extended class has by default the variables and operations of
the class(es) it extends augmented by some of its own. The extension can also override an
inherited operation definition by having one of its own of the same name.

Various complications arise in inheritance from multiple classes. For example, both
superclasses may define an operation for the same message, or both superclasses them-
selves inherit from a common parent, and each language will provide some consistent res-
olution convention. Java and standard Smalltalk prohibit multiple inheritance of
implementations for this reason.

Inheritance was at one time widely hailed as the magic OO mechanism that led to rapid
application development, reduced costs, and so on. “Programming by adaptation” was the
buzzphrase: You program by adding to and overriding existing work, and you benefit from
any improvements made to the base classes. In fact, this approach turned out to be useful
to some extent but only under adherence to certain patterns connected with polymorphism. 

In general, if you want to base your code on someone else’s implementation, which hap-
pens to suit your need, it is best to use your favorite editor to copy and paste.19 Unless you
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want the spec of the other person’s code, it’s quite unlikely you’d want to inherit any modifi-
cations he or she makes. In fact, the big benefit of OO design comes more from polymor-
phism—conformance of many classes to one spec. If, in some cases, this is achieved by
sharing some code, then it’s nice but not necessary. Arbitrary code-sharing only couples
designs that should be independent.

3.13.4 Abstract Classes
So ideally, a class should be extended only if the extension’s instances will be substitut-
able wherever the superclass is expected. For example, if a drawing builder is designed to
accept a Shape in one of its operation’s parameters, then a Triangle should be acceptable
because, presumably, the latter does everything a Shape is expected to do.

That raises the question of what a Shape is expected to do, and that takes us into the
next section on types (object specifications). In programming languages, it is common for
a class to represent a type. The class may perhaps define no internal variables or opera-
tions itself but instead only list the messages it expects. The rest is defined by each sub-
class in its own way. 

A class that stands for a type, and that may include partial implementation of some
operations, is called an abstract class. It should be documented with the full spec of the
type.

It is now widely accepted good practice that nearly every class should either be an
abstract class (prohibited from having instances but possibly with a partial implementa-
tion) or a final class (prohibited from having extensions).

Types help decouple a design—that is, make it less dependent on others. Ideally, each
class should depend only on other types and not specific classes. In that way, it can be
used in conjunction with any implementors of the types it uses. 

But there is one case in which this does not work well: When you want to create an
object, you must say which class you want it to belong to. However, there are a number of
patterns, such as Factory, that help localize the dependencies, so that adding a new Shape
to the drawing editor (for example) causes only one or two alterations to be necessary to
the existing code.

3.13.5 Types
In a program, a type should be an implementation-free specification of behavior. Different
languages provide different support for types:

A Java interface is a pure type—that is, client-visible behavior. You define interfaces
for the major categories of clients you expect to have. You factor your services into differ-
ent interfaces, and you can define some interfaces as extensions of other interfaces (sub-

19. If the code is available.
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types) to offer suitable client views. This approach provides those clients with a pluggable
type requirement, in which any object that provides that interface can be used.

interface GuestAtFrontDesk {
void checkin();
void checkout();

}

interface HotelGuest extends GuestAtFrontDesk, RoomServiceClient {
...

}

A class implements any number of interfaces and also implicitly defines a new type.
Behavioral guarantees should be defined on interfaces but are not directly supported by
the language itself. You cannot instantiate an interface, only a class.

class Traveler implements GuestAtFrontDesk, AirlinePassenger {

....

}

Now let’s look at C++ A Java interface is very similar to a C++ pure abstract class,
with only pure virtual functions and no data or function bodies.

   class GuestAtFrontDesk {
        public:virtual checkin() = 0;

virtual checkout() = 0;
   };

Similarly, a Java extended interface is like an abstract subclass, still with all pure virtual
functions.

   class HotelGuest :public GuestAtFrontDesk, public RoomServiceClient {
        ....
    };

You can use macros to make the distinction more visible in C++:

#define interface class
#define extends public
#define implements public

In Smalltalk, when a client Hotel receives a parameter x, that client's view of x can be
defined by a set of messages HotelGuest={checkIn, checkOut, useRoomService} that the
client intends to send to x. Hence, the type of x, as seen by that client, is the type Hotel-
Guest. The language does not directly support, or check, types; but you can systematically
use facilities such as message categories or message protocols.

• A client expects an object to support a certain protocol, HotelGuest. 

• Any object with a (compatible) implementation of that protocol will work.

• It is often convenient to get that compatible implementation by subclassing from 

another class, but it never matters to the client whether or not we subclass; we could 

just as well cut and paste the methods, delegate, or code it all ourselves. In Smalltalk 

the only check is a runtime verification that each message sent is supported. 
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• The only time the client needs to know the class is to instantiate it.

The class of an object is not really important to that client as long as it supports the pro-
tocol. In Smalltalk this can be represented by systematically following programming con-
ventions that use a message protocol or message category as a type.

3.13.6 Generic Types
A generic definition provides a family of specific definitions. For example, in C++, a tem-
plate class SortedList<Item> could be defined in which everything common to the code for
all linked lists is programmed in terms of the placeholder class Item. When the designer
requires a SortedList<Phone>, the compiler creates and compiles a copy of the template,
with Item replaced by Phone. 

There are variants on the basic generic idea.

• What is generic: In C++ and Eiffel, classes and operations are the units of genericity. In
Ada, in many well-thought-out experimental languages, and—with any luck—in a future
version of Java, packages are generic. This means that you can define a generic set of rela-
tionships and collaborations between classes in the same style as the frameworks (Chapter
9, Model Frameworks and Template Packages). We argue that this is a very important fea-
ture of component-based design.

• When validated: C++ template classes are (and can be simulated by) macros, mere
manipulations of the program text before it gets compiled. The template definition itself
undergoes few compiler checks. This means that if the design of SortedList<Item> per-
forms, say, a < comparison on some of its Items, the compiler remarks on this only if you
try to get it to compile a SortedList<some class that doesn’t have that comparison>. A big
disadvantage of C++ template classes is that they cannot be precompiled: you must pass
the source code around. By contrast, the generic parameters of FOOPS [Goguen] come
with “parameter assumptions” about such properties. When first compiling the generic,
the compiler will check that you have made all such assumptions explicit and can guaran-
tee that it will work for all conforming argument classes.

Catalysis frameworks have parameter assumptions in the form of all the constraints
placed on placeholder types and actions; these frameworks span single types and classes,
to families of mutually related types and their relationships.

3.13.7 Class Objects
In Smalltalk, a class is an object just like everything else. A class object has operations for
adding new attributes and operations that its instances will possess. Most commonly, only
the compiler makes use of these facilities, but careful use of them can make a system that
can be extended by its users or that can be upgraded while in operation. For example, an
insurance firm might add a new kind of policy while the system is running. In this “reflex-
ive” kind of system, there is no need to stop everything and reload data after compiling a
new addition. Java offers comparable facilities.
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Java also supports such a reflexive layer: Classes, interfaces, methods, and instance
variables can all be manipulated as runtime entities, although in a more restricted form
than in Smalltalk. The language still needs work in this area.

In open systems design, it is important that an object be able to engage in a dialog about
its capabilities just as, for example, fax machines begin by agreeing on a commonly
understood transmission protocol. This comes naturally to a reflexive language; others
must have the facility stuck on. C++ has recently acquired a limited form of such a feature
with runtime type identification (RTTI).

In C++, the static variables and operations of a class can be thought of as forming a
class object but with limited features. There is no metaclass to which class-object classes
belong and no dynamic definition of new classes.

3.13.8 Specifications in Classes
Classes are units of implementation, and they need clear links to specifications.

3.13.8.1 implements Assertions

To say that a class implements a type means that any client designed to work with a spe-
cific type in a particular variable or parameter should be guaranteed to work properly with
an instance of the class. 

In Java, types are represented by interfaces and abstract classes. Even though the com-
plete specification of the type (pre- and postconditions and so on) is not understood by the
compiler, the following clause documents the designer’s intention to satisfy the expecta-
tions of anyone who has read the spec associated with the interface Food. 

class Potato implements Food ...

Java allows many classes to implement one interface, directly or through class extension.
The following clause should mean that the class implements the type represented by its
superclass as well as extending the definition of its code. 

class HotPotato extends Potato ...

In each case, the interface and abstract class referred to should be documented appro-
priately with a type specification.

In C++, public inheritance is used to document extension and implementation. private
inheritance is used for extensions that are not implementations (apart from the simple
restrictions mentioned earlier); but the usual recommendation is to use instead an internal
variable of the proposed base type.

3.13.8.2 Constructors

A constructor has the property that it creates an instance of the class and thereby a mem-
ber of any type the class implements:

class Circle implements Shape {
...
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public Circle (Point centre, float radius);
// post return:Circle—the result belongs to this Class
// — from which you can infer that return:Shape

Constructors should ensure that the newly created objects are in a valid state—that is, that
they satisfy the expected invariants.

3.13.8.3 Retrieval

A fully documented implementation claim is backed up by a justification; the minimal
version is a set of retrieve functions (see Section 6.7, Spreadsheet: Operation Refinement).
Writing these functions often exposes bugs.

For every attribute in the type specification, a function (read-only operation) is written
that yields its value in any state of the implementation. This retrieval can be written in exe-
cutable code for debugging or test purposes, but its execution performance is not impor-
tant. The functions are private. They are useful for testing but not available to clients.

interface Shape {
attribute20 bool contains (Point); // type model attribute
public void move (Vector v); 

// post (Point p, 
// old(self).contains(p) = contains(p.movedBy(v)))

}

class Circle implements Shape {
private Length radius;
private Point center;
private bool contains (Point p) // retrieval

{ return (p.distanceFrom(center) < radius); }
public void move (Vector v) { ... }

}

3.13.8.4 Operation Specs

An operation can be specified in the style detailed earlier in this chapter. You can refer to
the old and new values of the internal variables (and to attributes of their types, and of the
attributes’ types, and so on). 

Eiffel is among the few programming languages to provide directly for operation specs,
but they can, of course, be documented with an operation in any language. In C++, suit-
able macros can be used; Java could use methods introduced on the superclass Object. For
debugging, pre- and postconditions can be executed. 

20. This takes liberties with Java syntax. A suitable preprocessor could convert attributes to com-
ments after typechecking them or leave it as code for testing purposes.
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