
Preface i

Objects, Components, 
and Frameworks 
with UML
The CatalysisSM Approach

Desmond Francis D’Souza

Alan Cameron Wills

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

Usage Notes:
1. Online page numbers are not exactly same as in print
2. Use Acrobat Bookmarks/Navigation Pane for table of contents
3. Look for Annotations and Links to extra notes



ii PREFACE

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a 
trademark claim, the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the 
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. 
For more information, please contact:

Corporate, Government, and Special Sales Group
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
D’Souza, Desmond Francis

Objects, components, and frameworks with UML : the CatalysisSM

approach / Desmond Francis D’Souza, Alan Cameron Wills.
p. cm. — (The Addison-Wesley object technology series)

Includes bibliographical references and index.
ISBN 0-201-31012-0 (alk. paper)
1. Object-oriented methods (Computer science) 2. UML (Computer

science) I. Wills, Alan Cameron. II. Title. III. Series.
QA76.9.035D76 1998
005.1′17--dc21 98-31109

CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

Catalysis is a service mark of ICON Computing, a Platinum Company.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the prior consent of the publisher. Printed in the United States of America. Published 
simultaneously in Canada.

ISBN 0-201-31012-0

Text printed on recycled and acid-free paper.

1 2 3 4 5 6 7 8 9 10 – MA – 02 01 00 99 98
First printing, October 1998



Preface iii

To Tina, my wife, my love—you helped
me make it to here; and to our baby

Kelsey—for the joy you are.
D.F.D.

To Evelyn, for your extraordinary
forbearance and love.

A.C.W.





v

Preface xv

PART I OVERVIEW 1

Chapter 1 A Tour of Catalysis 3

1.1 Objects and Actions 3
1.2 Refinement: Objects and Actions at Different Scales 6
1.3 Development Layers 10
1.4 Business Modeling 11
1.5 Model Frameworks as Templates 13
1.6 Zooming In on the Software: System Context 15
1.7 Requirements Specification Models 16
1.8 Components 18
1.9 Assigning Responsibilities 25

1.10 Object-Oriented Design 30
1.11 The Development Process 31
1.12 Three Constructs Plus Frameworks 32
1.13 Three Levels of Modeling 35
1.14 Three Principles 37
1.15 Summary 39

PART II MODELING WITH OBJECTS 43

Chapter 2 Static Models: Object Attributes and Invariants 45

2.1 What Is a Static Model? 46
2.2 Object State: Objects and Attributes 49

Contents



vi CONTENTS

2.3 Implementations of Object State 54
2.4 Modeling Object State: Types, Attributes, 

and Associations 56
2.5 Static Invariants 66
2.6 The Dictionary 74
2.7 Models of Business; Models of Components 75
2.8 Summary 76

Chapter 3 Behavior Models: Object Types and Operations 79

3.1 Object Behavior: Objects and Actions 80
3.2 More Precise Action Specifications 86
3.3 Two Java Implementations of a Calendar 92
3.4 Type Specification of Calendar 97
3.5 Actions with Invariants 102
3.6 Interpreting an Action Specification 108
3.7 Subtypes and Type Extension 113
3.8 Factoring Action Specifications 117
3.9 State Charts 126

3.10 Outputs of Actions 134
3.11 Subjective Model: The Meaning of Containment 137
3.12 Type Specifications: Summary 139
3.13 Programming Language: Classes and Types 143

Chapter 4 Interaction Models: Use Cases, Actions, 
and Collaborations 153

4.1 Designing Object Collaborations 153
4.2 Actions (Use Cases) Abstract Complex Interactions 154
4.3 Use Cases Are Joint Actions 164
4.4 Actions and Effects 167
4.5 Concurrent Actions 168
4.6 Collaborations 172
4.7 Uses of Collaborations 173
4.8 Collaboration Specification 179
4.9 Collaborations: Summary 182



Contents vii

Chapter 5 Effective Documentation 185

5.1 What’s It All For? 185
5.2 Documentation Is Easy and Fun, and It 

Speeds Design 186
5.3 Reaching the Documentation Audience 192
5.4 The Main Documents: Specification 

and Implementation 195
5.5 Documenting Business Models 198
5.6 Documenting Component Specifications 202
5.7 Documenting Component Implementations 206
5.8 Summary 208

PART III FACTORING MODELS AND DESIGNS 211

Chapter 6 Abstraction, Refinement, and Testing 213

6.1 Zooming In and Out: Why Abstract 
and Refine? 214

6.2 Documenting Refinement and Conformance 230
6.3 Spreadsheet: A Refinement Example 233
6.4 Spreadsheet: Model Refinement 238
6.5 Spreadsheet: Action Refinement 247
6.6 Spreadsheet: Object Refinement 254
6.7 Spreadsheet: Operation Refinement 264
6.8 Refinement of State Charts 269
6.9 Summary 272

6.10 Process Patterns for Refinement 273
Pattern 6.1 The OO Golden Rule (Seamlessness 

or Continuity) 274
Pattern 6.2 The Golden Rule versus Other 

Optimizations 276
Pattern 6.3 Orthogonal Abstractions and 

Refinement 278
Pattern 6.4 Refinement Is a Relation, Not a 

Sequence 280
Pattern 6.5 Recursive Refinement 283



viii CONTENTS

Chapter 7 Using Packages 285

7.1 What Is a Package? 285
7.2 Package Imports 292
7.3 How to Use Packages and Imports 298
7.4 Decoupling with Packages 303
7.5 Nested Packages 308
7.6 Encapsulation with Packages 310
7.7 Multiple Imports and Name Conflicts 312
7.8 Publication, Version Control, and Builds 315
7.9 Programming Language Packages 318

7.10 Summary 318

Chapter 8 Composing Models and Specifications 321

8.1 Sticking Pieces Together 321
8.2 Joining and Subtyping 322
8.3 Combining Packages and Their Definitions 324
8.4 Action Exceptions and Composing Specs 331
8.5 Summary 337

Chapter 9 Model Frameworks and Template Packages 339

9.1 Model Framework Overview 339
9.2 Model Frameworks of Types and Attributes 342
9.3 Collaboration Frameworks 346
9.4 Refining Frameworks 352
9.5 Composing Frameworks 357
9.6 Templates as Packages of Properties 359
9.7 Templates for Equality and Copying 366
9.8 Package Semantics 369
9.9 Down to Basics with Templates 373

9.10 Summary of Model Framework Concepts 378



Contents ix

PART IV IMPLEMENTATION BY ASSEMBLY 381
Chapter 10 Components and Connectors 383

10.1 Overview of Component-Based Development 384
10.2 The Evolution of Components 392
10.3 Building Components with Java 398
10.4 Components with COM+ 401
10.5 Components with CORBA 403
10.6 Component Kit: Pluggable Components Library 404
10.7 Component Architecture 409
10.8 Defining Cat One—A Component Architecture 414
10.9 Specifying Cat One Components 421

10.10 Connecting Cat One Components 426
10.11 Heterogeneous Components 428

Pattern 10.1 Extracting Generic Code Components 444
Pattern 10.2 Componentware Management 446
Pattern 10.3 Build Models from Frameworks 448
Pattern 10.4 Plug Conformance 449
Pattern 10.5 Using Legacy or Third-Party Components 450

10.12 Summary 452

Chapter 11 Reuse and Pluggable Design Frameworks in Code 453

11.1 Reuse and the Development Process 453
11.2 Generic Components and Plug-Points 457
11.3 The Framework Approach to Code Reuse 461
11.4 Frameworks: Specs to Code 465
11.5 Basic Plug Technology 471
11.6 Summary 477

Pattern 11.1 Role Delegation 478
Pattern 11.2 Pluggable Roles 480

Chapter 12 Architecture 481

12.1 What Is Architecture? 481
12.2 Why Architect? 486
12.3 Architecture Evaluation with Scenarios 490
12.4 Architecture Builds on Defined Elements 491



x CONTENTS

12.5 Architecture Uses Consistent Patterns 493
12.6 Application versus Technical Architecture 496
12.7 Typical Four-Tier Business Architecture 497
12.8 User Interfaces 498
12.9 Objects and Databases 501

12.10 Summary 502

PART V HOW TO APPLY CATALYSIS 505
Chapter 13 Process Overview 507

13.1 Model, Design, Implement, and Test—Recursively 507
13.2 General Notes on the Process 510
13.3 Typical Project Evolution 522
13.4 Typical Package Structure 526
13.5 Main Process Patterns 530

Pattern 13.1 Object Development from Scratch 533
Pattern 13.2 Reengineering 535
Pattern 13.3 Short-Cycle Development 539
Pattern 13.4 Parallel Work 541

Chapter 14 How to Build a Business Model 543

14.1 Business Modeling Process Patterns 543
Pattern 14.1 Business Process Improvement 545
Pattern 14.2 Make a Business Model 548
Pattern 14.3 Represent Business Vocabulary and Rules 551
Pattern 14.4 Involve Business Experts 552
Pattern 14.5 Creating a Common Business Model 554
Pattern 14.6 Choose a Level of Abstraction 556

14.2 Modeling Patterns 557
Pattern 14.7 The Type Model Is a Glossary 558
Pattern 14.8 Separation of Concepts: Normalization 560
Pattern 14.9 Items and Descriptors 562
Pattern 14.10 Generalize and Specialize 564
Pattern 14.11 Recursive Composite 565
Pattern 14.12 Invariants from Association Loops 567

14.3 Video Case Study: Abstract Business Model 569
14.4 Video Business: Use Case Refinement 575

Pattern 14.13 Action Reification 580



Contents xi

Chapter 15 How to Specify a Component 581

15.1 Patterns for Specifying Components 581
Pattern 15.1 Specify Components 583
Pattern 15.2 Bridge Requirements and Specifications 585
Pattern 15.3 Use-Case-Led System Specification 587
Pattern 15.4 Recursive Decomposition: Divide and 

Conquer 589
Pattern 15.5 Make a Context Model with Use Cases 591
Pattern 15.6 Storyboards 595
Pattern 15.7 Construct a System Behavior Spec 596
Pattern 15.8 Specifying a System Action 600
Pattern 15.9 Using State Charts in System Type Models 603
Pattern 15.10 Specify Component Views 607
Pattern 15.11 Compose Component Views 609
Pattern 15.12 Avoid Miracles, Refine the Spec 611
Pattern 15.13 Interpreting Models for Clients 613

15.2 Video Case Study: System Specifications 616
15.3 System Context Diagram 621
15.4 System Specification 626
15.5 Using Model Frameworks 634

Chapter 16 How to Implement a Component 639

16.1 Designing to Meet a Specification 639
Pattern 16.1 Decoupling 641
Pattern 16.2 High-Level Component Design 643
Pattern 16.3 Reifying Major Concurrent Use Cases 644
Pattern 16.4 Separating Façades 646
Pattern 16.5 Platform Independence 649
Pattern 16.6 Separate Middleware from Business 

Components 650
Pattern 16.7 Implement Technical Architecture 652
Pattern 16.8 Basic Design 654
Pattern 16.9 Generalize after Basic Design 660
Pattern 16.10 Collaborations and Responsibilities 661
Pattern 16.11 Link and Attribute Ownership 664
Pattern 16.12 Object Locality and Link Implementation 665
Pattern 16.13 Optimization 667

16.2 Detailed Design Patterns 669
Pattern 16.14 Two-Way Link 670
Pattern 16.15 Role Decoupling 672
Pattern 16.16 Factories 674



xii CONTENTS

Pattern 16.17 Observer 676
Pattern 16.18 Plug-Points and Plug-Ins 678

16.3 Video Case Study: Component-Based Design 680

Appendix A Object Constraint Language 689

Appendix B UML Perspective 697

Appendix C Catalysis Support Tools, Services, and Experiences 703

Notes 705

Glossary 715

Index 729



xiii

Businesses, and the worlds in which they operate, are always changing. Nearly all busi-
nesses use software to support the work they do, and many of them have software embed-
ded in the products they make. Our software systems must meet those business needs,
work properly, be effectively developed by teams, and be flexible to change.

First Requirement of Software: Integrity

The first two points are old news; since 1968, the software community has been inventing
methods to help understand and meet the business requirements. The average piece of
desktop software may work properly in some average sense; perhaps the occasional bug is
better than waiting until developers get it perfect. On the other hand, these days so much
more software is embedded—in everything from vehicle brakes, aircraft, and smart cards
to toasters and dental fillings.1 Sometimes we should care deeply about the integrity of
that software. The techniques described in this book will help you get the requirements
right and implement them properly.

Second Requirement of Software: 
Team Development

To enable development by distributed teams, work units must be separated and partitioned
with clear dependencies, architectural conventions and rules must be explicit, and inter-
faces must be specified unambiguously. Components will get assembled by persons differ-
ent from the developers, potentially long after they are built; the relationships between the
implementations, interface specifications, and eventual user requirements must be testable
in a systematic way.

This book’s techniques will help you build work packages and components with these
properties.

1. Teeth have historically been a central part of a user’s interface.

Preface



xiv PREFACE

Third Requirement of Software: Flexibility

To stay competitive, businesses must continually provide new products and services; thus,
business operations must change in concert. Banks, for example, often introduce new
deals to lure customers away from the competition; today, they offer more new services
via the phone and the Internet than through branch offices. Flexible software, which
changes with the business, is essential to competitiveness.

Flexibility means the ability not only to change quickly but also to provide several vari-
ants at the same time. A bank may deploy the same basic business system globally but
needs to be able to adapt it to many localized rules and practices. A software product ven-
dor cannot impose the same solution on every customer nor develop a solution from
scratch each time. Instead, software developers prefer to have a configurable family of
products.

This book’s techniques will help you partition and decouple software parts in a system-
atic way.

Flexible Software

The key to making a large variety of software products in a short time is to make one piece
of development effort serve for many products. Reuse does not mean that you can cut-and-
paste code: The proliferation that results, with countless local edits, rapidly becomes an
expensive maintenance nightmare.

The more effective strategy is to make generic designs that are built to be used in a
variety of software products. Such reusable assets include code as well as models, design
patterns, specifications, and even project plans.

The following are two key rules for building a repertoire of reusable parts.

• They should not be modified by the designers who use them. You want only one ver-
sion of each part to maintain; it must be adaptable enough to meet many needs, perhaps 
with customization but without modification.

• They should form a coherent kit. Building things with a favorite construction toy, such 
as Legos, is much easier and faster than gluing together disparate junk you found in the 
back of the garage. The latter may be parts, but they weren’t designed to fit together.

Reusable parts that can be adapted, but not modified, are called components; they range
from compiled code without program source to parts of models and designs.

Families of Products from Kits of Components
Hardware designers have been building with standardized components for years. You
don’t design one new automobile; rather, you design a family of them. Variations are made



Preface xv

by combining a basic set of components into different configurations. Only a few compo-
nents are made specifically for one product. Some are made for the family of products,
others are shared with previous families, and still others are made by third parties and
shared with other makes of cars.

We can do the same thing with software, but we need technologies for building them,
and assembling them, into products as well as methods for designing them.

Component Technology
For a component to be generic, you must provide ways that your clients’ designers can
specialize it to their needs. The techniques include parameters passed when a function is
called; tables read by the component; configuration or deployment options on the compo-
nent; plug-points—a place where the component can be plugged into a variety of other
components; and frameworks, such as a workflow system, into which a variety of compo-
nents can be plugged.

Object-oriented (OO) programming underscores the importance of pluggability, or
polymorphism: the art and technology of making one piece of software that can be coupled
with many others. People have always divided programs into modules; but the original
reasons were meant to divide work across a team and to reduce recompilation. With plug-
gable software, the idea is that you can combine components in different ways to make
different software products—in the same way that hardware designers can make many
products from a kit of chips and boards—and can do so with a range of delayed binding
times (see Figure P.1).

The other great idea reemphasized in OO programming is the separation of concerns.
The idea is that each object or component, or reusable part, should have one responsibility
and that its design should be as decoupled (independent) as possible from designs and
even the existence of other components.

Figure P.1 Component-based assembly, any binding time.



xvi PREFACE

Both these ideas work whether or not you use an OO programming language and
whether you are talking about objects in programming, large distributed systems, or
departments in a business.

Where Do We See Components?
On a small scale, pluggable user-interface widgets form components. Several such kits
come with visual builders, such as Visual Basic, which help you plug the components
together. Kits also may extend to small parts outside the user interface domain (for exam-
ple, VisualAge and JavaBeans). These components all work within one executable pro-
gram.

On a larger scale, self-contained application programs can be driven by each other;
object linking and embedding/Component Object Model (OLE/COM), UNIX pipes and
signals, and Apple events allow this to happen. Communicating components can be writ-
ten in different languages, and each can execute in its own space.

On a still larger scale, components can be distributed between different ma-chines. Dis-
tributed COM (DCOM) and Common Object Request Broker Architecture (CORBA) are
the latest technologies; various layers underneath them, such as TCP/IP, provide for more
primitive connections. When you deploy components on this scale, you must worry about
new kinds of distributed failures and about economies of object location. Workflow, repli-
cation, and client-server, or n-tier architectures, provide frameworks into which this scale
of component can fit. Again, there are tools and specialized languages that can be used to
build such systems. Enterprise JavaBeans and COM+ are newer technologies that relieve
the component developer of many of the worries of working with large-grained server-
side shared components.

A component, on the larger scale, often supports a particular business role played by an
individual or department with responsibility for a particular function. Businesses talk
increasingly of open federated architectures, in which the structure of distributed compo-
nents mirrors the organizational structure of the business. When reorganizing a business,
we need to be able to rewire software in the same way.

Challenges of Component-Based Development
The technology of component-based systems is becoming fairly well established; not so
the methods to develop them. To be successful, serious enterprise-level development
needs clear, repeatable procedures and techniques for development, well-defined and stan-
dard architectures, and unambiguous notations whereby colleagues can communicate
about their designs.

A key technique for building a kit of components is that you must define the interfaces
between the components very clearly. This brings us back to integrity. If we are to plug
together parts from different designers who don’t know one another, we must be very clear
about what the contract across the connection is: what each party should provide to and
expect of the other.



Preface xvii

In component technologies, such as COM, CORBA, and JavaBeans, the emphasis is on
defining interfaces. (The idea has a long history, however, stretching back to experimental
languages such as CLU in the 1970s.) The same thing is true no matter what the technol-
ogy: UNIX pipes, workflow, RPC, common access to a database, and the like. Whenever a
part can fit into many others, you must define how the connection works and what is
expected of the components that can be plugged in.

In Java or CORBA, though, interface means a list of function calls. This definition is
inadequate for good design on two counts. First, to couple enterprise-scale components,
we need to talk in bigger terms: A connection might be a file transfer or a database trans-
action involving a complex dialog. So we need a design notation that doesn’t always have
to get down to the individual function calls; and it should be able to talk about the mes-
sages that come out of a component as well as those that go in. JavaBeans (and Enterprise
JavaBeans) go some of the way in this direction. In Catalysis, we talk about connectors to
distinguish higher-level interfaces from basic function calls.

Second, function calls that are described only by their parameter signatures do not tell
enough about the expected behavior. Programming languages do not provide this facility
because they are not intended to represent designs; but we need to write precise interface
descriptions. The need for precision is especially acute because each component may
interface with unknown others. In the days of modular programming, designers of coupled
modules could resolve questions around the coffee machine; in a component-based
design, the components may have been put together by two people and assembled inde-
pendently by a third.

To develop a coherent kit of components, we must begin by defining a common set of
connectors and common models of what the components talk to one another about. In a
bank, for example, there is no hope of making the components reconfigurable unless all of
them use the same definition of basic concepts such as customer, account, and money (at
their connectors, if not internally).

Once a common set of interfaces and a common architectural framework are laid down,
many designers can contribute components to the kit. Products can then be assembled
from the components (see Figure P.2).

What Does Catalysis Provide?

If this component-based scenario seems far-fetched, recall the fate of Babbage’s Analyti-
cal Engine. He couldn’t make it work because it had so many parts and they didn’t have
the machining techniques to make the parts fit together well enough. Today’s machining
has enabled working versions to be made. As our software industry improves its skills and
consistency in making matching parts, we will also make products from components.

This book gathers together some of the techniques we see as necessary for that move-
ment into a coherent kit. To make component-based development work, we need our best
skills as software designers, and we need to reorganize the ways in which software is pro-
duced.



xviii PREFACE

The techniques and method in Catalysis provide the following:

• For component-based development: How to precisely define interfaces independent of 
implementation, how to construct the component kit architecture and the component 
connectors, and how to ensure that a component conforms to the connectors.

• For high-integrity design: Precise abstract specifications and unambiguous traceability 
from business goals to program code.

• For object-oriented design: Clear, use case driven techniques for transforming from a 
business model to OO code, with an interface-centric approach and high quality assur-
ance.

• For reengineering: Techniques for understanding existing software and designing new 
software from it.

Catalysis and Standards
Catalysis uses notation based on the industry standard Unified Modeling Language
(UML) now standardized by the Object Modeling Group (OMG). Both authors have been
involved in the OMG standards submissions for object modeling; Desmond’s company
helped define and cosubmit UML 1.0 and 1.1.

Figure P.2 Products can be assembled from components supplied 
by many sources.

Software Product

Software Product

Software Product

Software Product

Component

Component

Component

Component
Component

Component

Component kit architecture

Common connector standards

Common representations

Common infrastructure services

uses



Preface xix

Catalysis has been central to the component-specification standards defined by Texas
Instruments and Microsoft, the CBD-96 standards from TI/Sterling, and services and
products from Platinum Technology; it has been adopted by several companies as their
standard approach for UML-based development. It fits the needs of Java, JavaBeans,
COM+, and CORBA development and supports the approach of RM-ODP. It also sup-
ports systematic development based on use cases.

Where Does Catalysis Come From?
Catalysis is based on, and has helped shape, standards in the object modeling world. It is
the result of the authors’ work in development, consulting, and training and is based on
experience with clients from finance, telecommunications, aerospace, GIS, government,
and many other fields.

Many ideas in Catalysis are borrowed from elsewhere. The Bibliography section lists
many of the specific references. We can identify and gratefully acknowledge general
sources of the principal features of Catalysis.

• We began applying rigorous methods to object analysis with OMT [Rumbaugh 91]. Integrat-
ing snapshots, transactions, state models, treating system operations and analysis mod-
els separately from design classes, and the basic ideas of refinement of time granularity 
date from Desmond’s work at this time.

• The rigorous aspects (specifications, refinement, and the influence of VDM and Z) 
were seen particularly in some previous OO development methods: Fusion 
[Coleman93], Syntropy [Cook 94], and Bon [Meyer88]. Our interest in applying rigor-
ous methods, such as VDM and Z to objects goes back to Alan’s Ph.D. thesis [Wills91].

• Collaborations as first-class design units were first introduced in Helm, Holland, and 
Gangopadhyay’s “contracts” and developed in Trygve Reenskaug’s [Reenskaug95] 
method and tool OORAM.

• Abstract joint actions come from Disco [Kurki-Suonio90], the OBJ tradition 
[Goguen90], and database transactions as well as from the general notion of the Objec-
tory use case.

• Component connectors have been mentioned in a variety of patterns in recent years. 
They date back to Wong’s Plug and Play Programming work [Wong90], previous work 
(mostly in the Smalltalk arena) on code frameworks, and architecture work on compo-
nents and connectors [Shaw96b].

• Process patterns are a corruption of work by several of the contributors to the Pattern 
Languages of Programming conferences.

During the development of Catalysis, we have also had a great deal of input and feed-
back from many clients and fellow consultants, teachers, and researchers (see Thank You
section of this Preface).



xx PREFACE

How to Read This Book

Don’t read it all in one night. If you think this is a bit long for a Preface, wait until you see
the rest of the book. What background will you need? Some basic knowledge of UML,
OMT, Booch, or Fusion modeling will help; the succinct UML summary by Martin
Fowler is quite readable [Fowler98]. If you already know UML, take an early look at the
UML perspective in the Appendixes.

Begin with Chapter 1—a tour that leads you through the essence of a design job. Along
the way it bumps into all the main Catalysis techniques and ends with a summary of our
approach and its benefits. Then read the introduction to each subsequent part (I–V) to get
a feel for the book’s structure. Most of the subsequent chapters are designed so that you
can read the first sections and the summary at the end and then skip to the next chapter.
After you’ve gone through the book this way, go back and dig down into the interesting
stuff.

There are places in the book where we discuss some of the darker corners of modeling,
and it’s safe to skip these sections. We have marked most of these sections with this icon.
There are also places where we illustrate implementations using Java; if this is new to you,
you can usually skip these bits as well.

Chapters 2, 3, and 4 are groundwork: They tell you how to make behavioral models and
what they mean and don’t mean. Chapter 5 is essential: how to document a design. Chap-
ter 6, Abstraction, Refinement, and Testing, is about how to construct a precise relation-
ship between a business model and the program code. Chapters 7 through 9 (Using
Packages, Composing Models and Specifications, and Model Frameworks and Template
Packages) deal with breaking models into reusable parts and composing them into specifi-
cations and designs. Chapters 10, 11, and 12 (Components and Connectors, Reuse and
Pluggable Design: Frameworks in Code, and Architecture) are about building enterprise-
scale software from reusable components. Chapters 13 through 16 are about the process of
applying Catalysis, exploring a case study in considerable detail. Depending on your role,
here are some suggested routes.

• Analysts: Mainstream OO analysis is difficult if you are used to structured methods. In
some ways our approach is simpler: You explore system-level scenarios, describe the sys-
tem operations, capture terms you use in a static model of the system, and then formalize
operations using this model. In other ways, our approach is more difficult; we do not like
fuzzy and ambiguous analysis documents, so some of the precision we recommend may
be a bit unfamiliar for early requirements’ activities. Read Chapters 1 through 7, 9, and 13
through 15.
• Designers: Object-oriented design is as novel as OO analysis. Again, in some ways our
approach is simpler. You start with a much clearer description of the required behaviors, and
there is a default path to basic OO design that you can follow (see Pattern 16.8, Basic
Design). For doing component-based design, you will use the techniques of an analyst,
except at the level of your design components.

If you are already an OO designer, be prepared for a different focus. First, you under-
stand the behavior of a large-grained object (system, component) as a single entity. Then



Preface xxi

you build an implementation-independent model of its state, and then design its internal
parts and the way they interact. You strictly distinguish type/interface from class and
always write an implementation class against other interfaces. Read Chapters 1 through 6
(omit sections that go into specification details), 7, 9, 10 through 12, and 16.
• Implementors: OO implementation should become easier when the task of satisfying
functional requirements has been moved into the design phase. Implementation decisions
can then concentrate on exploiting the features of a chosen configuration and language
needed to realize all the remaining requirements.
• Testers: Testing is about trying to show that an implementation does not meet its specifi-
cation by running test data and observing responses. Specifications describe things that
range from what a function call should do to which user tasks the system must support; the
way to derive tests varies accordingly. Read Chapters 1 through 6. Also, read about QA
(see Section 13.1, Model, Design, Implement, and Test—Recursively; and Section 13.2,
General Notes on the Process), and insist that it be followed well before testing.
• Project managers: Consider your goals for using components or objects carefully and
the justifications for building flexible and pluggable parts (Chapter 10). Watch out for the
project risks, often centered on requirements and infrastructure (Chapter 13). Together
with the architect, design and follow the evolution of the package structure (Chapter 7)
and how it gets populated; if there is such a thing as development architecture, that is it.
Recognize the importance of a precise vocabulary shared by the team (Chapters 2 and 3).
Read Chapters 1 through 5, and (optionally) Chapters 6, 7, 12, and 13. Consider starting
with “Catalysis lite” (www.catalysis.org).
• Tool builders: Catalysis opens new opportunities for automated tool support in model-
ing, consistency checking, traceability, pattern-based reuse, and project management.
Read the book.
• Methods and process specialists: Some of what we say is new; the parts fit together, and
the core is small, so look closely. Read the book.
• Students and teachers: There is material in this book for several semester-long courses
and several research projects, and perhaps even for course-specific books. Few courses are
based on a rigorous model-based approach to software engineering. We have successfully
used the material in this book in several one-week courses and workshops and know of
several universities that are adopting it. If you want to use some of the illustrations in this
book in your presentations, you need to have permission. Please contact Addison Wesley
Longman, Inc. at the address listed on the copyright page.
• Others: The activities and techniques in this book apply to both large and small projects,
with different emphases and explicit deliverables, and to business modeling, bidding on
software projects, out-tasking, and straightforward software development, even though the
rigor in our current description might intimidate some. See www.catlysis.org.



xxii PREFACE

Where to Find More

When you’ve finished the book and are eager for more, there is a Catalysis Web site—
www. catalysis.org—that will provide additional information and shared resources, poten-
tially including the following:

• Example models, specification, documentation, and frameworks
• Discussion of problems this book has not yet fully addressed: concurrency, distribution, 

business process models, and so on
• Web-based discussion forums and mailing lists for users, teachers, consultants, 

researchers, tire-kickers, and lost souls to share experiences and resources
• Free as well as commercial tools that support the Catalysis development and modeling 

techniques
• On-line versions of the book and development process patterns
• Modeling exercises and solutions for university use
• Resources to help others use and promote Catalysis, including short presentations to 

educate fellow modelers, designers, and managers; summary white papers that can be 
handed out on Catalysis; and so on.

In addition, there are Web sites for each author’s company. Each contains a great deal
of interesting material, which will continue to be updated:

• http://www.iconcomp.com/catalysis—ICON Computing, a Platinum Technology com-
pany (www.platinum.com)

• http://www.trireme.com/catalysis—TriReme International Limited

Thank You

Thanks to our editors—Mike Hendrickson and Debbie Lafferty—for their patience and
encouragement; and to our production coordinator, Marilyn Rash, and her team—Betsy
Hardinger, copyeditor; Maine Proofreading Services; and Publisher’s Design and Produc-
tion Services for expert, speedy art rendering and typesetting.

Our book reviewers bravely hacked through initial drafts and greatly helped improve
this book. To Joseph Kiniry (a heroic last-ditch effort), Doug Lea, Jennie Beckley, Ted
Velkoff, Jay Dunning, and Gerard Meszaros—many thanks.

Several others provided comments and ideas: John McGehee, Stuart Kent, Mike Mills,
Richard Mitchell, Keith Short, Bill Gibson, Richard Veryard, Ian Maung, Dale Campbell,
Carol Kasmiski, Markus Roësch, Larry Wall, Petter Graff, and John Dodd. Aamod Sane
and Kevin Shank helped sort out issues with nested packages. We would also like to thank,
for useful technical discussions and support: Balbir Barn, Grady Booch, John Cameron,



Preface xxiii

John Cheesman, Steve Cook, John Daniels, Chris Dollin, John Fitzgerald, Ian Graham,
Brian Henderson-Sellars, Benedict Heal, John Hogg, Trevor Hopkins, Iain Houston, Cliff
Jones, Kevin Lano, Doug Lea, Clive Mabey, Tobias Nipkow, David Redmond-Pyle,
Howard Ricketts, John Robinson, Jim Rumbaugh, Susan Stepney, Charles Weir, Anthony
Willoughby, and Jim Woods.

We are very grateful to many others for their feedback and suggestions. For their
encouragement and support, thanks to Clive Menhinick at TriReme and the team at ICON;
and, from Desmond, a very special thanks to Mama, Tootsie and Clifford, and to Tina’s
parents. Alan would like to thank his remaining friends.

Should these good folks deny any responsibility for the final product, we will gladly
take the blame for all inconsistencies and omissions; we know there are some lurking in
these pages, and hope you find this work useful despite them.

Desmond Francis D’Souza Alan Cameron Wills







Objects, Components, 
and Frameworks 
with UML
The CatalysisSM Approach


