
 Chapter 9 Model Frameworks and 

Template Packages 

It isn’t only chunks of code that can be made into reusable assets. Designs and specifica-
tions, too, can be separated into parts, which can be kept in a library and subsequently
combined in many different configurations. We call them model frameworks.

The basic tool for representing and combining frameworks is a generic form of pack-
age, called a framework or template package.

Pieces of design combine to produce only designs, and they still need to be imple-
mented. But if you’ve read the book this far, you’ll agree that a design represents much of
the major decision-making that goes into finished code; being able to put a design together
rapidly from prefabricated parts is a valuable facility. Moreover, later we will outline (Pat-
tern 11.1, Role Delegation) a uniform design and implementation style that also lets you
plug code components together.

This chapter deals with model frameworks and explains how to build and compose them
using template packages. It also discusses how the fundamentals of the entire Catalysis
approach are themselves defined as such frameworks and shows how they can form the basis
for a modeling language that is truly extensible.

9.1 Model Framework Overview

After you’ve been modeling and designing object systems for a while, you start noticing
certain patterns recurring. We can see the same set of relationships, constraints, or design
transformation in different designs. We call this set of relationships a model framework.
Many popular design patterns boil down to a model framework combined with surround-
ing how-to, when-to, and whether-to advice.

A suitable tool should be able to support the building of models and designs by applica-
tion of model frameworks. Suppose, for example, that our business model has a type Stock
with a numeric attribute level; choosing a package of user-interface pieces, we find a type
Meter for displaying numeric readings. 
339



340 PART III FACTORING MODELS AND DESIGNS
Now we want to specify that Meters can be used to display Stock levels, using the well-
known Observation1 pattern. As usual, we can focus on different aspects of a model in dif-
ferent diagrams, so we don’t have to repeat all the stuff that has already been said about
the two types. We need only define the extra attributes and operations needed to connect
them. 

This is where model frameworks are useful. Let’s assume that because Observation is a
common pattern, we have defined a model framework for it; using it gives us an abbrevi-
ated way of defining what we need (see Figure 9.1).

The vehicle for a framework is a generic, or template, form of package. Inside the tem-
plate, some types and their features can be defined using placeholder names. Looking at
its definition in the library, we find that the Observation template has two type placehold-
ers Subject and Observer; we have imported that package, substituting Stock and Meter.
The sustituted definition becomes part of the model. In other words, whatever attributes
and operations are defined for Subject within the template’s definition are now defined for
Stock. Other names can be substituted, too. The template uses an attribute called value for
the aspect of the Subject that we want observed; so we substitute it for the Stock’s level.

© framework A template package; a package that is designed to be imported 

with substitutions. It “unfolds” to provide a version of its contents that is specialized based 

on the substitutions made. (Note that our usage of framework is somewhat broader than its 

traditional usage as a collection of collaborating abstract classes.) 
A framework can abstract the description of a generic type, a family of mutually depen-

dent types, a collaboration, a refinement pattern, the modeling constructs themselves, and 

even a bundle of fundamental generic properties (associative, commutative, and so on). 
Frameworks are themselves built on other frameworks. At the most basic level, the structure 

of frameworks represents the basis for the organization of all models. 

Notice that what the Observation framework does is to represent a cluster of design
decisions about how two types of objects should collaborate to provide the required effect.
It does not discuss any other roles and collaborations of those objects, and it decouples this
design work from any specific domain. This is one of the most effective uses of model
frameworks.

1. State in one object tracks state changes in another; see Figure 9.11.

Figure 9.1 Example of applying a model framework.
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A pattern is a set of ideas that can be applied to many situations. A framework is at the
heart of many patterns, but a pattern usually also includes less-formal material about alterna-
tive strategies, advice on when to use it, and so on. When you keep a framework in a library,
it should be packaged with this documentation.

Some programming languages have class templates or generic classes; UML has them,
too. The notation is slightly different, but a class template is a model framework that con-
tains only one class. We’ll discuss class templates in more detail later.

A variety of techniques can be used to build executable frameworks, from which pro-
grams can be quickly generated by subclassing, by plugging in new components, and by
interpreting purpose-built languages. We will look at these kinds of frameworks in Chap-
ter 11, Reuse and Pluggable Design: Frameworks in Code. This chapter is about frame-
works of abstract models.

Tools that support model frameworks and templates should allow you to unfold each
application of a model framework so as to see the full resulting model with all the substitu-
tions made. Ideally, the tool should keep the definitions of the framework, the original defi-
nitions of the types to which it is applied, and each diagram in which the framework is
applied. If the user changes any of these, the resulting unfolded model should change in step.
Furthermore, the tool should allow you to define your own frameworks in the same notation
as the models themselves.

Among current popular tools, there is some support for templates in a restricted way.
Typically, the template works more like a script: a series of operations that is applied once
to a model, adding the necessary attributes and operations. This technique has the disad-
vantage that the simpler original definitions are lost and changes are less easy to make. It
is also less easy to see what the template is about, because it is written in a scripting lan-
guage.

In summary, templates provide a powerful way to capture reusable model frameworks,
whether at an abstract specification level or down in the detailed design. In particular, tem-
plates are good for capturing collaborations. Even without tools, the template notation is a
useful form of abbreviation even when the template is not very rigorously defined. It’s an
easy way to say on a diagram, “This, this, and this type have such-and-such a relation-
ship.”

The rest of this chapter begins by looking at how frameworks work to help build static
models using only attributes and associations; then we will go on to deal with actions.
Subsequent sections add further ideas, and a summary of concepts appears at the end of
the chapter.

9.2 Model Frameworks of Types and Attributes

Suppose a plumbing company asks us to do an analysis of its business preparatory to get-
ting some computerized support. After a day or two with them, we arrive at the central
model shown in Figure 9.2. Each Plumber is at any one time scheduled to do a list of Jobs,
each of which takes place on some date and is for a particular Customer. There are only a
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certain number of kinds of Job, and each is described by a JobDescription. Among other
things, this model says which Skills are required for the job (electrical wiring, excavation,
denial of responsibility, and so on). Each Plumber is qualified with a list of Skills. A key
invariant is that no Plumber should be assigned to a Job for which he or she lacks the
appropriate skills—or, as we’ve written it in the invariant, every Job’s description’s
requirements must be a subset of the qualifications of the assigned Plumber.

There’s more to the model than this, of course, and work continues. Meanwhile, our
consultancy gets involved in another modeling contract, this one with a commercial teach-
ing organization. We soon realize that we can make some savings here: Course Offerings,
which happen on particular dates, are occurrences of Courses—just as Jobs and JobDe-
scriptions; and Courses call for certain Instructor Skills (arm-waving, blustering, hypnosis,
and the like).

So we generalize our model into a framework by creating a template package, as shown
in Figure 9.3. (We will later drop the «framework» stereotype. We’ve taken the opportu-
nity to add more details, particularly about Resources not being double-booked.
(TimeInterval will have to be defined somewhere; we’ve assumed it has a Boolean func-
tion noOverlap that compares two TimeIntervals.)

Now our plumbing model can easily be generated from a framework application (see
Figure 9.4). Notice that several of the names inside the framework definition are written
within angle brackets (< >); they are placeholders that should be identified with actual
type names when the framework is applied. This is the effect of the labeled arrows when
the framework is applied.

In the resulting model, each type has all the features given to it explicitly (such as, the
Job’s Customer) and also all the features defined by the framework, as name-substituted
by the application. Working out the complete model is called unfolding. A good tool can
show an unfolded version on demand. 

Turning again to seminar scheduling, we produce the model shown in Figure 9.5. This
happens to apply the same framework twice. Both Rooms and Instructors are constrained
to provide the right stuff: Instructors have skills, Rooms have various facilities (projectors,

Figure 9.2 Model of allocating plumbers to jobs.
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whiteboards), and neither must be overbooked. We have also added an extra idea: that
instructors’ skills, determined by dated certifications, define the provides association from
the framework. We have modeled this explicitly and tied it into the provides association
with an invariant.2

This example also shows name substitution in the form [framework-name \ applied-name
]. We have used it to rename some of the associations to avoid Courses having different

Figure 9.3 Model of resource allocation framework.

Figure 9.4 Application of resource allocation to plumbing. 
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attributes with the same name. This text form and the arrows are equivalent. It is sometimes
convenient to write instead of drawing pictures:

ResourceAllocation [JobCategory \ Course
[reqs \ roomreqs ],

Resource \ Instructor ...]

When unfolded, statements from each framework application, after the necessary sub-
stitutions are made, are composed with each other and with any local definitions that are
applicable. The unfolding is shown in Figure 9.6. Clearly, using frameworks reduces com-
plexity and duplication. It also provides a higher-level view of the model, making it clear
that each loop of four associations forms part of a single relationship, the one we’ve called
Resource Allocation. So frameworks are a useful kind of abstraction.

© unfolding Depicting the results of an import, possibly including substitutions, in the context 
of the importing package with the appropriate elements substituted.

© framework applicaton An import of a framework with substitutions; usually depicted 

graphically using a UML “pattern” symbol, with labeled lines for the type substitutions and 

text annotations for finer-grained substitutions (attributes, actions, and so on).

9.2.1 Framework Applications Are Not Subtypes
Could we have used subtyping to express the similarity between Courses and plumbers’
JobDescriptions (Figure 9.7)? Not really. This would imply that plumbing Jobs might
require (or could be used with) overhead projectors, and other mix-ups. It isn’t the individ-
ual types that are specialized but rather the entire group of them along with their relation-
ships and interactions.

2. The UML symbol for a pattern is a dashed use case, although pattern semantics have nothing to 
do with UML use cases. UML 1.1 does not have any semantics for patterns, only a notation; perhaps 
our semantics will be adopted.

Figure 9.5 Double application of resource allocation to seminar scheduling.
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Another example is the faulty old syllogism “Animals eat Food; Cows are Animals;
Beefburgers are Food; hence Cows eat Beefburgers.” The mistake is that the first state-
ment should not be taken to mean that every object conforming to the type Animal can eat

every instance of the type Food. A more explicit statement would be “For every subtype A
of Animal, there is a subtype F of Food such that all members of A can eat any member of
F.” Using frameworks, this can be written as shown in Figure 9.8.

Now we can explicitly apply the framework to those pairs that are acceptable (see Fig-
ure 9.9). The association eats might represent the assignment of food items to specific ani-

Figure 9.6 Unfolded view after applying frameworks.

Figure 9.7 Why subtyping does not correctly reflect frameworks.
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mals in an automatic feeding system. We thus ensure that instances of Grass will be the
only members of Food proffered as fodder to any Cow instance.3

A framework can use nonplaceholder types, such as Animal and Food. So by applying
the framework to Cat and to Cow, we are asserting that both of them are subtypes of Ani-
mal.

9.3 Collaboration Frameworks

A collaboration describes the interactions between a group of objects that are designed to
work together. They send one another messages intended to attain a goal that they are
designed to achieve jointly. Much of the skill of object-oriented design is about designing
collaborations. The CRC technique (classes, responsibilities, collaborations) is basic to

OO design and is all about dividing the responsibilities for a task among collaborating
objects. These design decisions distinguish OO programming from merely structured
design, in which all the work is lumped into one program. In return for the extra decision
making (if you do it well), you get a decoupled design that is flexible and extensible.
Doing it badly leads to an unmanageable mess.

Figure 9.8 A gastrology framework.

3. Would that it were so.

Figure 9.9 Application of gastrology framework.
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The careful design of collaborations is of such value that, when you have done it well,
it is worth recording the ideas and using them again. This is the motivation of many pat-
terns. Some tools explicitly provide a way to define collaborations and then compose them
into bigger designs.

In Catalysis, frameworks are our reusable pieces of design; so now let’s use them for
reusable pieces of collaboration. The interesting thing about a collaboration is that it
defines the interactive relationship between two or more objects; but when you define it
by itself, you avoid saying anything about the other relationships each role player might
have. 

As a real-world example, if you describe what it means to be a parent, you’re talking
largely about your interactions with your children and the effects you have on one another.
When you describe what it means to be an employee, that’s a different role with a different
set of interactions with an object described in different terms. But although the collabora-
tions can be described separately, the fact is that every object usually plays a role in sev-
eral collaborations: perhaps you are both a parent and an employee. Each object conforms
to the spec of its roles in the various collaborations it takes part in. 

Separate collaborations can have effects on the same object attributes. Parenthood
affects the bank balance; fortunately, that’s the same attribute that is improved by employ-
ment. So when we combine roles in one object, we usually must take into consideration
this interference between the different roles. Indeed, if two roles didn’t interfere in this
way, it wouldn’t make any difference whether they were assigned to the same object.

The Subject-Observer collaboration is a more technical example. In Figure 9.10, we try
to show each object’s external interface as split into different roles in different collabora-
tions, whereas the internal attributes may be shared. The collaboration governs two roles:
Subject and Observer. The Subject has some sort of value, and the Observer has another;
let’s call it its value_view. An update action is initiated by the Subject to keep the Observer
up-to-date. 

Of course, any pair of classes that conforms to this relationship in some chunk of program
code will probably not be called Subject and Observer. They’ll have bigger, more interesting
roles in their program, perhaps as pieces of a GUI or proxies in a distributed system. But this
is exactly what frameworks are about: We can define only the aspects about which we have
something to say and then allow users to use other names and extend the definitions when
they apply our framework.

So, as we’ve shown in Figure 9.10, we really know only about part of each object we’re
describing: The rest depends on whoever chooses to use the framework. In this example,
we don’t know how or why the Subject’s value gets changed. We know only that it can
happen and that when it does, the Observer must be updated.

9.3.1 Using Invariant Effects in Collaboration Frameworks
The big difference between this framework and the ones we have discussed so far is that
this one has actions. In fact, there are several:

• The update action between the Subject and Observer
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• All the other actions we don’t know about, which might change the Subject’s value

Specifying the first one is easy:

action Observer :: update ( )
post value_view = subject.value

- - I now correctly reflect my subject’s value

(As always, an action might abstract a sequence of smaller messages, but we’ll leave it to
someone else to refine it.)

The crucial thing we have to say in this framework is that the update action occurs as
part of any other action that changes the Subject’s value. To say this formally, we use an
effect invariant (see Section 3.5.4, Effect Invariants) on the external section of the collabo-
ration (see Section 4.8.1, External Actions). It is a postcondition without an action name
or signature:

inv effect Subject :: 
post value@pre <> value � [[ observers.update() ]]

-- Any action that changes my value also ensures
that the observers correctly reflect the new value.

(Recall that [[anAction]] means that the postcondition of anAction is achieved as part of
this action. If there are several observers, the same applies to all of them.)

The idea is that this postcondition applies to every other action performed by a Subject
no matter where the rest of the spec of that action comes from. So when we use this frame-
work, we must and the effect to all the postconditions of each of the other operations.
When we finally come to program the Subject class (or rather the class playing the Subject
role when we’ve applied the Observation framework), we’ll find that wherever the spec
tells us to change its value, we must also update the corresponding Observer (or whatever
the user has changed the names to).

Figure 9.10 Collaborations are about parts of objects.
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9.3.1.1 Completing This Example

Our framework can be applied to any pair of types and will add to them the necessary
specification to say that one of these types can be an observer of the other. But there must
be some way of telling which Subject instances are observed by which Observer
instances. We can define that as an association and add another action for making links
that belong to it.

Figure 9.11 on the next page shows the collaboration framework as we would normally
draw it. The subject-observers association links particular instances of the two types, and
the update action applies only to Observers that have a current Subject. The register action
links a particular Subject to a particular Observer. It is a joint action: We have not speci-
fied here how it happens or even to whom you send the message to make it happen; we
have specified only that there should be such an action, with responsibility for executing it
distributed somehow between Subject and Observer. When designers apply the frame-
work to a particular pair of types, it tells them to provide this facility.

Figure 9.11 Collaboration template.
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9.3.1.2 More Abstract Models

To illustrate how Catalysis lets you choose how detailed or abstract to be, we could have
written the overall requirement without mentioning the update action at all, with an even
less detailed external effect invariant:

inv effect Subject:: 
post value@pre <> value ==> 

observer.value_view = value
-- Any action that causes a change in value 

must ensure that the observer’s latest ‘value_view’ 
is the same as our latest ‘value’

Further, we could have written an invariant external to the collaboration, defining the
overall goal and saying nothing about how it is achieved:

inv Observer :: subject.value = value_view

9.3.2 Applying a Collaboration Framework
One of the authors’ clients designed a call management system for telephone sales teams.
One of the types in the model was a CallQueue: the list of calls waiting for a particular group
of operators. Let’s suppose we have that type defined in one package; in another package, we
have a kit of GUI widgets, one of which is a Thermometer—a useful display for numeric
values. Figure 9.12 shows parts of their models.

Figure 9.12 Target type model for using observation.

Figure 9.13 Framework application and substitutions.
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Now we are designing the bridge between business logic and GUI, and we make a
package into which we import (among other things) the CallQueue and Thermometer.
We’d like to make it possible for the “temperature” of a Thermometer (the number it dis-
plays) to be used to show the number of Calls on a particular CallQueue. So we apply our
Observation framework as shown in Figure 9.13. This has the effect of adding the neces-
sary specifications. Now let’s suppose we have a tool that can display the unfolded model
if we wish; it shows the result of applying the framework and gives the spec (see Figure
9.14).

Notice that the Observer and Subject names have been replaced. (We’ve actually made
a slight abbreviation here: The addCall and getCall operations will always change the calls
size every time, so we can drop the value <> value@pre ==> from their postconditions.)

So far, we have used frameworks for building models; what we end up with is a speci-
fication, which still must be implemented. In this particular example, some work is left to
the framework’s user, because we have not been told how to realize the register and
update actions as specific operations on the objects. (Some other framework might choose
to provide more.) 

Figure 9.14 Unfolded result of framework application.

Thermometer ::

	 action update ( )

	     pre    subject <> null

	     post  reading = subject.calls->size


			 -- I now correctly reflect my subject’s value



(s: CallQueue, o: Thermometer) ::

	    action register ( )

		 pre	 o.subject = null

		 post	o.subject = s






Call
CallQueue








addCall (c : Call)

post calls = calls @ pre + c


  & [[observers.update ( )]]




getCall ( ) : Call

post result = calls @ pre->head


  & calls = calls @ pre->tail

& [[observers.update ( )]]

  Thermometer




reading





other stuff

about

Thermometers

calls



0..*


{seq}

subject


0,1

observers


0..*

register

update



352 PART III FACTORING MODELS AND DESIGNS
The update action could be realized as a single notify(newValue) message or, in the
Smalltalk MVC style, could consist of an update( ) message to the Thermometer, which
then must come back to the CallQueue asking for details of the changes.

The register action would typically be initiated by a supervising object telling a partic-
ular Thermometer to observe a particular CallQueue; then the Thermometer must intro-
duce itself to the CallQueue so that each knows about the other.

9.3.3 Using One Framework to Build Another
The idea of registering and unregistering is common to any situation in which each of two
objects needs to know about the other. So we could separate this scheme into its own
framework (see Figure 9.15). Any instance of A and B can be linked; aa and bb are the
links in each direction. (The arrows indicate that we’ve definitely decided to make the link
navigable in each direction.) The operations intended for use from outside this collabora-
tion are register, sent to an A to link it to a particular B; unregister; and release, sent to a B
to unlink it from everything. The other operations on Bs—link and unlink—are intended
only as an internal part of the design of this collaboration. We’ve written the specifications
so that they are quite explicit about how the two-way links are maintained.

Now we see that we could have used this framework to help define the Observation
framework (see Figure 9.16). (In fact, it can say more than before, because it now tells
how the register action works rather than just calls for one.) Again, comparing Figure 9.16
with Figure 9.11, we can see that the use of a framework imposes a higher-level order on

Figure 9.15 Low-level framework: Two-Way Link.
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the appearance of the model, substituting a meaningful single pattern on the diagram for a
variety of links and operations.

9.4 Refining Frameworks

Frameworks are an expressive abstraction tool and are used throughout Catalysis, even in
the definition of basic modeling constructs. Still, as a template-like mechanism, they can
be used only when the problem at hand is suited to the parameterization and the level of
granularity of the framework. 

Fortunately, our frameworks have an additional dimension of flexibility: refinement
(see Figure 9.17). There is no restriction that a framework be defined at a fixed level of
detail; frameworks themselves are subject to refinement, abstraction, and composition in
exactly the same ways as other models are. Furthermore, some of these refinements are
themselves defined as frameworks. 

Figure 9.16 Observation framework using Two-Way Link framework.
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9.4.1 A Requirement
The framework in Figure 9.18 illustrates a relationship between a Trader who makes
Orders from a Distributor. In the framework, we don’t care how the Trader gets rid of
stock, nor how the Distributor acquires it. We have shown this as a degenerate collabora-
tion, as it will next be refined as a unit. (Notice that we’ve made all the types substitutable
except Date. So we would likely have Date defined as an actual type somewhere in the
package in which this framework definition appears or in the packages it imports.)

This tells us that a Trader must always have an Order pending for low stock; in that
way, we hope to avoid outages. Designers might find it convenient to use this framework
by itself and then go on to define within their own models how Orders are made. Or we
could go on to define another framework that includes that information.

9.4.2 A Collaboration Refining the Requirement
According to the Trade Supply framework (see Figure 9.19), when the stock of any Prod-
uct gets low, the Trader makes an Order with the Distributor using the make_order action.
Once an Order is established, the Distributor can deliver the goods, and the Trader can pay.

There are different kinds of Traders in the world, and they get rid of their stocks in dif-
ferent ways. Some only sell them; others cook them up and serve them; still others build
things from them. But no matter how stock depletion happens, the Trade Supply frame-
work still manages to tell us that make_order should happen when stocks get low.

In an earlier example, we used only one effect clause. Here, we have split the cause from
the effect. First, we’ve invented an effect name depletion (p) as a placeholder name for any
action (no matter where defined) that causes stocks of p to be reduced: An invariant effect
clause tells which (unknown) actions are considered to have the depletion effect. Second, we
have defined a postcondition for depletion in the usual way for an effect: This says that we
require to perform the make_order action.

Separating cause and effect in this way is useful when they have a many-many relation-
ship and are the essential reason for the effect construct. 

Figure 9.17 Frameworks are subject to refinement.

f1
f2

With refinements of f1, f2
—choose your fit

Frameworks from
frameworks



Chapter 9 Model Frameworks and Template Packages 355
9.4.3 Documenting the Refinement
We want to claim that anyone who uses the Trade_Supply framework, using the same place-
holder substitutions, will achieve the goals set by Trade_Supply_Requirement. More pre-
cisely, we must document a reason for believing that if we combined the two models, we’d
end up saying no more than we’ve already said in Trade Supply: that all its statements
(pictorial or otherwise) already imply those in Trade Supply Requirements.

The general rules are the same as those discussed in Chapter 6, Abstraction, Refine-
ment, and Testing. In this case, the static models are the same; the only thing we have to
worry about is that invariant in the Requirement. 

We can write it as shown in Figure 9.20. (Actually, a more rigorous treatment of this
argument reveals a hole regarding when Orders get removed. You might like to tighten the
reasoning and the spec of Trade Supply.)

Figure 9.18 A framework for trading: stock maintenance.

<Trader>




stock(Product) : int

lowLimit (Product) : int

Trade_Supply_Requirement

<Order>




stock(Product) : int

lowLimit (Product) : int

<Distributor>

to

from

*


orders

*


outstanding

<Product> Date

* *

for 0,1   delivered

inv Trader:: ( p:Product::

	 stock (p) < lowLimit(p)⇒  orders[for=p] <> 0 )


-- Whenever stock of any particular Product line is low,
there will be an Order for it

-- (“The subset of orders for which the for attribute is p
will not be the empty set”)
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Figure 9.19 Trade Supply collaboration.

action	 dist:Distributor –> trd:Trader :: deliver(o:Order)

	 -- When a distributor sends “deliver” to a Trader, ...
pre	 o.to = trd & o.from = dist	 -- sensible only if Order is between them


post	 o.delivered <> null -- The effect should be to mark the Order done


	 & (trd.stock(o.for) += o.quantity)	 -- and increase the stock

<depletion


(p:Product)>

<Trader>




stock(Product) : int

lowLimit (Product) : int




depletion (p:Product)

Trade_Supply

make_order

deliver

pay

<Order>




stock(Product) : int

lowLimit (Product) : int

<Distributor>

to from
*


orders
*


outstanding

<Product> Date

* *

for 0,1   delivered

action	 rtlr:Trader –> dist:Distributor :: make_order (prod:Product, q:int)

	 -- When a Trader sends make_order to a Distributor ...
post	 -- The effect is to add a new Order to the lists
	 let n:Order.new [quantity=q, to=rtlr, from=dist, for=prod,paid = 0,

		 delivered=null, cost=dist.price(prod, q, rtlr)],

	 rtlr.orders += n & dist.outstanding += n

inv effect

post	 t:Trader, p:Product:: -- For any retailer and product
	 t.stock(p) < t.stock@pre(p) ==> t.depletion (p))

	 -- Any operation that decreases stock must have “depletion” effect

effect	 Trader:: depletion (p:Product)

	 -- Any operation that is a depletion must also conform to this:
post	 stock(p) < lowLimit(p) ==>


	 exists dist:Distributor, n: integer, n> 0 &


	                      [[ this –> d.make_order (p, n) ]]

	 -- If the resulting stock is lower than the appropriate limit, we

choose some Distributor and make an order with them for some
number of that Product
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9.5 Composing Frameworks

A commercial retailer plays many roles, participating in many collaborations. One such
collaboration is its interactions with customers (see Figure 9.21). The  collaboration shows

the relationship of Customers to Vendors. In the sell operation, cash and Products are
transferred in opposite directions. 

A Shop is a type of object that plays the roles of both Trader and Vendor. So now we
compose the two frameworks into a single picture, with Customer, Shop, and Distributor as
the key players (see Figure 9.22). In Public_Vending, the Vendor’s stock was represented
as a set of Things, each of which is an example of a Product; so this model must be tied,
using an invariant, to the Trader’s stock that had been modeled as an integer for any Prod-
uct.

Figure 9.20 Documenting a framework refinement.

Figure 9.21 Another view of the vendor: retail sales.

Trade_Supply_Requirement

Trade_Supply

Trade Supply says that any action must invoke


make_order if it depletes the stock of any Product
of any Trader. Relevant argument:

• Trader :: stock(p) < stock@ pre(p) => [[depletion(p)]]

• depletion(p) post stock(p) <lowLimit(p) => [[makeOrder(p)]]

• makeOrder(p) post orders += new Order ...

Therefore there is always an Order for depleted stocks,
which is the requirement set by Trade_Supply_Requirement 

in its invariant.

Public_Vending

<Customer>




pocket: Money

<Vendor>




till: Money


priceOf(Product): Money

Owner

action	 c:Customer –> v:Vendor ::sell (Product p)

post		  c.pocket –= v.priceOf(p) & c.bag+=p


&		  v.bag –= p & v .till += v.priceOf(p)

*

make

sell

bag


*
subtype

<Product>Thing
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The final step is to implement the types with classes. Supposing that Shop:sell is not
refined further but is implemented as a single message, the designer must observe
Trade_Supply::depletion whenever stocks get depleted; so a call to make_Order must
sometimes be part of executing sell. Because the design has been so fully thought through,
the class implementation will be simple.

9.5.1 Building Systems from Collaborations
Shop is a synthesis that plays two roles. Each role is about the interaction with another
type of object—or rather, a role of another object. The Shop functions by having enough
roles to make a coherent unit—in this case, ensuring the throughput of stock. 

Given a variety of different collaborations, it is possible to construct many different role-
playing objects. Collaborations are plugged together by making objects that play roles in
each (and sometimes more than one role in one collaboration, just as a person may wear
more than one hat in an organization). For each object, it is necessary to state how participa-
tion in one role affects the other by tying together their vocabulary of state changes, as is
done with the Shop’s bag and stock. 

But the main work of the design resides in the collaborations themselves, and plugging
them together is relatively straightforward. Collaborations are the best focus for design,
and objects are secondary. Following this principle results in designs that are more flexi-
ble.

9.6 Templates as Packages of Properties

Suppose you frequently find yourself modeling bananas, with a keen interest in their cur-
vier-than relation; elsewhere, you trade commodities that have a pricier-than relation; in a

Figure 9.22 Joining roles by applying two frameworks.

Retail_Vending

vendor trader

Public_Vending Trade_Supply

<Customer> <Distributor>

Shop




inv p:Product, stock(p) = bag [make=p] . size


-- For any Product, the Shop’s stock of the product is the
number of elements in its bag that are of that make
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class library you model strings with a dictionary-precedes. Some objects have several such
relations; physical objects can be compared separately for weight, size, and price. 

All these objects have a comparison operation that works largely the way “<” works on
numbers in that they observe certain rules: a banana can’t be curvier than itself; it is either
less curvy or not less curvy than any other banana; and if mine is less curvy than yours and
yours is less so than your friend’s, then mine must be less curvy than hers. These proper-
ties are quite important in some contexts, for example if they are to be sorted into a unique
linear order. 

How do we avoid repeating these rules every time we state them? It is not a solution to
say that those types (or their attributes) are all subtypes of, say, Magnitude, which pack-
ages operator < (Magnitude) with all the rules. That would mean that any Magnitude could
be compared with any other, and a String’s dictionary position could be compared with a
Banana’s curvature. (For the same reason, we didn’t use subtypes for the Jobs and Skills in
Section 9.2.1.)

Treating operators as functions (as in C++), we instead make a template package (see
Figure 9.23). TotalOrdering is being used as a convenient package for a set of assertions or
properties that we can apply to different types. Because we’re going to use the template

many times, we take the trouble to set out the rules precisely. Groups of useful properties
such as TotalOrdering are sometimes called traits. With a rich enough library of traits,4 you
can make a wide variety of type definitions by combining several traits in “mix and
match” style. 

Not all operators have the TotalOrdering properties. For example, when you make a
project plan, the tasks have only a partial ordering with respect to the must-precede opera-
tor. Task A must be finished before B and C, and both B and C must be finished before D

Figure 9.23 Framework for TotalOrdering.

4. Including the obvious ones—associative, commutative, and idempotent—and many not-so-obvi-
ous ones that help factor fundamental commonality in structure and behavior.

TotalOrdering

<Orderable>




operator < (Orderable) : Boolean

a,b,c: <Orderable> ::	 --For any three members of Orderable
	 a<>b & b<>c & c<>a ==>	 -- that are distinct,
		 not (a < a)	 -- you can’t be < yourself
	 &	 a<b or b<a	 -- must have strict precedence


	 &	 a<b and b<c => a<c	 -- < is transitive
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is started; but the order of finishing B and C might not matter. Figure 9.24 shows some
types whose properties can be defined in part with the help of this template.

9.6.1 A Template Can Have Provisions
A sorted list keeps its items in a uniquely determined linear order. You can make sorted
lists of almost any type of object provided that it has a comparison operator with the Tota-

lOrdering properties. The template in Figure 9.25 defines what a SortedList means and
includes the TotalOrdering properties on its items.

A Sorted List Template can be applied to any type; when applied, the imported TotalOr-
dering template will impose its properties on the type substituted for <Item>. The frag-
ments in Figure 9.26 define different types that represent sorted lists with different content
types.

We have explicitly identified a separate new type for sorted lists of each item type (you
can’t put a Banana in a Sorted Integer List). The template imposes on the item types the
properties of the relevant operators. Notice that we also substitute “<,” which the Sorted
List Template has imported from TotalOrdering. If you put a bunch of Bananas into a

Figure 9.24 Many different total-ordered items.

The usual <
operator on
Numbers has the
properties we’ve
listed

Commodities
can be sorted
into order by
their weight...

... or by price.
(with some
restrictive
assumptions!)

Bananas can be
sorted into order
by curvature.

Strings can also
be sorted (but
separately from
Numbers, Bananas,
etc.).

Total Ordering

Commodity

Total Ordering

Total Ordering

Total Ordering

Total Ordering

Banana

String

Number

Orderable

Orderable

Orderable


[<\curvierThan]

Orderable


[<\pricierThan]

Orderable


[<\heavierThan]
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BananaListSortedByCurvature, they may end up in different relative positions than in a
BananaListSortedByPrice.

What happens if you try to model a sorted list for something like project Tasks, which
should not really be totally ordered based on must-precede? The TotalOrdering properties
would be imposed on Task, something that (1) is probably not what you intended, because
it imposes a linear order on all tasks, and (2) could be inconsistent with the definitions of
the must-precede operator itself. 

Figure 9.25 Sorted List framework: What kinds of items are OK?

Figure 9.26 Applying the Sorted List framework with substitutions.

Sorted_List_Template

<SortedList>




get (n:int) pre 0<=n< items->size post result = items[n]

add (x:Item) post items–> includes(x)

Total Ordering

-- In a sorted list, the n’th item is < each of those after it:
	 inv SortedList:: (n, m) :int ::

		 (0<= n < m < items->size) ==>


				 items[n] < items[m]

<Item>
Orderable

items   0..* {seq}

Sorted_List_Template

Sorted_List_Template

Banana List Sorted by Curvature

Sorted Integer List

Banana

int

Sorted List

Sorted List

Sorted List

Item

Sorted_List_Template Sorted Task List

Task

Item


[<\curvierThan]

Item


[<\must-precede]



362 PART III FACTORING MODELS AND DESIGNS
What we really want is to state that, as a prerequisite, the type substituted for <Item>
should independently have the properties described by the TotalOrdering template; if it
does not, it is not suited to the Sorted List template.

In a separate section of the package we provide a way for the designer of a template to
say, “This template should be applied only to things that you already intend to have certain
properties.” The idea, called a provision, is a bit like a precondition, except that it typically
works at design time.5 Figure 9.27 shows an improvement of Sorted List Template. It says
that if you have a type to which the TotalOrdering properties already apply, then it is OK to
make Sorted Lists of it.

In the provisions section, you can put any model to which the substituted types must
already conform.6 Thus, you can require that one substituted type be a subtype of another;
or that they have some relationship (see Section 9.2.1, Framework Applications Are Not
Subtypes) or satisfy some predicate. The designer who applies the template must check,
perhaps with help from a tool, that all the other parts of his or her model imply the proper-
ties laid down as provisions, and this should be documented much as a refinement is doc-
umented.

5. Using reflection, you can write generic code that does similar checks at runtime.

Figure 9.27 Explicit substitution provisions in SortedList framework.

6. This lets us correctly describe C++ template design and usage, including the Standard Template 
Library.

Substituted Item must
satisfy TotalOrdering

Sorted_List_Template

provided

<SortedList>




get (n:int) pre 0<=n< items->size post return = items[n]

add (x:Item) post items->includes (x)

-- In a sorted list, the n’th item is < each of those after it:
	 inv SortedList:: (n, m) :int::

		 (0<= n < m < items->size) ==>


				 items[n] < items[m]

<Item>

Total Ordering<Item>
Orderable

items   0..* {sequence}

Requirements
on any
substitution

Resultant
model
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To see exactly what this means, we must recall that all models are defined within a
package and that models are usually structured into packages. The people who use our
template will probably apply it in a separate package, into which they will have to import
both the package defining our template and the packages in which their item types are
defined (see Figure 9.28). The imported packages must provide definitions that imply
everything given in the provisions clause; and a conformance justification should be
attached to the application of the template (Figure 9.20).

In general, when you build a framework you must make certain assumptions about the
things that are substituted for your placeholders in order for that application of the frame-
work to work as intended. Use the provisions section to document these requirements.

© provisions A set of prerequisites associated with a framework; any elements substituted 

when applying this framework must meet those prerequesites in order for the framework to 

be applicable. Provisions are analogous to “design-time” preconditions.

9.6.2 Template as Generic Types and Classes
Many templates exist to define a single family of types, such as the Sorted Lists. It is
inconvenient to explicitly invent a new type name every time we want to make a new
sorted list of something and then to explicitly substitute that for the placeholder in the tem-
plate. An abbreviated notation covers these cases. 

Figure 9.28 Applying templates that have provisions.

Sortability

Definitions of --

Fruity Lists

Sorted_List_Template
Banana




length : int

shorterThan (b2:Banana)

	 = length < b2.length





Models everything
required for Banana

provided ...

etc.

Total Ordering

Fruity Definitions

Sorted_List_Template

Length-Sorted Banana List

Banana

Banana is a Total Ordering with [<\shorterThan], because


•	 b1.shorterThan(b2) = b1.length<b2.length (definition of Banana::shorterThan)

•	 length is an int

•	 and int :: < conforms to TotalOrdering, by the definition of int

Sorted List

Item [<\shorterThan]
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Within the definition of the template package, you can use its name as one of the place-
holder names—for example, the name of a type. Using UML conventions, add an inset
dashed box at the corner of the type and list the placeholders of the template (see Figure
9.29).

To use the template, draw a type using the name of the template package (this is also
the name of the primary template type, which the type drawn implicitly substitutes). Place
the template parameters in the UML inset dashed box or show them as explicit textual
substitutions7 in the form shown in Figure 9.30. Either one is equivalent to drawing the
syntax shown in Figure 9.31. (In C++, the equivalent would be roughly SortedList <
Banana, shorterThan>.)

Nested packages are useful when they are generic; a standard package can contain def-
initions of several generics (see Figure 9.32). A user can import the container, making the
names of the nested generic packages visible, and then apply the generics. Package provi-
sions also work well with package nesting.

7. The text version also works for nongraphical things such as attributes and inline declarations 
such as x: Sorted_List. UML would treat this as an uninterpreted string.

Figure 9.29 Defining a template with convenient syntax.

Figure 9.30 Alternative convenient syntax for applying a template.

Figure 9.31 Equivalent “full” syntax.

Sorted_List

provided ....

Sorted_List


	 etc.
etc.

Item, <

Sorted_List
Sorted_List [Item\Banana, <\shorterThan]

Banana, shorterThan

Sorted_List
Sorted List of Banana_shorterThan


	-- or some made-up name
Sorted_List

[Item\Banana,

<\shorterThan]
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9.6.3 Using Substitution as Parameterization
You can substitute any name when you do an import—not only types and attributes but
also variables, constants, and more. A substitution can be used to parameterize a spec. For
example, if an integer constant MAX_SIZE is used within SortedList but is not set to any
value, it can be substituted when SortedList is applied (see Figure 9.33). Figure 9.34
shows the graphical version.

Figure 9.32 Templates and nested packages.

Figure 9.33 Substituting “values”: textual version.

Figure 9.34 Substituting “values”: graphical version.

Useful Lists

SortedList

SortedList

Other Lists

...stuff...SL_Iterator

Geest

import UsefulLists

Banana


boolean biggerThan (Banana)

SortedList [MAX_SIZE\25]

Element [<\biggerThan]

Geest

import UsefulLists

Banana


boolean biggerThan (Banana)

SortedList

25 : int

Element [<\biggerThan] MAX_SIZE
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9.6.4 Explicit Template Parameters
In general, we do not constrain the types that can be substituted, because we sometimes
substitute just to avoid name clashes between multiple imports (see Figure 9.35). The
“<..>” markers simply suggest places for substitution; but unmarked types can be substi-
tuted, and marked types can be left unsubstituted. Any substitutable type that isn’t substi-
tuted when imported remains as a substitutable type in the importer.

Packages can be given explicit parameters. These are substitutable elements that must
be explicitly substituted by the importer (even if only by one of its own parameters). They
also can be given default arguments.

9.7 Templates for Equality and Copying

What does it mean for two objects to be equal? For one to be a copy of the other? These
questions arise often in different forms and have an answer that is domain-independent.
This section defines what they mean and provides standard template packages to use.
These standard template packages can be used to define standard copy and equality as
well as for features such as replication and caching.

9.7.1 Type-defined Equality
Are these two shapes equal? Some people might say yes, because all their
lengths and angles are the same; others might say no; they are in different
positions and hence different. It all depends on what exactly you mean by
equal; sometimes there are different degrees and kinds of equality (such as
“congruent” and “similar”).

Figure 9.35 Explicit template parameters and parameter substitution.

List

List <Elem>
List <int>

List <Date>

List_2 <>

List_2 <Date>

Elem
*   elems

List

List_2 <Elem\int>

Elem
*   elems
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So whereas object identity is treated as an intrinsic
property, equality must be defined separately for each
type: There’s no automatic meaning for it. There may
be several useful equality-like relations, or none, and
it’s up to the inventor of a type to define them. 

Equality is relative to type. Suppose that you define
that two Triangles are equal if the lengths of their sides
are equal. Then someone produces two members of the
Triangle type that happen to be colored. One is blue and
the other red, but their sides are the same. Are these
objects equal? 

People who are aware of the type Triangle but not ColoredTriangle would say yes. For
their purposes, the two Triangles are equal; they never ask about a Triangle’s color. The
fewer differences you’re interested in, the more things look the same; The more you know,
the more differences you can discern.

Moreover, it would be wrong to contradict our definition of equality in a subtype. Trian-
gle is the set of all triangles, colored or not, and it should be the place where you put state-
ments that are true about all of them. Equality on colored triangles could further
discriminate on color. But the supertype has stated that as long as the sides are the same,
two triangles are equal.

So the equality definition typically cannot simply be inherited, and we must do one or
both of the following.

• Have a differently named equality-like relation for every type. This isn’t as bad as it 
might first sound. It forces you to think through the differences.

• Have a single notion of equal but be more careful about what we promise about it. For 
example, we could say that for two triangles to be equal they must have equal sides, but 
not necessarily the reverse:

ta . equal (tb) � ta.s1 = tb.s1 & ta.s2 = tb.s2 & ta.s3 = tb.s3

The same considerations apply to almost all comparison relations between members of the
same type (for example, ≤ and ≥). An “equality-like” relation is one that conforms to the
template shown in Figure 9.36. This principle can be applied to Triangles in a variety of
ways (see Figure 9.37).

© equality A generic relation on a type. The relation must satisfy certain mathematical proper-
ties. Defined as a standard framework.

Sometimes you can make an equality-like relation that seems reasonable for all sub-
types. For example, we could define equality for shapes of any form by assuming they all
have some Boolean contains(p:Point), as follows:

Shape::equivalent (s: Shape) = --‘self’ and ‘s’ are equivalent
-- if there is some vector, offset (conceptually, the difference in their positions) for which

Triangle




s1, s2, s3: Length




equal (Triangle):Boolean


	 inv ta.equal(tb) ⇔
		 Seq{t1.s2,ta.s2, ta.s3} =


		   Seq {tb.s1, tb.s2, tb.s3}

ColoredTriangle
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Vector->exists ( offset |
-- any point is in “self” exactly when (point - offset) is in s
Point->exists ( p | self.contains(p) = s.contains (p-offset)))

Although this is more general, it may still fail to adequately address colored points. 

A user of a graphical editor can make a Group of other Shapes, which then
behaves as one Shape, for the purposes of moving it around and so on. It’s
also possible to ungroup a Group, restoring the individual parts. This means
that the two examples shown here before ungrouping, although equivalent by
the preceding definition (looking the same), are significantly unequal—that
is, unequal in a sense that is likely to be important to their users. Similarly, a
rectangle may happen to be temporarily shaped like a square; however, if you
stretch it horizontally and stretch a true square horizontally, very different
things happen.

Here, equality-like relations need to be considered on a per-type basis; they should take
into account dynamic and mutative behavior. 

9.7.2 Copying an Object
It’s often necessary in an action spec to require that a new copy of an object be made—that
is, one that is equal (by some definition) but not identical. Just as equality must be defined
separately by type, so must copying. To copy a Triangle means to copy its three sides; to
copy a Grouped collection of Shapes means to copy the constituents of the Group.

You can use the template in Figure 9.38 to conveniently define a copy operation pro-
vided that your chosen comparison operator is a valid equality relation.

Figure 9.36 Template for equality relations.

Figure 9.37 Defining different equality relations.

Note: These should ideally have
been separate frameworks;
generally reusable, they 
should also be “provisions.”

EqualityRelation

<T>


<eq>

a, b, c : T::




	 a.eq(a)	 -- reflexive
	 a.eq(b) ⇒  b.eq(a)	 -- commutative
	 a.eq(b) & b.eq(c) ⇒  a.eq(c)	 -- transitive

EqualityRelation EqualityRelation

EqualityRelation

Triangle

ColoredTriangle

T


[eq\equal]

T


[eq\coloredEqual]

T


[eq\congruent]

ungroup
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This copy definition could be used on Groups with either of two different equality oper-
ators: sharedShapesEq (two group objects are considered equal provided that they share
the same shapes) and equivShapesEq (the shapes themselves need not be shared but must
be equivalent by some definition of equivalent).

In contrast to equality, the name of the operation doesn’t need to be changed across sub-
types for copy. If you know only that you’ve been given a Shape, you know that getting a
copy will give you the same visible result; you have no expectations about anything more,
because you have no information on type-specific operations. However, a subtype of
shape would have to copy in accordance with its specialized definition of the equality
operator; so colored shapes would have to copy the color as well.

9.8 Package Semantics

Template packages define the meaning of recurring patterns of models and designs, but
the idea extends to the basic modeling constructs themselves. If two designers draw a pair
of type boxes, with a 1-1 line between them, both designers have the same intent except
for the specific domain they work in; the same thing is true for using subtype arrows, a
state transition, or superstates. And if they put the same stereotype on two elements, they
mean the same thing (presumably). 

Templates can be used to define fundamental modeling constructs, as well as any
extensions, in Catalyisis. This includes associations, associative classes, qualifiers, and
even types and subtypes. Of course, most of them will have convenient syntactical forms,
such as those UML provides. This section describes how new notations and semantic
extensions can be defined precisely in Catalysis. 

Figure 9.38 Template for copy with prerequisite of equality.

CopyDefinition

Example:

T::copy ( ) : T


post:	 return : T*new	 -- Returned must be a new member of T


     &	 result.eq (self)		 and must be “equal” to the original but
     &	 not return = self		 cannot be the same object (redundant) 

EqualityRelation <T>


<eq>


copy

CopyDefinition
eq\sharedShapesEq

Group




sharedShapesEq


equivShapesEq
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9.8.1 Interpreting Package Contents
We’ve already observed that the diagrams we draw in UML could as easily be written in
the form of textual statements. The advantage of the diagrams is that they are easier to find
your way around in and to grasp as a whole. Presumably they put your visual processing
capabilities to work on the problem, leaving your linguistic processor free to mouth
punchy-sounding businessspeak. 

But diagrams can’t express everything you want to say, so for details such as invariants
and postconditions, we usually resort to text.8 The pictures themselves can be converted to
textual statements in a similar style. So the entirety of a model can be thought of as a col-
lection of assertions. A package is a chosen set of such statements, and importing means
only that you are including the statements from one package within another.

It’s possible to write a precise set of rules (that is, a program) for converting each dia-
gram element into text. And given any complex piece of text—such as an action specifica-
tion, with its pre- and postconditions and odd constructs such as @pre and so on—it is
possible to write a set of rules for converting it into a longer set of statements in terms of a
much more basic set of ideas. These sets of rules are called the semantics of the language. 

Books such as this one, which explain a notation and how to use it, are informal ver-
sions of the semantics: informal in the sense that they aren’t written as an executable pro-
gram and include ambiguities and inconsistencies. No one has yet written a full formal
semantics for UML, Catalysis, or Objectory, although several projects are under way. Still,
there is a wide range in how precisely their various visual notations are understood and
how much reinterpretation will be required by practitioners. The closest things most peo-
ple see in practice are the consistency-checking facilities of various support tools. Unfor-
tunately, the different tools have slightly different ideas about the semantics, and that is
why it would be nice to get an agreement on one of them. 

What has been written is a description of the abstract syntax: the constructs that exist
and some of the constraints on them. These are sometimes called metamodels. However,
they are far from being a full semantics.

9.8.2 Stereotypes and Dialects
Another disadvantage of a pictorial notation is that there aren’t enough symbols to cover
all the subtly different things we want to say. You can invent only so many variants of
boxes and lines and round things; if there are too many of them, newcomers soon despair
of remembering what they mean.

We use UML stereotypes for this reason. A stereotype is a tag that you can attach to any
box, arrow, or other pictorial construct to tell you exactly which meaning is intended. In
other words, it tells you which translation rule to use from the semantics (assuming there
is one).

8. Although Stuart Kent has shown how to move some of these assertions into the pictorial domain.
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Stereotypes can be used on an individual model element as an alternative syntax to
apply a framework (similar to Section 9.6.2, Template as Generic Types and Classes). The
shorthand rules are as follows.

• If a type has the same name as its package, then using that name as a stereotype on a 

target type means to import the package, substituting the target type.

• If an attribute has the same name as its package, then using that name as a stereotype on 

a target attribute means to import the package, substituting the target attribute and its 

source type. It works similarly for other elements.

• Just as with other template shortcuts, stereotype application can use additional explicit 
substitutions: «name[x\a, y\b]». Or you can provide parameters defined on the template: 
«name�a,b�» (see Figure 9.39).

However, freely adding individual stereotypes leads to inconsistent models. Rather
than attach stereotypes to every construct in the picture, we establish a set of defaults: a
particular default meaning for each pictorial element without stereotypes, or a consistent
family of stereotypes. This default set is a called a dialect. To specify which dialect a
package should use, quote the dialect in the package tab. Naturally, the use of consistent
dialects will simplify things; but if the dialects have a common underlying translation (see

Section 9.8.3), you can even use custom dialects best suited to each portion of the problem
(see Figure 9.40).

Stereotypes make the language extensible. This can be a disadvantage or an advantage
depending on whether you make your money by using the notation or by pontificating
about it. Every self-styled expert has a pet variant on the basic ideas; all of them are, of
course, improvements. It is widely agreed, though, that UML is by no means the last word
on modeling languages and that it would be neither possible nor appropriate to make it
entirely fixed at the present time.

© stereotype A shorthand syntax for applying a framework; a stereotype is used by referring to 

its name as «name» attached to any model element. Frameworks provide an extensibility 

mechanism for the modeling language; stereotypes provide a syntax for using this mecha-
nism.

Figure 9.39 Defining the meaning of stereotypes using templates.

Dummy




const

-- A “set-once” const
inv effect -- A non-null value cannot be changed
post:	 const @ pre <> null =>


	    const = const @ pre

const

Person


ss# «const»


ClientPackage

-- Same as:
import const

[Dummy\Person
[const\ss#]]
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© dialect A package that contains a useful and agreed set of mutually consistent stereotypes, 
together defining a particular dialect of the modeling language. All modeling work is done in 

the context of selected dialect(s).

9.8.3 Examples of Semantic Rules for a Dialect
To close full circle, as perhaps you may have guessed by now, dialects and semantic rules
themselves are defined within packages, although, as we’ve said, consider them virtual until
further notice. But here is a short example to show the idea.

Semantic rules are expressed as templates; a dialect contains nested packages for its
semantic rules. Each rule translates a slightly higher-level notation into its equivalent lower-
level one. Here, any line between two type boxes that contains an explicit stereotype means
the same as inverse attributes (see Figure 9.41). So what should an association line mean if it
has no stereotype tag? To define a default, you identify the untagged feature with the appro-
priate tag9 (see Figure 9.42).

Figure 9.43 on the next page shows some equivalent ways to define an association. The
top part (a) uses the highest-level notation: a line. In (b), you see the pattern notation for
applying a template; in (c), a straight textual form, and in (d), the expanded result of any of
the previous forms.

9.9 Down to Basics with Templates

We have seen that templates can be used to define domain-specific patterns, providing a
higher-level notation for describing problems. The same templates can be used to define
the modeling language itself, down to its formal basics. 

Figure 9.40 Dialects of stereotypes and other notations in packages.

9. A template could also introduce customized textual and graphical syntax for the application of 
that template; we do not generalize to such visual grammars in this book.

Network


«Catalysis»


Catalysis meaning of state,
attribute, association,  ... and
standard extension stereotypes

Customer Care


«Rose UML»


Performance Monitoring


«Rose OMT»
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Figure 9.41 Template for what an association is.

Figure 9.42 Template defining the meaning of default notation.

Catalysis

association --1-1

<A> <B>
1


<x>

«association»
 <y>


1

-- Wherever you see two boxes joined by a line marked «association», ...

inv A :: self.y:B and self.y.x = self
-- ... that means that for any member of type A called self, self.y

will be a member of type B, and self.y.x will take you back to self

Catalysis

association --default

<A> <B>
« »


<A> <B>
«association»


-- Wherever you see two boxes joined by an unstereotyped line ...

-- ... that means the same as with this stereotype

-- Another definition within the Catalysis package
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9.9.1 Template Packages to Represent Inference Rules
Templates can be used to represent general facts that are useful in
understanding or reasoning about types. They can be presented as dia-
grams or as Boolean expressions. For example, at the very basic level,
we can write things such as or-definition. It means that, if you happen to
find an expression involving or and two Boolean expressions on either
side of it, you can match them to <A> and <B> and rewrite the whole
thing using not and and. Figure 9.44 shows a few others.

It is sometimes useful, with these kinds of rules, to use placeholders that themselves
take arguments (see Figure 9.45). This may sound mind-bending at first, but this is as bad
as it gets. We’re now outside the realm of practical daily application for most software
developers. But briefly, in case you’re interested, the induction rule can be used to verify
statements involving a progression. For example, here’s how to prove that all cricket
scores are boring.

• A score of zero is clearly boring, because nothing has happened.

A score of 0 is boring.

• Given any score, whether it is 42 or 103 or anything—call it x—then a score of x+1 is 

bound to be more boring than x. This is because x+1 can be achieved only after more 

cricket has occurred, and clearly that is incrementally boring. So if x was boring, then 

x+1 definitely also will be boring. We can write this as 

Figure 9.43 Interpreting association via template definitions.

a) Short syntax

b) Standard pattern syntax

c) Textual form

d) Expanded form

Car
1


drives

engine


1
Engine

association
A [y\drivenBy] B [x\drives]

Car


engine: Engine

Engine


drives: Car

package MyCarDefs


type Car .... type Engine ....

import association [ 	A\Car [y\engine],

		 B\Engine[x\drives]]

Car


engine: Engine

Engine


drives: Car

inv Car:: self.engine.drives = self

      & self.engine: Engine

or-definition <A, B>

A : Boolean


B : Boolean


A or B





not (not A and not B)
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an inference of which we have satisfied ourselves; we don’t need to 

give it a name, because we won’t be needing it for long. Clearly, 
cricket is boring.

• Let’s choose a particular score, say 200. You will agree that

200 : Integer and 200 >= 0

• At this stage, all the requirements of the Induction template have been met, with these 

substitutions:

P [<x>] --> A score of <x> is boring.
i --> 200

• The Induction rule tells us that we can now safely conclude

A score of 200 is boring.

Note that negative cricket scores might yet prove interesting.

A score of x is boring.




A score of x+1 is boring.

Figure 9.44 Templates for typical inference rules.

Figure 9.45 Induction template.

Boolean

and-elimination <A, B>

A and B

B

-- If you find a situation
where “A and B” is true,
then you can write B
as a statement by itself

and-symmetric <A, B>

A and B

 B and A

-- If you find a situation
where “A and B” is true,
then you can also write
“B and A”

Induction <P [n]>

-- Given some expression P involving some subexpression,

-- If you know that P is true for O, and

-- if you know that it has already been determined
that if P is true for any given number, then it
will also be true for the next,

-- and if you choose any positive number you like,

-- then you know that P is true for it

P [0]

n : Integer

P [n]




P [n + 1]

i : Integer and i >= 0

P [i]



376 PART III FACTORING MODELS AND DESIGNS
9.9.2 Template Packages for Primitive Types
The primitive types that we use in every model and design—Boolean, arithmetic, sets, lists,
and dictionaries—can be defined in basic packages that are imported by all others. These
types are most easily defined in an axiomatic style—that is, by simply stating a number of
fundamental facts (axioms, mathematicians call them) that are true about the types, from
which other facts follow. For example, the package defining Boolean operators contains the
propositions shown in Figure 9.46.

Figure 9.46 Propositions: a packaging of Boolean operators.

Propositions

-- These invariants are always true:

inv true
inv false = not true

P -- In any context where expression P is true,

P or Q -- so is P or any other expression

OR-intro <P, Q>

P and Q -- In any context where an AND is true

P -- so is just one of its subexpressions

AND-elim <P, Q>

P and Q

not (not P or not Q)

AND-defn <P, Q>

p

R
Q

R

-- Suppose that where this is applied, we happen
to have two template packages, one of which says

“if you can ascertain P is true,
then you can believe R”;

-- and another that says that if
you know Q, you can believe R;

-- then you can be sure that R is true.

Cases <P, Q, R>

P or Q

R

-- Suppose, in some
context, you can
find a match for both
a Boolean expression
and its opposite:

-- Well, anyone who
would believe both
would believe
anything:

Contradiction <P, Q>

P
not P

Q

All the parameters
in the nested templates
are to be matched with
expressions (rather than
types), so should be
marked «expression».

-- and suppose you’ve also got, just as an invariant,
something that says “either P or Q is true” (even
if we’re not sure which),
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We can create another package that imports this one, defining Predicate Logic, which
gives the meaning of the quantifiers “for all x, [some expression about x]” and “there is an
x such that. . . .” A package about Sets comes next, and together with Predicates is
imported to help define the rules of arithmetic. Other kinds of collections (lists and dictio-
naries or maps) can also be defined with the help of sets and predicates. 

9.9.3 Layered Semantics
The ideas of objects and types can also be defined in this style. Membership of a type is
implied by observance of all the constraints (invariants, postconditions, and so on)
imposed by the type definition. 

In this fashion, we can build up a hierarchy of basic types and operators—not only the
syntactic definitions but also their meanings! And because the basics can be different for dif-
ferent modeling and programming languages—for example, not all have exactly the same
idea of the passage of time—different packages can be supplied for users of different dialects
and can be referenced as stereotypes.

In fact, the entire semantics of the modeling and programming languages that you use
can be defined in this way. Choose your basic modeling package on which to build your
specification, and choose the Java package to be able to check that your code matches
your spec. A typical hierarchy for modeling is shown in Figure 9.47. But for most users, it
is not necessary to know about the details of these basics, any more than you bother with
the formal semantics of your programming language. Still, it is nice to know that this
foundation can be made explicit and that the details can be made a matter of choice.

Figure 9.47 No primitives: full layering via packages and templates.

Refinement

Time

Components

Collaborations

Collections

Integers

Set basics

Predicates

Value types

Propositions

Object types


(mutable)
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And, of course, most of these packages—especially the complex semantics ones—are
virtual at present. But some research projects have indeed built up the packages of primi-
tives. (The example given here comes from [Mural91].)

One interesting feature of these packages is that they define many “if you already know
that this fact is true, then you can also assume that” rules. These packages talk about the
fundamental properties of the expressions we can write: In the arithmetic package, for
example, there is something that tells us that x+y is the same as y+x, a likely fact to use in
programming. In the extreme case of safety-critical systems, designers can use these rules
(and similar ones dealing with programming language statements) to check that their pro-
grams fulfill robustness criteria and indeed meet their specs. Designers can also build
higher-level rules around them. The rules are checked once and then institutionalized as
templates.

For the writers of support tools, these basic packages are a way of discussing and defin-
ing the exact details of the languages they support. This should have the benefit of making
the languages more interoperable and should allow these writers to define more-sensible
consistency checks. But for most of us, the importance of this level of detail is secondary,
arising from its relevance for tool designers.

9.9.4 Standard Packages
We have seen that nested packages can be used to define a related set of stereotypes, such
as those needed for a particular method or language (see Figure 9.48). There is a Standard
Catalysis package that is imported automatically into all others. It defines numbers, logic,
and other basics. It is called catalysis.spec.lang. If you explicitly import any other
*.spec.lang packages, catalysis.spec.lang is no longer automatically imported.

There are standard packages for various programming languages, enabling you to
embed code in Catalysis designs. They are called catalysis.java.lang, catalysis.cpp.lang,
catalysis.eiffel.lang, and catalysis.smalltalk.lang. These packages define the valid syntax
and semantics of programming constructs in these languages.

9.10 Summary of Model Framework Concepts

A model framework is a generic package containing both normal and placeholder defini-
tions. A placeholder is a name that can be substituted when the framework is used. Each
use or application of the framework provides its own substitutions of the placeholders.
Placeholder names are distinguished with angle brackets (<>). The names of attributes and
associations of placeholder types are themselves placeholders. (This is not automatically
true of actions.)

If the framework has a provisions section, an application is considered meaningful only
if the requirements are already conformed to, prior to the applicaton, with the same substi-
tutions. A justification should be attached to each application to document how the
requirement is met.
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9.10.1 Composition of Definitions
Recall that every model can be regarded as a list of individual statements: All the pictures
can be translated into formal text. A template package is a collection of statements; when
it is applied, the statements (subject to substitutions) are added to the model. 

Each type and action in the model is defined by all the statements made about it in its
various appearances. Some, all, or none of these may come from template applications.
All these statements compose following the standard composition rules.

Figure 9.49 summarizes the model framework concepts.

9.10.2 Usefulness of Model Frameworks
Model frameworks can be used to express relationships that straddle type boundaries and to
encapsulate relationships made up of a collection of types, associations, and actions. They
are a powerful tool for abstraction and a useful unit of reuse.

Figure 9.48 What can be achieved with standard packages.

Java JavaBeans

... interface, class
exception Event

... short forms for events,
registration, listeners ...

Property

short forms, gets,
sets, vetos, ...

C++

Pointer

... deref, address,
etc.

const

definition of
“changed”

Import the C++
package

Catalysis

... stuff ...

specs pkg

Language independent
models of component

design pkg

Design including C++ specifics
Define “conformance” of design to spec

Import the component
specification package
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Figure 9.49 Frameworks: patterns, generics, and stereotypes.

Default graphical framework application syntax

Substitution

PlaceHolder Type name
[substitutions for this type]

Framework_name [placeholder\substitute, ...]

Products of “Frameworks”

Type

Textual framework
application

Framework_name [placeholder\substitute, ...]

List

List <Elem>

List <int>

List <Date>

List

Elem
*   elems

provided

Framework with explicit parameters

Optional “provisions” on parameter substitutions

Expanded “body” of framework

Framework application
(1) Parameterized type notation
(2) UML notation

Stereotype syntax for framework
application on a distinguished element
(1) Import package “const”;
(2) Substitute type Person, and attribute ss# sterotype

can take additional textual substitutions:
«a[t\x]» or «a<b,c>»

Date

Person

ss# «const»
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