
 Chapter 6 Abstraction,
Refinement,
and Testing

Abstract diagrams are good for many purposes. At the whiteboard, you want to exhibit the
main ideas of something without all the details of program code. Perhaps you want to say
what it does and not how, or what it requires of other components that plug in to it. And
whether it’s a single procedure or an entire planetwide distributed system, you want to fit
it all on one board and convey useful things about it.

When it comes to documentation, a component description that makes clear the essen-
tial vision of your design will help future maintainers understand it quickly. Their short-
order updates will more likely cohere with the rest of the design, thereby giving your bril-
liant ideas a longer life. For users of the component (whether end users or other program-
mers), you don’t want to show how the thing works inside but only what they can do with
it.

We have seen how to draw and write these abstract descriptions, but how can you be
sure they accurately represent the code? The concepts of abstraction and refinement cap-
ture the essential relationship between these descriptions. This chapter is about different
forms of abstraction and refinement, and it explains the rules for showing that a more
detailed model refines (or conforms to) a more abstract one.

Refinement and conformance are a focal point in a Catalysis design review, in which
you check that the design or implementation meets its specification(s).

Testing fits naturally into this approach to abstraction and refinement. This chapter also
discusses how to test different kinds of refinement relations, including the one between the
implementation of an operation and its specification.

You can read Sections 6.1 and 6.2 on a first pass, which touches all the main points.
213

214 PART III FACTORING MODELS AND DESIGNS
6.1 Zooming In and Out: Why Abstract and Refine?

A major theme of Catalysis is precise abstraction: the ability to look at a design or a model
in only as much detail as necessary and without loss of precision. You can precisely
describe your code to your colleagues in documents or in presentations, or just sketching
over coffee, without getting into superfluous detail. The abstract views can isolate differ-
ent concerns; you can present the behavior of a component from the point of view of a par-
ticular user (or of another component) omitting details seen by another user (or through
another interface). You can restrict yourself to the externally visible behavior, or you can
describe the internal design scheme. You can describe only one component, a partial col-
laboration pattern, or the way the components fit together; or you can describe architec-
tural rules followed by all the components.

The zoomed-out, abstract views and the zoomed-in, detailed views must be clearly
related. If you write, “and we use the kwik-kache approach to cache information on the
client,” the link between this abstract intent and the code must be quite clear for it to
survive the first few rounds of maintenance by new programmers.

Enter the refinement relation. Using it, you can tell whether the code for a component
conforms to the interface expected by its clients and whether a system, if designed to
behave as specified, would contribute to the business needs; you can also link individual
requirements to specific features of a design. All this gives you a much better start on what
is the real long-term problem: change management.

The degree of rigor of this traceability is variable. In a critical context, you can do these
checks in mathematical detail. In more ordinary circumstances, you document the main
points of correspondence to guide reviewers and maintainers and use these points as the
basis for verification, design reviews, and testing.

Testing of object and component designs can be more difficult than in traditional sys-
tems because of the added complication of polymorphism, inheritance, and arbitrary over-
riding of behaviors. The essential idea of testing is to verify that an implementation meets
its specification—the same goal as that of refinement except that testing tackles the prob-
lem by monitoring runtime behaviors under a systematically derived set of test cases. This
chapter outlines a systematic test approach based on refinement.

© abstraction (1) A description of something that omits some details that are not relevant to

the purpose of the abstraction; the converse of refinement. Types, collaborations, and action

specs are different kinds of abstractions.
(2) To abstract (verb) is to create an abstraction; also called generalize, specify, and

sometimes analyze.

© refinement (1) A detailed description that conforms to another (its abstraction). Everything

said about the abstraction holds, perhaps in a somewhat different form, in the refinement.
Also called realization.

(2) The relationship between the abstract and detailed descriptions.

Chapter 6 Abstractions, Refinement, and Testing 215
(3) To refine (verb) is to create a refinement; also called design, implement, or
specialize.

© conformance One behavioral description conforms to another if (and only if) any object that
behaves as described by one also behaves as described by the other (given a mapping

between the two descriptions). A conformance is a relationship between the two descrip-
tions, accompanied by a justification that includes the mapping between them and the ratio-
nale for the choices made. Refinement and conformance form the basis of traceability and

document the answer to the “why” question: Why is this design done this way?

© retrieval A function that determines the value of an abstract attribute from the stored imple-
mentation data (or otherwise detailed attributes); used with a conformance to show how the

attributes map to the abstraction as a prerequisite to showing how the behavior specifications

are also met.

© implementation Program code that conforms to an abstraction; requires no further refine-
ment (strictly speaking, it still goes through compilation and the like).

© testing The activity of uncovering defects in an implementation by comparing its behavior
against that of its specification under a given set of runtime stimuli (the test cases or test
data).

Suppose you ask a hotel for “a room with a nice view, for five people; it
should not be noisy in the morning”—an abstract requirement, A. The clerk
responds by assigning you “the deluxe penthouse suite overlooking Niagara
Falls; its three bedrooms each have two double beds; and it has a built-in
Jacuzzi and gym”—a realization, B. B is a refinement of A—that is, it con-
forms to A—provided the hotel can justify to you that (1) overlooking
Niagara Falls constitutes “a nice

view”; (2) the humble penthouse suite can suffice as “a room”; (3) the six double beds will
serve to accommodate your party of five; (4) the roar of millions of gallons of water will,
in fact, be a soothing background whisper; (5) the built-in Jacuzzi and gym do not conflict
with anything you’ve asked for.

6.1.1 Four Basic Kinds of Abstraction and Refinement
Our models center on either the behavior expected of individual objects (large and small)
or the designs for how groups of objects collaborate. Each of the primary abstractions—
type and collaboration—has two main forms of refinement. Collaboration refinements
affect multiple participants in the collaboration; type refinement should not affect a client
in any way. Most design steps are a combination of these basic four varieties.

6.1.1.1 Behavior of an Object

We describe an object’s behavior using a type, with two parts to its specification: the oper-
ation specifications (usually pre- and postconditions) defining what it does; and the static
model, providing the vocabulary of terms for the operation specs.

If the type spec and the implementation look different, we need ways of determining
whether the code conforms to the type. We treat the two main parts of the type separately,
giving us operation abstraction and model abstraction.

refinement

abstraction

justification

realization

216 PART III FACTORING MODELS AND DESIGNS
An operation spec (and a static model) is a bit like the usage instructions for a machine
(with a simplified drawing of the machine): It tells us what to expect as users. But if we
remove the top from the machine, we may see a more complicated mechanism at work.
The same thing happens when we look at the implementation code that meets a type spec:
Its stored data, variable names, and specific sequences of statements are not seen from the
outside.

6.1.1.2 Collaborations among Objects

We describe designs for objects using collaborations—collections of actions. A joint
action defines a goal achieved collaboratively between the participant objects, using post-
conditions whose vocabulary is the model of each of the participants. Collaborations range
from business interactions (“banks trade stocks”) to hardware (“fax sender sends docu-
ment to receiver”) to software (“scrollbar displays file position”).

An abstract action spec states only the goal achieved and the participants it affects. But
we can put more detail into the design by working out a protocol of interactions between
the participants. Such refinements might include banks make deals, confirm deals, settle
the accounts; fax connects, sends page, confirms, repeats; file notifies scrollbar of change
of position.

Similarly, we may discover that each of the participants is itself an abstraction made up
of distinct parts that play roles in the collaboration. The banks’ traders make the deal, but
their back offices do the settlement. Again, the two aspects of the collaboration can be
treated separately, giving action abstraction and object abstraction.

Figure 6.1 Four basic kinds of abstraction and refinement.

Model
refinement

Operation
refinement

Collaboration Type

VendingMC1

User1

VendingMC4

select {s1; loop;..}

VendingMC

payment
products

select post ...

VendingMC3

coin-counter
catalog

select post ...buy

VendingMC2

User2

CoinSlot

Panel

Dispensercollect

select

Action
refinement

Object
refinement

pay

User3

collect

select

pay

Chapter 6 Abstractions, Refinement, and Testing 217
The four basic kinds of abstraction and refinement are shown in Figure 6.1. Most
abstractions can be understood as combinations of the four basic varieties shown in Table
6.1.

6.1.2 Refinement Trees
Big refinements are made up of smaller ones. A requirements spec and a completely pro-
grammed implementation of it may look quite different, but their relationship can be seen
as a combination of several smaller refinement steps.

Table 6.1 Basic Varieties of Abstractions

Abstraction What It Does Conformance and Justification

Operation Specifies what an operation achieves Does the sequence of
in terms of its effect on the object statements in code have the
executing it rather than how it works specified net effect?

Model Defines the state of an object (or How would you compute each
component) as a smaller and simpler abstract attribute from the data
set of attributes than the actual stored in the implementation,
variables or fields used in the design; or from the more detailed
or simpler than some other model that attributes?
presents a more detailed view.

Action Describes a complex protocol of What sequences of detailed
interaction between objects as a single actions will realize the effect of
action, again characterized by the effect the abstract action? Use state
it has on the participants. charts, sequence or activity

diagrams.

Object Treats an entire group of objects (such How do the constituent objects
as a component or subsystem or (and their actions) correspond
corporation) as if it were a single one, to the abstract object (and its
characterizing its behavior with a type. actions)?

So we can, in theory at least, relate a most abstract specification to the most detailed
program code (or business model) through a succession of primitive refinements, each
documented by a complete model (see Figure 6.2). If you have a great deal of time to
spare, you might try it for a small design! This is what computers are for, of course, and
appropriate tools can do a great deal to help. In practice, we use the ideas more informally
and use design patterns as ready-made refinement schemes.

We’ll now take a brief look at each of the four basic kinds of abstractions. Later sec-
tions treat them in more detail, describe how the conformance should be documented, and
provide a full example.

218 PART III FACTORING MODELS AND DESIGNS
6.1.3 Operation Abstraction
One of the most basic forms of abstraction is the operation specification: the idea that I
can tell you some of the things that are achieved by an operation, omitting the detail of
how it works and omitting things it achieves that I don’t know or don’t care about, such as
sequences of algorithmic steps, intermediate states, variables used, and so on. The opera-
tion specs we usually encounter are pre- and postconditions, although they may also
include rely and guarantee conditions. In a rely condition, the designer assumes the condi-
tion will remain undisturbed by anyone else while the operation is executing; a guarantee
condition is one that the designer undertakes to maintain true during execution.

Operation specs can be used as the basis of a test harness: they can be incorporated into
the code in such a way that an exception is raised if any of them ever evaluates to false.
(Eiffel supports pre- and postconditions directly; the standard C++ library includes an
assert macro.)

float square_root (float y); // specification
// pre: y > 0
// post: abs(return*return – y) < y/1e6 -- almost equal

float square_root (float y) // implementation
{

assert (y > 0); // precondition
float x= y;
while (abs(x*x–y)>=y/1e6) { x= (x+y/x)/2; } // miracle
assert (abs (x*x – y) < y/1e6); // post: x*x == y (almost)

Figure 6.2 Refinements continue recursively.

Chapter 6 Abstractions, Refinement, and Testing 219
return x;
}

Quality assurance departments like operation specs because, apart from helping to doc-
ument the code, they act as a definite test harness (see Figure 6.3). In a component-based
environment, you frequently plug components together that were not originally designed
together; as a result, integration testing becomes a much more frequent activity. Every
component (which might mean individual objects or huge subsystems) therefore must
come with its own test kit to monitor its behavior when employed in a new configuration.

In Catalysis, we characterize behavior using type definitions, attaching postconditions
to the operations. In Java, the corresponding construct is the interface: Classes that imple-
ment an interface must provide the listed operations. Wise interface writers append com-
ments specifying what clients expect each operation to do, and classes that claim to
implement the interface should conform to those specifications even though each will do
so in its own way. In C++, the pure abstract class plays the role of the Java interface in
design.

Operation refinement, then, means to write code that conforms to an effects spec,
which can be tested by writing the spec in executable form. Operational is the form of
abstraction having the longest history, dating back to Turing. Those who crave mathemat-
ical certainty that their code conforms to the spec are referred to [Morgan] or [Hoare].

6.1.4 Model Abstraction
The postconditions of the operations on an object usually must refer to attributes that help
describe the object’s state. It’s difficult to describe any but the most primitive types with-
out using attributes. We have also seen how we use associations as pictorially presented
attributes.

Any implementation will also use internal stored variables operated on by the code of
the operations, but they need not be the same as the model attributes used by the postcon-
ditions. Model attributes are only a hypothetical means of describing the object’s state to
help explain its behavior. For example, you might use the concept of its length to help
describe operations on a queue (of tasks, orders, and so on), as shown in Figure 6.4.

We can think of several implementations of a Queue, but not all of them will have a
length instance variable or method. Nevertheless, it is undeniable that every Queue has a

Figure 6.3 Operation specs: in testing versus in production.

Straight-through
(installed mode)

(Debug phase)
Test harness

message1 message2

pre ...

post ...

pre ...

post ...

220 PART III FACTORING MODELS AND DESIGNS
length. That is what an attribute is about: it is a piece of information about the object and
not necessarily a feature of any implementation.

An attribute can always be retrieved from an implementation. Suppose I publish the
type in Figure 6.4 on the Web and invite tenders for implementation. A hopeful program-
mer sends me an array implementation:

class ArrayQueue implements Queue
{ private Object array [] ; // the list of items

private int insertionIndex; // where items are put
private int extractionIndex; // where items are gotten from
public void put (Object x)
{ array[insertionIndex]= x;

insertionIndex= (insertionIndex+1) % array.length;
} ...

As a quality assurance exercise, I want to check whether the code of put (say) conforms
to my spec. But my spec and this code talk in different vocabularies: It has no length. I
need to translate from one model to the other—to map to the abstraction—before I can

begin. So I write back to the programmer and say, “Where’s your length?” The answer
comes back:

private int length ()
{ return (insertionIndex – extractionIndex) % array.length; }

In other words, I have been provided with a function that retrieves or abstracts from the
implementation’s terms to the spec’s. (And, of course, it is read-only: It would be confus-
ing if it changed anything.) Now I can see that the put code indeed increases the length, as
I required. If working that out by only inspecting the code is not my style, I can ask that
the designer include my pre- and postconditions as assertions in the code so that we can
test it properly.

Again, quality assurance chiefs love this stuff. They demand that every implementation
be supplied with a set of retrieval functions: that is, read-only abstraction functions for

Figure 6.4 Different implementations of the same type model.

<<type>>

Queue

length : int

...

put (x: Thing)

post length = length @ pre + 1 and ...

<<class>>

Array Queue

<<class>>

LinkedList Queue

get () : Thing

post length = length @ pre – 1 and ...

Chapter 6 Abstractions, Refinement, and Testing 221
computing the value of every attribute in the abstract spec. This also applies to associa-
tions, which we have previously observed are merely pictorial presentations of attributes.

Another implementation of a queue is based on a linked list. There is not necessarily
any variable that corresponds directly to the model’s length, but you can retrieve it by
counting the nodes.

It doesn’t matter whether retrieval functions are slow and inefficient: They are required
only for verification either by testing or by reasoning. The exercise of writing them often
exposes mistakes in an implementation when the designer realizes that a vital piece of
information is missing.

Notice that in Catalysis, we do not expect that attributes and associations will always be
publicly supplied for use by clients. There are, of course, many attributes to which it is useful
for clients to have “get” and sometimes “set” access; but modelers often use attributes to
express intermediate information they don’t expect to be available directly to clients.

On a larger scale, more-complex models can be used to represent the types of whole
systems or components and are usually shown pictorially. In an abstract model, the
attributes and their types are chosen to help specify the operations on the component as a
whole and, according to good object-oriented analysis practice, are based on a model of
the domain. However, anyone who has been involved in practical OOD is aware that the
design phase introduces all sorts of extra classes as patterns are applied to help generalize
the design, make it more efficient, distribute the design, provide persistence or a GUI, and
so on. But we can still retrieve the abstract model from any true implementation in the
same way as for the simpler models.

Model refinement, then, means to establish the relationship between the more abstract
model used to define postconditions and the more complex practical implementation.
Retrieve functions translate from the refined model attributes to the abstract ones.

Model refinement has the second longest history, dating back to VDM and Z in the
1970s.

6.1.5 Action Abstraction: Messages and Actions
At the programming level, messages are the interactions between objects (in most OO pro-
gramming languages). Some messages have variants on the basic theme, such as synchro-
nous versus asynchronous (waiting or not waiting for the invoked operation to complete).
Envisaging complex sequences of messages can be difficult, so we draw sequence dia-
grams such as the one shown in Figure 6.5.

Sequence diagrams have the disadvantage of being bad for encapsulation, particularly
when multiple levels of calls are shown on one diagram. Unfortunately, they allow you to
see in one diagram the response to various messages of several objects at once and so
encourage you to base the design of one object on the internal mechanisms of the others.
They also show only one sequence of events and so make it easy to forget other cases and
to forget that each object may receive the same messages in other configurations. How-
ever, sequence diagrams make it easy to get an initial grip on a design, so we use them

222 PART III FACTORING MODELS AND DESIGNS
with caution. It is often good practice to limit the diagram to only one level of nesting and
to use postconditions to understand what those events achieve.

The same diagrams can be used to show the interactions between objects in the busi-
ness world and interactions between large components.

But in any but the most detailed level of design, we usually deal in actions: dialog with
an outcome definable with a postcondition but made up of messages we do not care about.
For example, I might tell you, “I bought some coffee” rather than expect you to listen to a
long tale about how I approached a vending machine, inserted several coins, pressed one
of the selector buttons, and so on. The former statement abstracts the latter detailed
sequence and includes any other means of achieving the same effects. In Catalysis, actions
are characterized principally by their effects; to show how an action is achieved by some
combination of smaller ones, you document a refinement.

A single action may involve several participants, becuase it may abstract several
smaller actions that may have different participants. On a Catalysis sequence diagram, the
small ellipses mark the participating objects (vertical lines) in each occurrence of an
action (horizontal lines). We also mark the states or changes of states of participants (see
Figure 6.6).

OO messages in programming languages are only one subtype of actions: those that
always have a distinct sender and receiver (see Section 4.2.7, From Joint to Localized
Actions).1 We can use action abstractions to represent interactions external to the software,
those between users and software, and those between objects within the software. Within

Figure 6.5 Sequences of messages realize abstract actions.

Figure 6.6 Occurrence of a joint action.

Less moneyMore money

vendor machine customers

vend cof f ee

Chapter 6 Abstractions, Refinement, and Testing 223
the software, action abstractions are very useful for abstracting the standard interactions
that happen within certain frameworks and patterns, such as observer.

Sequence diagrams illustrate sample occurrences of actions, but an action type can be
drawn with the types of its participants and a postcondition written in terms of the partici-
pants’ attributes (again, whether the types represent software or domain objects), as shown
in Figure 6.7. The ability to define the effects even at an abstract level is what makes it
worth doing. Abstraction without precision is often just waffle; until some precision is
used, it is typically not reliable.

1. CLOS is an exception: Its operations are not attached to any particular receiver. As with Java and
C++, there may be several operations with the same name and different parameter lists; but the oper-
ation to be executed is chosen at runtime on the basis of the classes of all the parameters (not just the
receiver, like the other languages). Catalysis works as well for CLOS as it does for Java and so on
because multireceiver messages are a type of action.

Figure 6.7 Action type shown on a collaboration.

Figure 6.8 Refinement into further joint actions.

vendor

vend cof f ee

C of f ee C ompany

$

C of f ee Addicts C of f ee M achines

customers machine

post vendor.$ > vendor.$ @pre

Less gunk,
more cash Less money

vendor:
C of f ee C ompany

machine:
C of f ee M achine

customers:
C of f ee Addicts

lease machine

supply gunk

buy cof f ee

call f or supplies

supply gunk

collect cash

vend cof f ee

More money
More gunk

224 PART III FACTORING MODELS AND DESIGNS
6.1.5.1 Refining Actions

We can zoom into, or refine, the action to see more detail. What was one action is now
seen to be composed of several actions (see Figure 6.8). Each of these actions can be split
again into smaller ones, into as much detail as you like. Some of the actions might be per-
formed by software; others might be performed by some mixture of software, hardware,
and people; still others might be the interactions between those things. At any level—deep
inside the software or at the overall business level—we can treat them the same way.
Catalysis is a “fractal” method: It works in the same way at any scale.

Notice that the abstract action has not gone away; we have only filled in more detail. It
is still the name we give to the accomplishment of a particular effect by a combination of
smaller actions, and that effect is still there.

These illustrations might suggest that an action is always made up of a sequence, but
often the composition is of several concurrent processes that interact in some way. Recall
that action is the Catalysis blanket word for process, activity, task, function, subroutine,
message, operation, and so on.

We can summarize any kind of action abstraction on a type diagram, showing which
collaboration (set of actions) can be abstracted into a single abstract action (see Figure
6.9). The diamond aggregation (“part of”) symbol is used to indicate that the abstract
action is an encompassing term for compositions of the smaller actions. It shows constitu-
ent parts of the abstraction, although we must state separately how they are combined—
whether in parallel or sequence—and whether some are optional or repeated. Also,
another diagram may show a different set of detailed actions abstracted to the same
abstract action.

6.1.5.2 Summary: Action Abstraction

Action abstraction is the technique of treating a dialog between several participants as a
single interaction with a result definable by an effect.

Figure 6.9 Abstract actions shown using aggregation.

vend cof f ee

lease machine

C of f ee C ompany

C of f ee Addicts

C of f ee M achine

supply gunk

buy cof f ee

call f or supplies

collect cash

Chapter 6 Abstractions, Refinement, and Testing 225
Action abstraction and operation abstraction are both about treating several smaller
actions as one. The differences can be summarized as follows.

• In operation abstraction, the initial invocation results in a sequence of smaller actions

determined by the design; the abstraction still has the same initial invocation and cap-
tures the net desired effect.

• In action abstraction, no invoker need be identified: Any participant can initiate it. The

exact sequence is determined by the designs of all participants (some of whom could be

human); we can say only what the smaller actions are and the constraints on how they

might be combined. Also, the abstract action may never be directly “invoked” at the

detailed level.

Action abstraction comes from the idea of transaction, developed in the database world in
the 1970s, although it is a natural usage in everyday conversation.

6.1.6 Object Abstraction
We can refine, or zoom into, objects, splitting any of the vertical bars on the diagram into
several. Thinking about it in more detail, we realize that the vendor company has different
departments that deal with different parts of the business. Also, the customer organization
will have users as well as a site manager who establishes a liaison with the vendor (see
Figure 6.10).

Figure 6.10 Abstracting objects.

Less gunk,
more cash Less

money

lease machine

supply gunk

buy cof f ee

call f or supplies

schedule

accounts sales

vendor

servicing machine site manager

customers

users

supply gunk

collect cash

More
money

More
gunk

226 PART III FACTORING MODELS AND DESIGNS
Again, the more-abstract objects have not gone away. The company is still there; it is
what we call a particular configuration of interrelated smaller objects. Again, each object
can be split further into smaller parts: servicing may turn out to be a department full of
people having various smaller roles.

Just as what characterizes an action is its effect, so what characterizes an object is the
set of actions it takes part in—its type. There may be many refinements that will satisfy
one abstract object type. (Indeed, there may be refinements that successfully satisfy sev-
eral roles: Some small companies have only a single object that plays the roles of
accounts, sales, and servicing.)

Some of the objects may be software components. For example, zooming in on the
Accounts department would probably reveal some combination of people and computers,
and more detail on the computers would reveal a configuration of software packages, and
going into them would reveal lines of Cobol or, if we’re lucky, objects in an OO language.
The same thing would happen if we peered into the coffee vending machine. And we can
continue using the same interaction sequence diagrams (and other tools) right down into
the software.

The relationship between an abstract object and its constituents can be shown on a type
diagram (see Figure 6.11). The diamond again indicates the refinement relationship.
Again, it doesn’t by itself give us every detail about any existing constraints between the
constituents of one abstraction.

6.1.6.1 Summary: Object Abstraction

Object abstraction means to treat a group of objects—whether in software, in a human
organization, or in a mechanical assembly—as one thing.

The idea is as old as language and was discussed by Plato, Michael Jackson, and oth-
ers—often beginning with “How many parts of a car must you change before it’s a differ-
ent car?” or “Are you the same person you were when you were born?” The examples

Figure 6.11 Abstract object shown using aggregation.

C of f ee C ompany

Accounts

Department
Servicing

Department

Sales

Department

1 1

1

C of f ee Addicts

Site M anager

User

1

1..*

Chapter 6 Abstractions, Refinement, and Testing 227
serve to highlight the idea that the identity of anything is, in the end, a model constructed
for our convenience rather than something inherent.

6.1.6.2 Abstracting Objects and Actions Together

It is usual to zoom in or out in both dimensions at the same time. As soon as you resolve
each object into several, you must introduce interactions specifically with or between
them. Conversely, when you put more detail into an action, you need more objects to rep-
resent the intermediate states between the actions.

When we looked inside the vendor company, we assigned sales to receive supply
requests from the customers, who then schedule a visit by servicing.

By contrast, we left the collection of cash as one action involving both servicing and
accounts. This means that we’ve deferred until later a decision about how that action splits
into smaller steps.

Zooming in to an action often involves more objects. As an example, let’s go the other
way and abstract the original vend cof f ee action. If the overall requirement is only to get
money out of people by giving them coffee, there are more ways of doing it than by
installing a machine near them: You could run a café or street stall. So we could have
started with this:

and then refined that to this:

Note that the machine is required only when we go to the more detailed scenario of
exactly how we’re going to sell the coffee.

6.1.7 Zooming In to the Software
In Catalysis, the standard pattern for developing a software system or component is to
begin with the business context and represent the business goals in terms of actions and
invariants. Then we decide how to meet these goals in a more refined view, with the vari-
ous roles and interactions within the business.

Some of these interacting objects may be computer systems. We can treat them as sin-
gle objects and describe their interactions with the world around them. Subsequently, we
refine the system into a community of interacting software objects (see Figure 6.12). (A
standard OO design is based on a model of the external world so that we now have two of
everything: a real coffee cup, a user, and a coin, plus their representations inside the soft-
ware.) When we look inside the software, we can continue to use the more general multi-

More
money

vendor customer

sell cof f ee

More
money

vendor machine customer

vend cof f ee

228 PART III FACTORING MODELS AND DESIGNS
ple-participant actions along with objects that actually represent whole subsystems; but
ultimately we get down to the level of individual message sends between pairs of objects.2

Again, the sequence diagrams help us illustrate particular cases, but we prefer to docu-
ment the refinement using type diagrams. This gives us software component context dia-
grams (see Figure 6.13). It also gives us high-level design diagrams (Figure 6.14).

6.1.8 Reified and Virtual Abstractions
When designing objects inside the software, you have a choice about whether to reify
abstract objects and actions—that is, represent them directly as software objects—or just

Figure 6.12 A continuum of refinement: real world to code.

Figure 6.13 Context diagram (collaboration) for one software component.

2. A significant difference between Catalysis notation and UML version 1.1 (current at the time of
writing) is that UML does not have generalized actions in sequence diagrams; nor are the messages
in a sequence diagram understood as instances of use cases. However, at the message-passing level,
our sequence diagrams are the same as UML.

:User :C ontrolSof tw are :G ungeV alve

:C upR elease

:C upF actory
:C upStack

:C up :V alveC ontrol

C ontrol Sof tw are

User G unge V alve

C up R elease

Chapter 6 Abstractions, Refinement, and Testing 229
to leave them as ideas in the design that help you understand the various configurations of
objects and protocols of messages.

The usual approach is to represent each entire system and each component as an object
because it gives something to anchor the parts to. A more difficult decision is whether to
make it the façade for the group of pieces it represents—that is, the means by which all
communication with the outside world should go. Sometimes this works well; it helps
ensure that everything inside the component is consistent. In other cases it is not efficient,
any more than insisting that every communication with customers go directly through the
president of a company.

6.1.9 Composition and Refinement
Other forms of abstraction and refinement, more related to the separation and subsequent
joining of multiple, mostly independent views, are covered in Chapter 8, Composing
Models and Specifications.

6.1.10 Summary: Kinds of Abstraction
An abstraction presents material of interest to particular users, omitting some detail with-
out being inaccurate. Abstractions make it possible for us to understand complex systems
and to deal with the major issues before getting involved in the detail. In Catalysis, we can
treat a multiparty interaction as one thing or treat a group of objects as one, and, at differ-
ent layers of detail, we can choose to change the way we model the business and systems.
But through all these transformations, we can still trace the relationships between business
goals and program code and therefore understand how changes in one will affect the other.

We’ve identified four particularly interesting varieties of abstraction.

• Operational: Pre/post (or rely/guarantee) specs.

• Model: Model attributes may be different from actual implementations.

• Action: A complex dialog presented with a single overall pre/post or rely/guarantee

spec.

• Object: A group of objects presented as one object.

Figure 6.14 Collaboration between software components.

C up F actory

produce

C up Observer

C up Stack V alve C ontrol

C up Display

C up

observes

230 PART III FACTORING MODELS AND DESIGNS
6.2 Documenting Refinement and Conformance

When you write a requirements specification (in any style and language you like), you
want it to be a true statement about the product that ends up being delivered. If QA shows
that the product falls short of the spec, you fix the code; or if it turns out to be impractical
to deliver what was first specified, you can change the specification. But one way or
another, you can’t (or shouldn’t!) call the job complete until the delivered design matches
the specified requirements.

For valuable components (as opposed to throwaway assemblages of them), we believe in
keeping the specification after you’ve written the code and in keeping it up-to-date. In the long
run, the spec (and high-level design documents) helps to keep the design coherent, because
people who do updates have a clearer idea of what the component is about and how it is sup-
posed to work. Designs without good documents degenerate into fractal warts and patches and
soon end up unmodifiable. Remember that more than 70% of the effort on a typical piece of
software is done after it is first delivered and consider whether you want your vision of the
design to be long-lived.

This is not to argue that you should complete the high-level documentation before
embarking on coding. There are plenty of times when it’s a tactical necessity to do things
the other way around. Prototypes and rapidly approaching deadlines are the usual reasons.
The most useful cycle alternates between coding (to obtain feedback from testing and
users and to get things done) and specifying (to get overall insights). Never go beyond get-
ting either cycle 80% complete without working on the other. All we need is that, by the
appropriate milestone, the specs should correctly describe the code.

6.2.1 Documenting the Refinement Relationship
The relationship between an abstraction and a refinement is the refinement relationship. It
is an assertion that one description of a configuration of objects and actions is a more
abstract view of another (see Figure 6.15).

6.2.1.1 Refinement and Subtype

The refinement symbol is a version of the subtype symbol.3 It states that the more detailed
model achieves everything expected from the more abstract one. But whereas a subtype
symbol says to the reader, “The subtype is defined a priori as an extension of the super-
type, having all its properties and more,” the refinement symbol says, “The refinement, a
self-contained model even without the abstraction, is believed to specify everything
defined for the abstraction and more.”

3. UML 1.1 makes mention of refinement, with a default notation that uses a stereotype on the
generic ‘dependency’ arrow. Refinement is central to Catalysis; in our presentation here, we have
chosen to highlight refinement with a distinguished arrow.

Chapter 6 Abstractions, Refinement, and Testing 231
6.2.1.2 Refinement and Aggregation

There is also a slight difference between the refinement symbol and the diamond aggrega-
tion symbol. The diamond makes the abstract and constituent types (or actions) part of the
same model. In these models, it is explicit that a w heel is a part of some particular car and
that there is some way of knowing which buy action a particular pay is part of; some por-

tion of the retrieval is implied by the aggregation itself, but the full justification is with the
refinement.

The aggregation symbol is commonly used when, in a design, you have a reified and
distinguished head object representing the abstraction itself (see Figure 6.16). But the
refinement symbol is somewhat more general. It says that, even if we didn’t think of it that
way when creating one model, the other model is nevertheless a more abstract or refined
view of it; and we can deal with either model separately.

In some idealized sense, every design project can be thought of as generating a series of
refinements even if some of them arise as a result of refactoring or bottom-up abstraction.
You begin with a general idea of what is required, refine it to a solid requirements spec,

Figure 6.15 The refinement symbol: collaboration refinement.

Figure 6.16 Refinement using aggregation.

C ompany sell cof f ee C of f ee Addicts

Accounts lease

order

call

collect

supply

Servicing

M achine User

Site M anager

Sales Department

buy

Wheel C ar
4 1

pay buy
1 1

232 PART III FACTORING MODELS AND DESIGNS
refine it further to a high-level design, and so on to detailed design and code. For example,
you might start with very abstract actions between users and system and refine down to
the actual sequences of GUI actions required for each action. If the project is critical
enough to be fully documented, each of these refinement layers is written up separately;
just as important, the refinement relationships themselves are documented and checked.

Documenting a refinement means writing down the following.

• The reasons for choosing this realization from the alternatives (so that those who fol-
low won’t fall down the same pits you fell into along the way).

• A justification for believing you’ve done the refinement correctly—that is, that the

abstraction really describes the realization accurately. (Doing this is an invaluable san-
ity check and helps reviewers and maintainers.)

Because refinement is a many-many relation, the refinement documentation shouldn’t
properly attach to either the abstraction or the refinement but rather to the refinement rela-
tionship between them. (A component you found in a library may be a good realization of
your requirements, but presumably it will fit the requirements of others as well.)

If you’re designing a nuclear power station or a jumbo jet, we hope you would take all
the preceding writing and verification very seriously, with each layer individually written
up and each refinement carefully established. But for most of us, it’s both acceptable and
desirable to opt for the somewhat more practical solution of clarifying some essential
issues at the requirements level, then working on the design and code while resolving
other issues, and only then updating a few class diagrams.

Well, maybe. In the new world of component-based development, the successful com-
ponents will be those that interoperate with many others. Each interface will be designed
to couple with a range of other components and must be specified in a way that admits any
component with the right behavior and excludes others. A designer aiming to meet a spec
should be confident that the component works and should be able to justify that belief.

We should therefore have some idea of what it means to conform to a specification:
what must be checked and how you would go about it—in other words, documenting the
refinement relationship.

6.2.2 Traceability and Verification
It is important to be able to understand how each business goal relates to each system
requirement and how each requirement relates to each facet of the design and ultimately
each line of the code. Documenting the refinement relationships between these layers
makes it easy to trace the impact of changes in the goals.

Traceability is a much-advertised claim of object-oriented design: Because the classes
in your program are the same as in your business analysis, so the story goes, you should
easily be able to see the effects on your design of any changes in the business. But anyone
who has done serious OO design knows that in practice, the designs can get pretty far from
this simple ideal. Applying a variety of design patterns to generalize, improve decoupling,

Chapter 6 Abstractions, Refinement, and Testing 233
and optimize performance, you separate the simple analysis concepts into a plethora of
delegations, policies, factories, and plug-in pieces.

© traceability The ability to relate elements in a detailed description to the elements in an

abstraction that motivate their presence and vice versa; the ability to relate implementation

elements to requirements.

Documenting the refinement relationship puts back the traceability, showing how each
piece of the analysis relates to the design.

In safety-critical systems, it is possible to document refinements precisely enough to
perform automatic consistency checks on them. However, achieving this level of precision
is rarely cost-effective, and we do not deal with that topic in this book.

For the majority of projects, it is sufficient to use pre- and postconditions as the basis of
test harnesses and to document just enough of a refinement that other developers and
maintainers clearly see the design intent. We’ll see how to do that later in this chapter.

6.3 Spreadsheet: A Refinement Example

The sections that follow look in more detail at the four main kinds of refinement we men-
tioned earlier. This section introduces an example that runs through those sections.

6.3.1 A Specification for a Spreadsheet
Let’s look first at what can be done with a good abstract model. It’s a model of a self-con-
tained program, but it could equally well be a component in a larger system.

Figure 6.17 shows a model of a spreadsheet together with a dictionary interpreting the
meaning of the pieces in the model. A spreadsheet is a matrix of named cells, into each of
which the user can type either a number or a formula. In this simplified example, a for-
mula can be only the sum of two other chosen cells (themselves either sum or number
cells).

The model shows exactly what is expected of a spreadsheet: that it maintain the arith-
metic relationships between the cells no matter how they are altered. In particular, the
invariant Sum::... says that the value of every Sum cell is always the addition of its two
operands.

Notice that this is very much a diagram not of the code but rather of what the user may
expect. The boxes and lines illustrate the vocabulary of terms used to define the require-
ment.

The box marked C ell, for example, represents the idea that a spreadsheet has a number
of addressable units that can be displayed. It doesn’t say how they get displayed, and it
doesn’t say that if you look inside the program code you’ll necessarily find a class called
C ell. If the designer is interested in performance, some other internal structure might be
thought more efficient. On the other hand, if the designer is interested in maintainability,
using a structure that follows this model would be helpful to whoever will do the updates.

234 PART III FACTORING MODELS AND DESIGNS
The model doesn’t even say everything that you could think of to say about the require-
ments. For example, are the C ells arranged in any given order on the screen? How does the
user refer to a C ell when making a Sum? If not all the C ells will fit on the screen at a time,
is there a scrolling mechanism?

Figure 6.17 Model for a spreadsheet.

Spreadsheet

Spreadsheet R equirements

C ell

Sum Number

Blank

inv Blank:: value = 0

show s
C ontent

value

*

*

*

lef t right

content

1 1

inv

	 Sum ::

		 value = lef t.content.value

			 + right.content.value

setNumber(n)

setSum(C ell, C ell)

User Spreadsheet Each instance is a collection of interrelated Cells.

shows Every Spreadsheet contains a collection of Cells. (Often
displayed in a two-dimensional matrix, but other arrange-
ments are possible. We say nothing here about what the
User does to see the Cells.)

Cell Each instance is a displayable element that can be
referred to by the User (such as by name or pointing).

Content The information displayed in a Cell, which can be set
by the User (by some means not defined here).

Number Each instance represents a Number entered into a Cell
directly by the User.

Sum Each instance represents a Sum of the content of two
other Cells determined by the User.

Blank The initial content of all the Cells of a new Sheet.

User, c:Cell Represents the ability of the User to set a Cell’s content
setNumber(n : int) to be a Number.

Postcondition: Cell c’s content is a Number, with value
= n.

User, c:Cell Represents the ability of the User to set a Cell’s content
setSum(c1 : Cell, c2: Cell) to be the Sum of two other Cells.

Postcondition: Cell c’s content is a Sum whose left and
right are the Cells c1 and c2.

Precondition: c is not a descendant of c1 or c2.

11

Chapter 6 Abstractions, Refinement, and Testing 235
It’s part of the utility of abstract modeling that you can say or not say as many of these
things as you like. And you can be as precise or ambiguous as you like; we could have put
the {Sum::... invariant as a sentence in English. This facility for abstraction allows us to
use modeling notation to focus on the matters of most interest.

6.3.1.1 Using Snapshots to Animate the Spec

Although (or perhaps because) the model omits a lot of the details you’d see in the code,
you can do useful things with it. For example, we can draw snapshots: instance diagrams
that illustrate clearly the effect each operation has.

Snapshots illustrate specific example situations. Figure 6.18 shows snapshots depicting
the state of our spreadsheet before and after an operation. (The thicker lines and bold type
represent the state after the operation.) Notice that because we are dealing with a require-
ments model here, we show no messages (function calls) between the objects; they will be
decided in the design process. Here we’re concerned only with the effects of the operation
invoked by the user. This is part of how the layering of decisions works in Catalysis: We
start with the effects of operations and then work out how they are implemented in terms
of collaborations between objects.

6.3.2 An Implementation
Now let’s consider an implementation. The first thing to be said is that the program code is
much larger than the model, so we’ll see only glimpses of it. Here is some implementation
code for a spreadsheet:

package SpreadSheetImpl_1;

class SpreadSheet_I // This class implements SpreadSheet
{

private C ell_I [] cells; // array of cells of my spreadsheet

Figure 6.18 Spreadsheet snapshots.

:Sum

value==14 23

:Number

value==4

:Number

value==3

B3 :C ell

:Sum

value==13

B4 :C ell :Sum

value==10

A2 :C ell

:Number

value==4

C 6 :C ell

:Number

value==6

A5 :C ellC 2.setSum(A2, B3)

C 2 :C ell

236 PART III FACTORING MODELS AND DESIGNS
... // various code here
}

class C ell_I
{

private int m_value; // The current value of the C ell
private Sum_I sumpart; // Null if it’s a plain number
public int value () { return m_value; }
// w ill need some mechanism to keep m_value in sync w ith sumpart!
... // M ore code f or manipulating C ells goes here

}

class Sum _I // R epresents Sums
{

private C ell_I [] operands; // An array of several operands
int get_value ()
{ int sum=0;

f or (int i= 0; i<operands.length; i++)
sum += operands[i].value();

}
... // M ore code ...
}

The (|_|) suffixes distinguish the implementation. The first thing a reviewer might
notice is that the classes I have written don’t seem to correspond directly to the classes
mentioned in the specification. Their attributes are different, and so on. “We are doing
object-oriented design,” says the reviewer. “Your code should mirror the spec. It says so in
50 different textbooks.”

I am quick to my defense. Point (a): encapsulation. The spreadsheet as a whole, seen
through the eyes of users (including other programs driving it through an API), does
exactly what the spec leads them to expect. They won’t know the difference. This is
encapsulation, something that is “also mentioned in about 150 different books,” I point
out.

Point (b): engineering. Whereas the spec was written to be easily understood and gen-
eral to all implementations, my particular implementation is better. It works faster, uses
fewer resources, and is better decoupled than some amateur attempt that slavishly follows
the model in the spec. And for many programs, there would be practical issues such as
persistence not dealt with in the spec.

“And finally,” I add, “my program is a whole lot more than just a spreadsheet. To use it
as such is to play ‘Chopsticks’ upon the mighty organ of a grand cathedral; to ask Sean
Connery to advertise socks.” In other words, the spec from my point of view is partial,
expressing the requirements of only one class of user; so the implementation classes you
see here are chosen to suit a much broader scheme. Nevertheless, it is able to function
merely as a spreadsheet when required, and I wish it to be validated as such against the
spec.4

Chapter 6 Abstractions, Refinement, and Testing 237
6.3.3 The Refinement Relationship
Whether you believe all that about my spreadsheet is not important here. Certainly, there
are many times when performance, decoupling, or a partial spec leads to differences
between model and code. So the reviewer is faced with trying to determine whether there
is some correspondence between them: whether the code conforms to the spec (or refines
it).

Naturally, proper testing will be the final judge. But understanding the conformance
relationship allows an earlier check, which can clarify the design and the rationale for the
differences. What’s more, it provides traceability: the ability to see how any changes in
either the spec or the code affect the other.

As we’ve seen, we can distinguish a few main primitive kinds of refinement. Combina-
tions of them cover most of the valid cases: you can explain most design decisions in
terms of them. In a large development, the usual layers of requirements, high-level design,
detailed design, and code can be seen as successive refinements.

Understanding refinement has several advantages.

• It makes clear the difference between a model of requirements and a diagram that more

directly represents the code (one box per class).

• It makes it possible to justify design decisions more clearly.

• It provides a clear trace from design to implementation.

Many of the well-known design patterns are refinements applied in particular ways. The
refinements we’re about to discuss are, in some sense, the most primitive design patterns;
they are themselves combined in various ways to define the more popular design patterns.

We’ll now see examples of the four refinements we looked at in Figure 6.1.

6.4 Spreadsheet: Model Refinement

The reviewer begins by getting me to produce a drawing of my code. Figure 6.19 shows a
view focusing on the external user operations and their postconditions. You can see the
direct correspondence between the static model and the variables. Indeed, there are tools that
will take the code and produce the basis of the diagram.

class C ell_I
{ private int value;

Sum_I sumpart; // null f or a Number
...
class Sum_I
{ C ell_I operands []; // array
...

4. Presumably, the spec has not said anything about my program’s 94MB size and the download
time to Web users other than Sean Connery.

238 PART III FACTORING MODELS AND DESIGNS
The reviewer begins with how the information in the model is represented.

“How is the spec’s Sum represented?” she asks.

“By my Sum_I,” I reply.

“So where are the lef t and right attributes of a Sum?”

“No problem,” I answer. “All the information mentioned by the requirements is there—
it’s just that some of the names have changed. If you want to get the lef t and right operands
of any Sum, look at the first and second items of my operands array. But because the
requirements don’t call for any operations that directly ask for the left or right, I haven’t
bothered to write them.” Nevertheless, anyone using my code would see it behaving as
expected from the spec.

6.4.1 What a Type Model Means and Doesn’t Mean
The types in a model provide a vocabulary for describing a component’s state. The terms
can be used to define the effects of actions. However, the model does not provide any
information about the internal structure of the component.

A static model (types, attributes, and associations) provides, by itself, no useful infor-
mation about what behavior to expect. Only the action specifications based on it provide

Figure 6.19 A picture of my code.

Spreadsheet 1

operands {seq} *

SpreadSheet Implementation 1

Sum_IC ell_I

value

sumpart

0,1

User 1

User, ci:Cell_I post: ci.sumpart is a new Sum_I with ci1 as its
setAddition(ci1: Cell_I) only operand

setAddition(C ell)

addOperand(C ell)

setNumber(int)

C ell_I :: sumpart <> null ==>

	 value = sumpart.operands–>sum

*

User, ci:Cell_I post: ci2 is appended to ci.sumpart.operands
addOperand(ci2: Cell_I)

User, ci:Cell_I post: ci.sumpart=null && ci.value=n
setNumber(n : int)

Chapter 6 Abstractions, Refinement, and Testing 239
that. The complete specification is a true one if the statements it makes or implies about
the component’s behavior (response to actions) are always correct. Features of a static
type model not used by action specifications are redundant, having no effect on the speci-
fication’s meaning.

6.4.2 Documenting Model Conformance with a Retrieval
The general rule is that, for each attribute or association in the abstract models, it should
be possible to write a read-only function in the implementation code that abstracts (or
retrieves) its value. Here are the retrievals for Sum_I I’ve just mentioned to my reviewer:

class Sum_I
{ private C ell_I [] operands; // array

C ell_I lef t () {return operands [0]; }
C ell_I right () {return operands [1];}
...

These abstractions happen to be particularly easy; the correspondence to the spec
model is not very far removed. Others are more complex. But it doesn’t matter if an
abstraction function is hopelessly inefficient: It need only demonstrate that the informa-
tion is in there somewhere. Nor does it matter if there is more information in the code than
in the model. I can store more than two operands, although readers of the official spec
won’t use more than two.

6.4.3 Drawing a Model Conformance
Retrievals can be made more clear with a diagram. It can be helpful to draw both models
(or at least parts of them) on a single diagram. You can then visually relate the elements
across the refinement using associations and write invariants that define the abstraction
functions for all attributes in the spec.5 These associations, introduced specifically for this
purpose, are distinguished with a <<retrieval>> tag or stereotype. (We often abbreviate that
to a // marker, although in Figure 6.20 we’ve shown both.) Figure 6.20 shows that each
C ell_I in the implementation corresponds one-to-one with a C ell in the spec; the same is
true for Sum_I and Sum. All we need is to document how the attributes of C ell or Sum can
be computed from the attributes of C ell_I or Sum_I. For example:

Sum :: lef t = impl1.operands[1].abs
and right = impl1.operands[2].abs
and value = impl1.container.value

Notice what’s happening: we start with a part of the spec and go through its attributes,
showing how they are realized in this implementation, which is called impl1 (not just
impl—it might have many implementations we’ve not seen yet). The lef t is given by our

5. The specification model will generally be in one package and the implementation in another.
(Packages are dealt with in Chapter 7.) There may be more than one implementation, so we don’t
want to put them all in one package. The conformance retrieval information may be with the imple-
mentation or in its own package.

240 PART III FACTORING MODELS AND DESIGNS
implementation’s first operand—well, not quite, because that’s a C ell_I. Actually, it’s the
abstract C ell represented by its first operand—hence, the abs at the end.

We can say the same kind of thing about C ells:

C ell:: content.value = impl1.value
-- my content’s value is represented by my implementation’s value

and if (impl1.isBlank) abs.content : Blank
-- impl1’s isBlank flag means I am a Cell with a Blank content

else if (impl1.sumpart = null) abs.content : Number
-- if my implementation has no sumpart, my content is a Number

else (content : Sum) and content = impl1.sumpart.abs
-- otherwise my content is a Sum, as represented by my

implementation’s
-- sumpart --- see its retrieval for details

And finally we can say the same thing about the whole spreadsheet:

SpreadSheet_1 :: abs.cells = cells.abs
-- I represent the Spreadsheet whose Cells are all the abstractions that my

Cell_Is represent

Figure 6.20 Retrieval diagram.

Spreadsheet_1

operands * {seq}

impl1 1

1 impl1

impl1 1

<<retrieval>> <<retrieval>> <<retrieval>>

Sum_I C ell_I

isBlank: bool

value

sumpart

0,1
*

cells

1

container
*

Spreadsheet

Sum Number

Blank

C ontent

value

* *

1 right

1 lef t

1 abs

abs 1

abs 1

content1

1
*

cells

Sum ::

value = lef t.content+right.content

C ell_I ::

isBlank ==> value=null

C ell

Chapter 6 Abstractions, Refinement, and Testing 241
Writing the retrieval functions doesn’t directly depend on drawing the retrieval rela-
tions, but it helps where the correspondence is more or less one-to-one. Notice that we
don’t, for example, have a direct correspondence to Number.

6.4.4 Testing Using Abstraction Functions
QA departments may insist that such retrieval (abstraction) functions should be written
down or even written into the code. Even though these functions are not always used in the
delivered code, they are useful.

• Writing them is a good cross-check, helping to expose inconsistencies that might other-
wise have been glossed over.

• They make an unambiguous statement about exactly how the abstract model has been

represented in your code.

• For testing purposes, testbeds can be written that execute the postconditions and invari-
ants defined in the requirements models. These talk in terms of the abstract model’s

attributes, so the abstraction functions will be needed to get their values.

For example, recall that we wrote one of the invariants as

Sum:: value = lef t.content.value + right.content.value

Becuase we have defined what value, lef t, and right mean in terms of this implementation,
we can rewrite it, substituting the definitions of each of them:

Sum :: impl1.container.value = impl1.operands[1].abs.content.value
+ impl1.operands[2].abs.content.value

The impl1 at the start of each of these expressions says that we are talking about the
implementations. So maybe it would be simpler to write the invariant so that it applies to
all Sum_Is instead:

Sum_I :: container.value = operands[1].abs.content.value
+ operands[2].abs.content.value

This is an invariant we could execute in the implementation in debug mode. We could
make one further simplification to make more clear what is happening. Evaluating the
expressions operands[n].abs will give a C ell; and the retrievals say that C ell::content.value
= impl1.value. So we could rewrite the invariant:

Sum_I :: container.value = operands[1].abs.impl1.value
+ operands[2].abs.impl1.value

But that’s still a bit long-winded. Something such as abs.impl1 is running one way up a
one-to-one association only to come back down it again—the two cancel out. So we get

Sum_I :: container.value = operands[1].value + operands[2].value

6.4.5 Model Conformance: Summary
We’ve seen how a model can be very different from the code and still represent the same
information. Now, as we’ve said before, the Golden Rule of object-oriented design is to

242 PART III FACTORING MODELS AND DESIGNS
choose your classes to mirror your specification model. When that is possible, the abstrac-
tions are trivial, a one-to-one correspondence. But there are several circumstances when it
isn’t possible, and model refinement gives us a way of understanding the relationships. Typ-
ical cases include the following.

• The model that gives best execution performance is very different from one that
explains clearly to clients what the object does.

• The implementation adds a lot to the specified functionality. It is possible for one

object to satisfy several specifications, especially when it plays roles in separate collab-
orations (as we will see in later chapters). Each role specification will have its own

model, which must be related to the implementation.

• You specified a requirement and then bought a component that comes with its own

spec. The first thing you must work out is how its model corresponds to yours.

We’ve also said before that it is a matter of local policy how formal your documenta-
tion must be. When you’re plugging components together to get an early product delivery,
you don’t care about all this. But when you’re designing a component you hope will be
reused many times, it is worth the extra effort. And even if you don’t go to the trouble of
writing the abstraction functions, it is useful to do a mental check that you believe they
could be written if you were challenged to.

6.4.6 Testing by Representing the Specification in Code
What the Quality Assurance department really wants is to be able to represent a spec in code
so that it can be run as a test harness. They want to be able to write one set of invariants,
postconditions, and so on that every candidate implementation can be tested against. As far
as they are concerned, the spec writer writes a spec and associated test assertions. Each
hopeful designer must supply two things: the design plus a set of abstractions that enable the
test assertions to execute.

This rigorous view of specification and testing leads to a view in which all models can
be cast into program code (something that is not so tedious as it was before code-generat-
ing tools). The types in a specification turn into abstract classes, of which the designer is
expected to supply implementations. Figure 6.21 on the next page shows this done for the
invariants; postconditions are omitted.

(In Java, you’d think spec types would be written as interfaces. Unfortunately, if we
want to put the invariants and postconditions into the types themselves in real executable
form, they must be classes. This has the uncomfortable effect of disallowing one imple-
mentation class from playing more than one role. An alternative is to put all the test appa-
ratus in a separate set of classes that interrogates the states of the types. Again, we find
ourselves applauding Eiffel, in which all this is natural and easy.)

If we can write the whole thing, spec and all, in code, we can also show both the
abstract model and the more detailed design in one picture—see Figure 6.22 on page 245.
The C ell and Sum refinements are only model refinements, because the abstraction did not
promise any behavior requirements on those types.

Chapter 6 Abstractions, Refinement, and Testing 243
Figure 6.21 Specification directly translated to code (left) and

implementation with retrievals (right).

Specification as Code

package SpreadSheetSpec;

Implementation (part)

package SpreadSheetImpl;
import SpreadSheetSpec;

class Blank extends C ontent
{
 boolean invariant ()
 { return super.invariant()

& & value() ==0 ;
 }
 // This is so obvious . . . let' s just do it
 public int value () { return 0; }
}

abstract class Number extends C ontent
{
 abstract void set_value (int v);

 // post: v == value()
}

abstract class Sum extends C ontent
{
 abstract C ell lef t();
 abstract C ell right();
// crucial spreadsheet invariant
 boolean invariant ()
 { return super.invariant() & &

value() ==
 lef t() .content() .value()

+ right() .content() .value();
} }

abstract class C ell
{ abstract C ontent content ();
//invariant true if content is OK
 boolean invariant ()

 { return content() .invariant(); }
}
abstract class C ontent
{ abstract int value ();
// def ault invariant - depends on subclass:
 boolean invariant () { return true; }
}

// invariant true if all constituents OK
 public boolean invariant ()

 { boolean inv= true;
 f or (int i= 0;

 i<show s () .length; i++)
inv & & = show s () [i] .invariant ();

 return inv;
} }

abstract class SpreadSheet
{
 public abstract C ell [] show s ();

// C ell [] - - array of C ells
// abstract - - header only, no body

// This class is used f or retrieval
// w hen debugging - - not required in delivery
 class NumberAdapter extends Number
{ private C ell_I myC ell;
 NumberAdapter (C ell_I c) // constructor

{ myC ell= c; }
 public int value ()

{ return myC ell.value(); }
 public void setV alue (int v)

{ myC ell.setV alue(v); }
}

class Sum_I extends Sum
{ private C ell_I [] operands;

public int value () { . . .add operands. . . }
// retrievals as a Sum:

public C ell lef t ()
{ if (operands.length == 0)

 return new C ell_I (); //blank
else return operands[0];

}
public C ell right ()
{ if (operands.length <= 1)

 return new C ell_I (); //blank
else return operands[1];

} . . . }

class C ell_I extends C ell
{ private boolean isBlank= true;

private int m_value; // current value
private Sum_I sumpart; // null f or Number

// retrieval as a C ell:
public C ontent content ()
{ if (isBlank) return new Blank();

else if (sumpart==null)
return new NumberC ellAdapter(this);

else
return sumpart;

}
public int value () {if (sumreturn m_value)}

// services retrieval of Number:
void set_value (int v) { m_value= v; }

}

class SpreadSheet1 extends SpreadSheet
 // This class implements SpreadSheet

{ private C ell_I [] cells;
//retrieval:

public C ell [] show s ()
{ C ell [] r= new C ell [cells.length];

f or (int i= 0; i<r.length; i++)
 r[i]= cells[i];
return r;

} }

244 PART III FACTORING MODELS AND DESIGNS
But our reviewer has been thinking. “I notice your lef t and right return C ell_I, so that
must be your representation of C ell, right?” she says. “So what’s a C ell_I’s content?”

“In my terms, that’s its sumpart,” I reply.

“But that only works if the C ell’s content is a Sum,” she says. “What if it’s a Number or
a Blank?”

Well, that’s a good question. The spec always models every C ell as having a C ontent
even if it’s just a plain Number, whereas I keep the value in the C ell_I itself and use an
extra object only to deal with Sums. The information is all in there but is distributed in a
different way. But it presents an obstacle to the executable invariants idea: A term such as
lef t().content().value() wouldn’t work where lef t() is a plain number cell, because it doesn’t
have a content.

What I want to say is that expressions in the spec such as content.value should be trans-
lated into the terms of the implementation as a whole: The content.value of a C ell_I is its
sumpart.value if it’s a sum and is its own variable m_value otherwise. This is perfectly
reasonable if all I want to do is document the abstraction function and persuade my
reviewer that my code is OK.

Figure 6.22 Spec and code, showing main correspondences.

Spreadsheet

C ell

Sum Number

Blank

{ Blank:: value == 0 }

show s
C ontent

value : int

*

*

*

1

lef t
1

right

content

1 1

inv Sum ::

	 value = lef t.content.value

		 + right.content.value

Spreadsheet 1

operands *

Sum_I C ell_I

value : int

isBlank : Boolean

sumpart

0,1*
*

cells

Chapter 6 Abstractions, Refinement, and Testing 245
But for executable test assertions, content() must return something that will then return
the appropriate value(). This leads to the invention of the class NumberAdapter (so now we
have abstraction classes as well as functions). It can be kept fairly minimal. All it must do
is know our implementation well enough to extract any information required by the test
assertions in the spec type Number.

So the general pattern for executable abstractions is that for every type in the spec, the
designer provides a direct subclass. Sometimes these can be the classes of the implementa-
tion; in practice they often must be written separately, mostly because your classes have
more interesting things to be subclasses of. Each adapter retrieves from the implementa-
tion that part of the component’s state that its specification supertype represents. Notice
that our adapters are created only when needed (see Figure 6.23).

What has happened to our ideal of encapsulation? We started with the idea that internal
workings unseen by the user could be designed in any way you like; now we’ve had to put
back all the structure of the model.

Well, not quite. The adapter classes need only translate and are there only for verifica-
tion. The real implementation still does the hard work. And you’ll need them only if your
QA department is pretty stringent.

As it turns out in practice, adapters of this kind are frequently needed for each external
interface of a component, whether it is a user interface or an interface to another compo-
nent (see Figure 6.24). This is because the component’s internal state must be translated
into the view understood by each external agent. (For human users, the GUI usually
encompasses the adapter.)

6.4.7 Specifications in Code: Summary
Specifications can be written not only as pictorial models but also in the form of execut-
able test frameworks. The benefit is a much stronger assurance of conformance, especially
where there may be a variety of candidate implementations.

Implementors must provide executable abstraction functions to translate from the com-
ponent’s internal vocabulary to that of the specification. Often, this leads to providing an

Figure 6.23 Test by adapting the implementation.

Spec Implementation Package

User
user interf ace

Adapter
Implementation

246 PART III FACTORING MODELS AND DESIGNS
adapter, a set of classes directly mirroring the types in the spec. However, adapters can be
useful at the interface of a component in addition to their role in verification.

6.5 Spreadsheet: Action Refinement

The next thing my code reviewer notices is that nowhere is there a function setSum(C ell,
C ell). I explain that I have decided to refine this action to a finer-grained series of interac-
tions between the user and the spreadsheet (see Figure 6.19 earlier). To set a cell to be the
sum of two others as per requirement, the user performs this scenario:

• Select the cell in question by clicking the mouse.

• setAddition: type = and click one of the operand cells.

• addOperand: type + and click on the other.

The requirement is provided for by a combination of features in my implementation.
My “=” operation turns the C ell into a single-operand sum, and each “+” operation adds
another operand. So although there is no single operation with the signature setSum(C ell,
C ell)—either at the user interface or anywhere inside the code—the user can nevertheless
achieve the specified effect.

It is an important feature of a Catalysis action that, without stating how, it represents a
goal attained by a collaboration between the participants. The goal can be unambiguously
documented with a postcondition or with a guarantee condition. A conformant implemen-
tation is one that provides the means of achieving the goal.

Different implementations require different behavior on the part of every participant,
because they will involve different protocols of interaction. A user who knows how to use
my spreadsheet implementation will not necessarily know how to use another design. It is
the collaboration that has been refined here and not the participants individually.

6.5.1 Action Conformance: Realization of Business Goals
In general, the specification actions are about the business goals of the system—for example
“The user of our drawing editor must be able to duplicate picture elements and must be able
to copy them from one drawing to another.” The actions that we provide break these larger

Figure 6.24 Adapters for other interfaces.

Spec

interf ace interf ace

C omponent Spec

Adapter Adapter
Business

core

Chapter 6 Abstractions, Refinement, and Testing 247
goals into decoupled pieces. We invent a clipboard and provide cut and paste operations with
which the user is able to achieve the stated goals.

Here’s another example: “The customer of our bank must be able to get money at any
time of the day or night.” So we invent cash machines and cash cards and provide the
actions of inserting the card into the machine, selecting a service, and so on. The user, with
the help of a good user interface, uses these actions to achieve the stated goals.

6.5.2 Checking Action Conformance
We need to check that, for every action defined in the specification, there is a combination
of implementation actions that the user could follow to achieve the defined goal. Let’s take
setSum as an example.

The action specs shown here were given in Figure 6.17 and Figure 6.19:

From the spec
User, C ell c :: Represents the ability of the User to set a

C ell’s content to be the Sum of two other Cells.
setSum (ci1 : C ell, ci2 : C ell) Post: C ell c’s content is a Sum whose left and

right are the C ells c1 and c2.
From the implementation
User, C ell_| ci :: Post: ci.sumpart is a new Sum_I with ci1 as its

setAddition (ci1 : C ell_|) only operand.
User, C ell_| ci :: Post: c2 is appended to ci.sumpart.operands.

addOperand (ci2 : C ell_|) Pre: ci.sumpart <> null. This is already a Sum.

A little thought suggests that a setAddition followed by an addOperand should achieve
the effect of a setSum. A comparison of snapshots in the two views will help; the arrows
show which links are created by each action (see Figure 6.25).

Now we can see that performing the sequence

<ci.setAddition(ci1), ci.addOperand(ci2)>

should achieve an effect corresponding to the spec’s c.setSum(c1, c2). To be absolutely
sure, we can use the abstraction functions we worked out earlier.

setSum’s postcondition talks about the lef t and right of C ell c. In our implementation,
we claim that C ell_Is represent Cells, so in our example snapshot, cin represents cn. We
also decided that content.lef t in the spec is represented by sumpart.operands[0]. So does
this sequence of steps achieve that “C ell c’s content is a Sum whose lef t is C ell c1”? Yes,
because the first step makes ci.sumpart.operands[0] =ci1. And does it achieve that c.con-
tent.right = c2? Yes, because the second step achieves ci.sumpart.operands[1] = ci2.

6.5.3 Documenting Action Conformance
We can document the refinement as in Figure 6.26. The diamond “assembly” symbol says
that there is some way in which the specification effect can be achieved by some combina-
tion of the implementation actions. But exactly what sort of combination—concurrent,
sequential, some sort of loop—must be said separately.

248 PART III FACTORING MODELS AND DESIGNS
In the case of a sequence, this can be done with a state chart.6 Each implementation
action is a transition on the diagram; each state represents how much of the overall job has
been achieved so far. You may need to use additional attributes, with new postconditions
on the detailed actions, to make the mapping clear.7

This one is simple. The initial setAddition takes us into an intermediate state, OneOper-
andEntered, from which an addOperand will complete the overall setSum action. This
achievement is denoted by the caret mark ^. We do not specify here what happens if
addOperand occurs when we’re not in OneOpnd or what happens if setAddition is per-
formed again when we’re in OneOpnd. Those exceptions can be shown separately.

Names are chosen in the state chart (here, c1 and c2) to indicate how the arguments of
the actions are related. You can use the names in guards and postconditions written in the
chart to show other constraints and results in more detail.

As usual, diagrams are not intended to be a substitute for good explanation in your nat-
ural language. Instead, they are supposed to complement it and remove the ambiguities.

Figure 6.25 Snapshots in specification and implementation.

Figure 6.26 Action conformance.

6. We have found that temporal logic handles more general cases in a very concise form. The UML
activity diagram is another alternative.

7. For example, Section 4.2.2, Preview: Documenting a Refinement, introduces a counter to count
the number of individual item insertions and map to the single abstract action of some quantity of
those items.

Specification view

c.setSum(c1, c2)

lef t right

content

Implementation view

2. ci.addOperand(ci2)

1. ci.setAddition(ci1)

operands

sumpart

c2 : C ellc1 : C ell ci1 : C ell_I ci2 : C ell_I

ci : C ell_I

: Sum_I

c : C ell

: Sum

OneOperandEntered

setAddition(c1)

addOperand(c2)

^setSum(c1, c2)
setAddition

setSum

addOperand

1 1..*

Chapter 6 Abstractions, Refinement, and Testing 249
6.5.4 Testing Action Conformance
Testing action conformance at runtime isn’t as easy as just inserting a few lines of code to
monitor the postconditions. The problem is that nowhere does my user explicitly say to
my implementation, “Now I want to do a setSum.” It’s the same with our other examples:
A user doesn’t say to the drawing program, “Now I’m going to move a shape from one
drawing to another.” Rather, the user just uses the select, cut, and paste operations.

Therefore, we have two options. We can write a test harness that performs the requisite
sequences and checks the postconditions by comparing states before and after, or we can
perform the equivalent checks manually by following a written test procedure. This is a
matter of policy in your project. Each approach will be appropriate in different circum-
stances. Either way, you are systematically defining test sequences based on refinement of
abstract actions. And, either way, the documented action conformance should be used to
guide the creation of the tests, and the retrievals (whether only documented or actually
coded as we saw earlier) provide the mapping between the different levels of the model.

6.5.5 Action Conformance and Layered Design: Action Refinement
Brings Model Refinement

Action refinement is nearly always associated with model refinement. To represent the
intermediate states, the more detailed model needs more information.

Action refinement is about taking a large interaction with many parameters and break-
ing it into several steps with fewer and simpler parameters. For example, get_cash(ATM ,
person, account, $) breaks down to several steps, such as insert_card(ATM , card) and
enter_amount($), each of which identifies only a few parameters at a time. After the first
step, the ATM system must remember whose card has been inserted so that when the later
$ step happens, it knows which account to debit (see Figure 6.27). The association of
“Account x currently using ATM y” is not needed at the more abstract level. Ultimately,
the process can be taken down to individual keystrokes and mouse clicks.

In our spreadsheet, we glossed over something of this nature. We originally said that
the user first selects a cell and then performs a setAddition operation to identify the first
operand. In other words, select(C ell_I) sets some current_f ocus attribute of the spreadsheet
as a whole; and setAddition’s postcondition should properly have been written in terms of
current_f ocus.

action setAddition (ci1: C ell_I)

post: current_f ocus.sumpart is a new Sum_I with ci1 as its only operand.

We can take the action refinement even further. How is a setAddition performed? By
typing = and clicking in a cell. For that we need an addition to the model to record that
after the =, we’re now in the “identify C ell for adding” state and to map mouse coordinates
to C ells. Yes, finally, we’ve gotten down to something that uses the graphical layout of the
spreadsheet.

250 PART III FACTORING MODELS AND DESIGNS
6.5.5.1 Reifying Actions

Reification means to make real. We use it to mean making an object from some concept. In
a model, we can feel free to represent any concept as an object; in a design, reification is
the decision to write a class to represent that concept.

It is often useful to represent an action as an object, particularly an abstract action with
refinements. Its purpose is to guide the refined actions through the steps that lead to the
achievement of the abstract action’s postcondition and to hold the extra information that is
always required to represent how far the interaction has progressed.

In the bank example, we might create an ATM _transaction object as soon as a user
inserts a card. This object would keep all the information about the account that has been
selected, the current screen display, the menu options, and so on.

Reified action objects also form a record of the action after it has completed (for audit
trail purposes) and keep the information necessary for an undo operation. This transaction
object is also the place to put all the functionality about exceptional outcomes, rollbacks,
and so on.

We can see reified actions in real-world business transactions. An order is the business
concept representing the progression of a buy action through various subactions such as
asking for the goods, payment, and delivery. An account is the reification of the ongoing
action of entrusting your money to your bank.

Reified actions are often called control objects or transaction objects. Whenever we
draw an action ellipse on a type diagram, we are really drawing a type of object, which
might or might not be reified in an implementation. (See Pattern 14.13, Action Reifica-
tion.)

It’s easy to see the direct correspondence: The participants of the action are drawn as,
and are, associations of the reified action; the action’s parameters—variable values we
don’t bother to depict as links on the diagram—are the object’s attributes (see Figure

Figure 6.27 Action refinement means intermediate attributes.

Abstract model

Person

pocket: $

Bank

Account

balance:$

get_cash

action get_cash

post:	M ore in person’s pocket,

	 less in account’s balance

More detailed model

Person

pocket: $

Bank

current_user

Account

balance:$
ATM

action insert_card

post this person’s Account is

	 current_user of this ATM

action enter_amount ($)

post debit the current_user’s balance

0,1
0,1

Chapter 6 Abstractions, Refinement, and Testing 251
6.28). As we add detail about the constituent actions, the extra information is added to this
object. The state diagram we drew—depicting the correspondence between the abstract
and detailed actions—becomes the state chart of this object.

6.5.5.2 Action Refinement and Design Layers

The relationships between abstract actions and their more-detailed constituents cover a
scale from individual keystrokes or electrical signals to large-scale operations. The objects
that reify these actions range from GUI controllers to entire application programs. For
example, the operations of editing words and pictures in a drawing program can be seen as
refinements of the overall action of creating or updating a document; the in-memory ver-
sion of the document, and mechanisms such as the cursor and scrollbars, are part of the
extra information attached to the object at the more detailed level. At an even bigger scale,
workflow and teamwork systems help control the progress of a project through many indi-
vidual tasks, with documents as intermediate artifacts.

Within a software design, the different levels of refinement are generally associated
with different, decoupled layers in the software. We can see this, for example, in the con-
ventional separation into business and GUI layers. We can also see it in communications
protocols, from the individual bits up through to the secure movement of files and Web
pages.

6.5.6 Action Conformance and Collaborations
We have seen how a more detailed static model is required to describe a more detailed action.
The purpose of a model is to carry the effects of one action across to the next; there wouldn’t be
much use in using a different model for every action. A collaboration is a group of actions and
the model that describes them (see Section 4.6).

Because we refine the model with the actions, we usually refine a complete collabora-
tion together: first the model, according to the rules of model conformance, and then each
action (see Figure 6.29). Each of the more-detailed actions can be used in several of the
more-abstract actions.

Invariants are attached to collaborations or types and govern the actions that are part of
the collaboration or the operations that are defined for the type. An invariant says, “If this is

Figure 6.28 Reification of get_cash action.

Person Account

ATM

get_cash(amount:$)

1 1

1

Person Account

ATM

1 1

1

G et_cash

amount : $

252 PART III FACTORING MODELS AND DESIGNS
true when we start, it should still be true at the end.” It can be conjoined with every pre- and
postcondition of every action in its collaboration.

The actions in a collaboration do not observe the same invariants as the actions they
refine. For example, when we look at a transaction between a shop and a customer at
abstraction sufficient to see purchases, we believe in the invariant that the amount in the ven-
dor’s till plus the value of the stock should always add up to the same amount: Every sale
simply swaps some stock for some money. But when we look in more detail, we can see that
the money is transferred separately from the goods, so there are periods between payment
and delivery when the invariant is not observed. Nevertheless, this layer still has its own
invariants—for example, that the total of the vendor’s and the customer’s cash is always the
same.

Therefore, invariants should always be quoted as part of a given type or collaboration.
Before doing anything to correlate one level of abstraction with another, absorb the invari-
ants into the pre- and postconditions.

6.5.7 Action Conformance within Software
Action refinement is not solely about user interactions. You can use the same principle
when describing dialogs between objects in the software. This lets you describe collabora-
tions in terms of the effects they achieve before you go into the precise nature of the dia-
log.

For example, one of the invariants of the spreadsheet implementation is that the value
of a C ell_I with a sumpart is always the sum of sumpart.operands. To achieve this, my
design makes each Sum register as an observer of its operand C ells. When any C ell’s value
changes, it will notify all its observers; Sums in turn notify their parent C ells. The effect is
to propagate any change in a value.

We can document that requirement while deferring the details of how the change is
propagated. Does a C ell send the new value in the notify message? Or does it send the dif-
ference between old and new values? Or does it send the notification without a value and
let the observer come back and ask for it? In the midst of creating the grand scheme of our
design, we don’t care: Such details can be worked out later, and we want to get on to other
important issues first. The art of abstraction is about not getting bogged down in detail!

Figure 6.29 Collaboration conformance.

inv xxx

inv yyy

Chapter 6 Abstractions, Refinement, and Testing 253
All we need do at this stage is to record the relationship and the effect it achieves. For this,
we use an invariant effect that constrains all (see Figure 6.30).

6.5.8 Action Conformance: Summary
Actions are used to describe the way in which objects—people, hardware, or software—
collaborate. Actions are primarily described by their effects on the participants and sec-
ondarily as a series of steps or another refinement to smaller actions.

Action abstraction allows us to describe a complex business or software interaction as a
single entity. Action refinement can be traced all the way from business goals down to the
fine detail of keystrokes and bits in wires.

A useful technique in documenting action conformance is to draw a state chart of the
progress of the abstract action through smaller steps.

6.6 Spreadsheet: Object Refinement

Object conformance means recognizing that a particular single object is an abstraction repre-
senting several constituent parts and that the state and responsibilities attributed to the
abstract object are in fact distributed between the constituents.

Object conformance often accompanies action conformance when it turns out that the
detailed dialog is not conducted between the participants as wholes but rather between
their parts. You can get cash from a bank, but more specifically from one of its cashiers or
ATMs. In fact, looking at the actions in detail, when you receive cash from an ATM it
actually comes from its money dispenser.

In Catalysis, we separate the act of writing the requirements of a system from the act of
designing the internal messages that deal with each action. In requirements specs, we treat
the system or component we’re designing as a single object. The closer inspection of a
system to treat it as a set of interacting objects is only one example of object refinement.

Figure 6.30 Deferring the update protocol.

C ell

int value

Sum
c s

-- for any action on Cell
inv ef f ect C ell:: update_w hen_change
post -- if its value changes, every sum using this cell as an operand is updated
 value <> value @ pre ==> ~ operands- >f orAll (s | (self ,s).update ())

action (c: C ell, s: Sum) :: update
 -- the change in value of cell is propagated to the sum
 -- we have not said what the protocol is for accomplishing this update
 post
 c.value – c. value@pre = s.~ sumpart.value – (s.~ sumpart.value)@pre

update

254 PART III FACTORING MODELS AND DESIGNS
The process can be fractal: Like all our techniques, it applies as well to a complete sys-
tem as to a small object inside the software (see Figure 6.31). A system design can start by
refining into major components and then can define the high-level actions between them.
Subsequently, those actions can be refined to provide more interactive detail. Each compo-
nent can itself be refined into constituent objects and so on, until the actions are individual
messages, and the objects are things you can write directly in your favorite programming
language.

Looking in the other direction, the system we’re interested in designing is part of a
larger machine or organization or software system. By zooming out, we can understand
better how our design will help fulfill the overall goals of the larger object.

This section uses the term component to refer to the object we are interested in refining,
but the same principles apply on every scale.

6.6.1 What an Object Means and Doesn’t Mean
We can use an object to describe any concept, including the active components of a sys-
tem, whether people, hardware, or software or groups or parts thereof. Similarly, we can
use a type to describe the behavior of such objects and use actions to describe its participa-
tion in interactions with other objects.

A type always describes the behavior of a linked-together collection of smaller constit-
uents. A closer look reveals the parts and reveals that different parts deal with different
behavior.

To specify the abstract object’s behavior, we use a type model that tells us nothing
about the abstract object’s internal structure. The internal structure can be described as a
set of linked objects participating in actions; the actions occur between the objects and
with the outside world. A more detailed picture that reveals the internal structure must

Figure 6.31 Fractal process of refinement.

C mpt1UserA UserB

C mpt3

C mpt2

UserA UserBSystem

System

C mpt3

Chapter 6 Abstractions, Refinement, and Testing 255
account for how the external actions visible in the abstract view are dealt with by the inter-
nal structure.

6.6.2 The Process of Object Refinement
The kinds of refinement we’ve already looked at can be used in a variety of ways, but they
fit together particularly well as part of an object refinement. So let’s review those tech-
niques as steps forming part of object refinement.

We’ve looked at this process in other parts of this book. The point here is to see the
steps in terms of the formal refinements defined in this chapter.

6.6.2.1 Start with the Specification

The model we begin with specifies the behavior of our component. Most objects are
involved in more than one action: Our spreadsheet has addOperand, setNumber, and so
on. Some objects are involved in actions with several other objects: Whereas the spread-
sheet has one user, the bank’s ATM has customers, operators, and the bank’s host machine
to deal with. Each of the actions can be specified at a fairly high level, with details to be
worked out later (see Figure 6.32).

For each action, we have a specification, in terms of more-or-less rigorously defined
pre- and postconditions (and possibly rely/guarantee conditions). Given this context, we
work out which objects there are inside our abstract object and how they collaborate to

achieve the effects specified for each of the abstract object’s actions.

Notice that we might be refining only one of these objects; perhaps the others are users
whose behavior is the province of the GUI designer and the manual writer. Or it might be
that we will be refining several of them if they are components in a larger system.

6.6.2.2 Design the Object Model

The actions are specified in terms of their effects on the participants, of which our compo-
nent is one. For that purpose, each participant has a model. For simple objects, it may be

Figure 6.32 Joint action specified in terms of multiple participants.

Action specs refer to
model defined here

Our C omponent

pre ...

post ...

256 PART III FACTORING MODELS AND DESIGNS
only a few attributes; for complex ones, it will be a picture based on the business model.
Our spreadsheet has cells and their various contents.

Focusing on the system we’re interested in refining (the spreadsheet rather than the
user), we may decide, as we did in this example, to use a different set of objects in the
actual design. We have already seen how to use abstraction functions to relate the design
model to the specification.

6.6.2.3 Refine the Actions and Mask the Specs

We refined the actions (so that setSum became <setAddition, addOperand>) and specified
the more-detailed versions in terms of the design model (C ell_I rather than C ell and so on).

At this stage, we mask: remove anything from the action specs that talks about the other
participants in the actions. For example, we don’t care about the state of the ATM user’s
pocket as long as the ATM dishes out the cash. In the spreadsheet example, we didn’t say
much about the user’s state anyway. In an action involving two or more software compo-
nents, the team working on each component would make its own version of the action
spec that would define only its effect on the team’s component.

In some cases, masking is easy: The postcondition says, oneParticipant.someEf f ect
AND theOtherParticipant.someOtherEf f ect. We simply throw away the clauses that don’t
apply to us. The other components’ teams will worry about them.

Sometimes the postcondition is written so that the effect on our component depends on
something elsewhere. In the ATM, for example: “IF the account in the user’s bank is in
credit, THEN the user gets the money.” This means that, in refining the action, we must
include an action with the user’s bank that transfers that information here. (This also
applies to preconditions, which are equivalent to an if clause like this.)

Masking should also make the actions directional, with a definite initiator and receiver, so
that they are more like messages. However, they may still encapsulate a dialog refined later.
This approach enables us to summarize the component spec in the form of a type diagram
with model and action specifications (see Figure 6.33).

Figure 6.33 Localize and specify actions.

Spreadsheet1

setNumber (c:C ell, n:int) post c.value=n & c.sumpart=null & ! c.isBlank

setAddition (c:C ell, c1:C ell) post c.sumpart.operands=c1

addOperand (c: C ell, c2:C ell) post c.sumpart.operands += {c2}

operands *

Sum_I C ell_I

value : int

isBlank : Boolean

sumpart

0,1*
*

cells

Chapter 6 Abstractions, Refinement, and Testing 257
We refine the actions down from the highest-level business abstractions but not down
to individual keystrokes or electrical pulses. We refine actions to the point where they
make sense as individual actions on the objects we have chosen for our design—if you
like, to the same conceptual layer as our design. “Make a spreadsheet” is too abstract for
our design; “click mouse at (x,y)” is too detailed; but setNumber(n) makes sense as a mes-
sage to one of our cells.

All such judgments are relative. Working in the GUI layer, mouse clicks and keystrokes
are what we deal with, and the job is to parse them into actions that can be dealt with by
the spreadsheet core. Working in a workflow system, the creation of a spreadsheet might
be only one action, so that, from its point of view, the spreadsheet program is all a detail of
the user interface that builds a series of cell-setting operations into one spreadsheet cre-
ation. A good guideline is this: “What would constitute a useful unit of work for the cli-
ent?”—something the client would cheerfully pay for.

6.6.2.4 Localize Each Action to a Constituent Object

We now make each action the prime responsibility of one of the design objects internal to
our component. Usually, a good choice is the proxy object that represents the external par-
ticipant of the action, which might be a user, a piece of hardware, or a software object in a
different component. If there is no such proxy—as in our spreadsheet, which has no repre-
sentation of its user—then one of the action’s parameters is the next choice. We’ll choose
the target C ell c. (In any case, a proxy often just sends the message to one of the parame-
ters. But there is good pattern in which all messages to and from an external object should
go through their local proxy, which thereby keeps abreast of what its external counterpart
is up to.)

With the assignment of a component action to one of its constituents must, of course,
go the specification of what it is supposed to achieve.

6.6.2.5 Operation Refinement for Each Component-Level Action

Now we work out how each component-level action is dealt with by the object it is assigned
to—in other words, we design the sequence or write the operation code so as to meet the
spec. Typically, this means sending messages to other objects.

We could put it more generally and say that each object can initiate actions with one or
more other objects. You may know what you need to achieve and who should be involved,
but you may not care (yet) how it is to be achieved or who should be primarily responsible
for each part.

The receiving objects must themselves be designed, so they then pass messages to
other objects. The result is that many of the component’s internal objects now have their
own specified actions.

We repeat the procedure for each of the component-level actions. The component’s
responsibilities are now distributed among its constituents. This is the essence of object
refinement.

258 PART III FACTORING MODELS AND DESIGNS
6.6.2.6 Visibilities

One last step is to decide who can see whom—in other words, object attributes—and we
append arrowheads to the links in our model. The simple criterion here is that any object
needs a state corresponding to a link to every other objects that it must “remember” across
its operations. Again, these links need not correspond to stored pointers in program code;
they can themselves be abstractions subject to further refinement.

In some cases, each object of a linked pair must know about the other. This in itself can
add some final operations relating to the management of the link. An important pattern is a
two-way link. When two objects refer to each other, it is important that they not get out of
sync and point at different objects or point at a deleted object. Therefore, the only mes-
sages that immediately set up or take down the link should come from the object at the
other end. When an object wishes to construct a two-way link with another object, it
should set its own pointer and then register with the other. (See Pattern 16.14, Two-way
link.)

6.6.3 Documenting Object Conformance
Interaction diagrams (also called object interaction graphs or OIGs) are snapshots with
messages added. They are useful for illustrating particular cases. One or more collabora-
tions can be drawn for each component-level action.

For example, our spreadsheet C ell will respond to an addOperand by sending the mes-
sage to its Sum, which will set up an observer action with the target C ell (see Figure 6.34).
The diagram shows the new links and objects in bold. A new observation relationship is
created; It is an ongoing action characterized by its guarantee rather than its postcondition.
It is treated as an object in these diagrams. We have decided that, at this stage, we don’t
care how it works, although we will specify what it achieves.

As is often the case when working out an interaction, we find we have brought new ele-
ments into the design. These elements should now be incorporated into the class diagram

Figure 6.34 Internal interactions in the spreadsheet.

c:C ell_I

value = 2

isBlank=f alse

: Sum_I : C ell_I

value=2

c2: C ell_I

value=3

observation

observation

c.addOperand(c2)

1.2 add(v)

1. addOperand(c2)
operand[0]

operand[1]
1.3 create

(this, c2)

1.1 v:=c2.getV alue()

sumpart

Chapter 6 Abstractions, Refinement, and Testing 259
and specified. At the same time, we can begin to add localized actions to the classes (see
Figure 6.35). (Recall that the [[action]] notation is used within a postcondition to specify
that another action has been performed as part of this one.) We have specified the observa-
tion action; it may become an object in its own right or (more likely) will turn out to be
only a contractual relationship between its participants.

Notice that although the interaction diagram is useful for illustrating specific cases, the
class diagram (with associated dictionary, specifications, and code) is the canonical

description of the design. As more collaborations are drawn, more detail can be added to
the class diagram. Ultimately, we must also resolve observation to specific messages and
attributes.

A sequence diagram is an alternative presentation of the same information as shown in
a collaboration diagram and is better at showing the sequence of events; but the collabora-
tion diagram also shows the links and objects. As an example, Figure 6.36 shows the
sequence of the propagation of changes.

6.6.4 Object Access: Conformance, Façades, and Adapters
How do the external objects get access to the appropriate constituent objects within our com-
ponent? The following sections discuss how access is implemented.

6.6.4.1 Direct Access

If the external objects and our component are all in the same body of software, there is a
straightforward answer: All of them have references to those of our constituents they want
to communicate with. When we do an object refinement, the main task is to work out how

Figure 6.35 Update class diagram with localized actions and specs.

C ell_I

value : int

isBlank : Bool

addOperand(c2:C ell)

add(v:int)

 post value += v

Sum_I

notif y (change:int)

post [[parent- >add(change)]]

addOperand(c2:C ell)

post operands +=

 new observation(c2, this)

parent

sumpart

0,1

1 subject
1 observer

0..* 1..*

operands

action observation

guarantee subject.value <> subject.value@pre. ==>

	 [[observer- >notif y(subject.value – subject@pre.value)]]

-- whenever the value of the subject changes, the difference

will be sent to the observer using the notify message

observation

260 PART III FACTORING MODELS AND DESIGNS
the externals will initially connect to the appropriate internal. Our abstract component
object is a grouping of smaller objects, and we allow the boundary to be crossed arbitrarily
(see Figure 6.37).

There can be a variety of drawbacks to the direct access scheme: making it more diffi-
cult to guarantee abstract object invariants and exposing more of the internal design deci-
sions than necessary. Each of them applies only in certain circumstances.

6.6.4.2 Façade

A façade is a single object through which all communication to a component flows. It sim-
plifies several aspects of object refinement.

• You need not design the external objects to know which constituent to connect to. In the
direct access scheme, refining our object also means designing the externals to work with
our organization.

A business analogy is a company that provides a single point of contact for each cus-
tomer or supplier. It saves the outside entity from having to understand the company’s

Figure 6.36 Sequence diagram alternative.

Figure 6.37 Direct external access to internal objects.

Any operation
changing
c1.value

value=3

value=5
value=7

value=9

c1 is an
operand
of this

s.parent is
an operand
of this

c1 : C ell s:Sum s.parent:C ell

s2.parent:C ell

s2:Sum

add(2)notif y(2)

add(2)
notif y(2)

Abstract object

Chapter 6 Abstractions, Refinement, and Testing 261
internal organization.
A corollary is that, if the design of the external objects is already finalized, a façade is

necessary.

• Invariants applying to the component as a whole can be supervised by the façade,
because it is aware of every action that could affect it. Conversely, the external objects
have no direct access to any objects inside.

The supervision of invariants is a common motivation. Consider, for example, a Sort-
edList object, in which the members of the list are NumberC ontainers; the value of a Num-
berC ontainer can be changed by sending it an appropriate message. The documented
invariant of SortedList is that its members are always arranged in ascending order. But if
external objects have direct access to the list’s members, they can sneakily disorder the list
by altering the values without the knowledge of the anchor SortedList instance.

Making the façade the only way of accessing the list elements is one way to keep con-
trol. The other approach is to implement a more complex Observation scheme whereby the
elements notify the façade when they are changed.

A single façade can, however, be somewhat limiting. Every change to the internal
objects to add or change the services they offer to the outside requires a corresponding
change to the single façade even if particular clients never see that service.

6.6.4.3 Multiple Façades

The big drawback of a single façade object is poor decoupling: as soon as you change or
add to any of the types in the component, you must extend the façade to cope with the new
messages.

However, we can make the façade itself an abstract object consisting of a collection of
peers: smaller façade objects, each of which handles communication with a given class of
internal object. Most GUIs are constructed this way. Corresponding to each spreadsheet
C ell, for example, is a C ellDisplay object that deals with position on the screen and appear-
ance and also translates mouse operations back to C ell operations.

In a more general scheme, different categories of external objects may have different
ports through which to gain access, each of them a different façade.

6.6.4.4 Adapters

It’s easy to draw links and messages crossing the boundary of a component; but what if the
objects are in different host machines or written in different languages? Or what if the
external objects are machines or people? How do the messages cross the boundary, and
what constitutes an association across the boundary?

These objections are met by building an appropriate adapter: a layer of design that
translates object references and messages to and from bits on wires (such as CORBA); or
to pixels and from keystrokes and mouse clicks (the GUI). An adapter is a façade with
strong translation capabilities.

Typically, you deal with references across boundaries by mapping strings to object
identities. Your bank card’s number is the association between the physical card and the

262 PART III FACTORING MODELS AND DESIGNS
software account object in your bank’s computer; the spreadsheet cells can be identified
by their row-column tags. The other common method is by mapping screen position to
object identity, as when you point at its appearance on the screen.

It is because of the adapter(s) that we can always begin the object refinement by assum-
ing that the appropriate internal object will be involved in the external actions. We leave it
up to the adapter design.

In the case of the spreadsheet, a considerable GUI will be required to display the
spreadsheet, to translate mouse operations into the specified incoming messages, and to
direct them to the appropriate cells.

6.6.4.5 Boundary Decisions in Object Refinements

Object refinements, whether on a small or large scale, always involve a decision about
how the boundary is managed: whether direct access is OK or whether a façade or the
more general adapter layer is required.

Our original picture of an object refinement as a simple group of objects has now
become a group of objects plus a layer of adapters (see Figure 6.38).

6.6.5 Object Conformance: Summary
Object abstraction gives us the ability to treat a whole collection of objects—people, hard-
ware, software, or a mixture—as a single thing with a definable behavior. This can be
applied on the large scale of complete computer systems and businesses or on the small
scale such as software sets and lists.

The key to documenting conformance is to show how the responsibilities of the
abstract object are distributed to its constituents.

Figure 6.38 Object refinement with adapter objects.

Adapter layer

Adapter

Types understood
by client

Actions mediated
by adapter

Core object refinement

C omponent

External
objects

Chapter 6 Abstractions, Refinement, and Testing 263
6.7 Spreadsheet: Operation Refinement

Operation refinement means writing a program that fulfills a given pre/post (and/or rely/
guarantee) specification. It is here that we finally get down to program code. In one sense,
this is the part we need to say least about, because the point of this book is not to teach pro-
gramming; you know how to put together loops and branches and sequences and can easily
learn any (far more verbose) graphical representations of the same. However, there are some
special considerations, most of them about decoupling, which is what OO programming is
all about.

6.7.1 What Operation Abstraction Means and Doesn’t Mean
An operation is a subtype of an action: operations are actions consisting of an invocation
from a sender to a receiver, followed by an activity on the part of the receiver and possibly
ending with a return signal to the sender. Operations are a one-sided view of the sender-
receiver interaction.

If an operation is invoked in a situation when the precondition is false or if, during the
execution of the operation, its rely condition becomes false, then the specification does not
state what the outcome should be.

If an operation is invoked in a situation when the precondition is true and the rely con-
dition is true throughout, then, by the end of the operation, the postcondition will have
been achieved; and during the execution of the operation, the guarantee condition will
have been maintained.

Preconditions and rely conditions, by default, are “true” and there is no obligation on
the sender. Similarly, an empty postcondition or guarantee condition imposes no obliga-
tion on the implementor.

The operation should not alter variables that could be left untouched while achieving
the postcondition and guarantee conditions.

Any invariant in the model should be considered to be ANDed to the pre- and the post-
conditions (but not the rely and the guarantee conditions).

6.7.2 Strong Decoupling
In conventional programs, you split a big program into subroutines so that common rou-
tines can be invoked individually and so that the program is easier to understand. In OO
programming, the process goes even further. For every statement, you think, “Which
object should this be attached to? Which object has the information and the other opera-
tions most strongly relevant to this?” Then you send a message to the appropriate object.
Actually, that’s not for every statement; rather, it’s for every subexpression.

The purpose is to ensure that the program is well decoupled. If the preceding stages of
design have gone well, many of these questions should be sorted out. However, you defi-

264 PART III FACTORING MODELS AND DESIGNS
nitely have more decisions to make in an OO development than in procedural develop-
ment.

The choice of types for a local variable—temporaries, inputs, and even return values—
for an operation is crucial to good decoupling. As soon as you declare a variable or param-
eter that belongs to a particular class, you have made your part of the program dependent
on that class. This means that any changes there may have an impact here. Instead, it is
usually better to declare all variables as types; the only place in a program where you
absolutely must refer to a concrete class is to instantiate a new object.

There is a variety of powerful patterns to help reduce dependencies.

• Role decoupling: A variable or parameter contains an object or a reference to one. Fre-
quently, the component in which the declaration occurs uses only some of the facilities
provided by that object.

Therefore, define a type (that is, an interface or pure abstract class plus a specification)
that characterizes only the features that you will use. Declare the variable to be of this
type. Declare the object’s class to be an implementor of this type. This approach will min-
imize the dependency of your component on the other object. Related patterns are adapter
and bridge [Gamma94].

(Role decoupling is particularly important for two-way links.)

• Factory: An object must be created as a member of a definite class. This gives rise to a
dependency between your class and that one.

Therefore, devolve to a separate class the decision about which class the new object
should belong to. By doing this, you encapsulate the class dependency behind a type-
based creation method [Gamma95].

6.7.3 Documenting Operation Spec Conformance
Whether we have written it informally or in more precise form, we should have a specifi-
cation of what is expected of each operation. We should attempt to check that the program
code of each operation conforms to what is expected of it.

The most reliable method is to turn the specs into test harnesses, as we discussed ear-
lier. But there is also the Deep Thought approach: as a general principle, it is possible to
inspect both specification and code and to check that one meets the other by a judicious
mixture of careful reasoning and guesswork. Although Deep Thought is not an economi-
cal method of verification outside safety-critical circles, being aware of the basic princi-
ples can help anyone root out obvious mistakes before getting to the testing stage.

There are two ways of fulfilling a spec. The hard way is to write the entire implementa-
tion yourself. The easy way is to find something that comes close to already doing the job
and possibly bend the requirements to suit what you’ve found. The latter is usually more
economical if you’re fairly confident of its provenance and integrity (see, for example,
Section 10.11, Heterogenous Components).

Chapter 6 Abstractions, Refinement, and Testing 265
6.7.3.1 Comparing Two Operation Specs

Suppose we find some code in a library and we suspect that it does the job we require.
Miraculously, it comes with a spec and model of some sort, which we want to compare to
our requirements spec.

The rules for comparing two pre/post specs are as follows.

• Any invariants in each model should be ANDed with both pre- and postconditions writ-
ten in that model.

• If the requirement has several pre- and postcondition pairs—which may come from

different supertypes—they should be ANDed in pairs ((pre1=>post1) AND

(pre2=>post2)) to give an overall requirement postcondition. If the pre- and postcon-
ditions are not from supertypes and are subject to joining (see Section 8.3.4, Joining

Action Specifications), compose them accordingly.

• The implementation’s vocabulary should be translated to the specification’s by using

retrieve functions as in Section 6.4, Spreadsheet: Model Refinement.

• The precondition of the requirement should imply the precondition of the implementa-
tion. For example, if the requirement says, “This operation should work whenever C ell

c contains a Number,” then an implementation that works “whenever c is non-Blank” is

fine because it is always true that “a C ell contains a Number => it is not Blank.”

• The postcondition of the implementation should imply the postcondition of the specifi-
cation. (Notice that this is the other way around from preconditions, a feature called

contravariance.) So if the implementation claims that “this operation adds 3 to the

C ell’s value” whereas the requirement is more vague (“this operation should increase

the C ell’s value”), then we are OK, because it is always true that “3 added to value =>

value increased.”

6.7.3.2 Comparing Operation Specs with Code

More likely, you will have to compare your specification with code (whether you’ve writ-
ten it yourself or someone else has). Again, the most effective strategy is to write test har-
nesses, as we discussed before.8

In debug mode, preconditions should be written as tests performed on entry to an oper-
ation; postconditions are tested on the way out. The only complication is that, because
postconditions can contain @pre, you must save copies of those items while checking the
precondition. (Or you may be lucky enough to be using a language with this facility built-
in.) The main caveat is to ensure that the pre- and postconditions don’t themselves change
anything.

If you prefer the Deep Thought approach, many (unfortunately, rather academic-sound-
ing) books have been written on how to document this kind of refinement (for example,
[Jones] and [Morgan]). The following summarizes the key points in a pragmatic way.

8. For more on the Deep Thought approach, see [Morgan88] or [Jones86]. For more on executing
pre- and postconditions, see [Meyer88].

266 PART III FACTORING MODELS AND DESIGNS
• For sequences of statements separated by a semicolon (;), it is useful to write assertions

(conditional expressions that should always be true) within the sequence. This helps

you see how the requirements are built up with each statement and can be a useful
debug tool if the expressions are actually executed. The assert macro provided with

C++ has parallels in other languages.

• Where an operation is called within a sequence, its precondition should be satisfied by

the assertion immediately before it; the assertion after it should be implied by its post-
condition.

• If statements ensure preconditions for their branches. The postcondition of the whole

thing is an OR of the branches:

if (x>0) z= square_root(x) // pre of square_root is ‘x>=0’
else z=square_root(–x);

assert z*z == x or z*z == –x

• In a loop, it is useful to find the loop invariant: an assertion that is true every time

through the loop. It works as both pre- and postcondition of the body of the loop.
Together with the condition that ends the loop, it ensures the required result of the loop.
For example, consider this routine:

post sort queue into order of size
{ int top= queue.length;

w hile (top > 0)
invariant everything f rom top to end of queue is sorted,
// and everything before top is smaller than everything beyond top
{ post move biggest of items f rom 0 to top along to top

{ ... to be w ritten ... }
top = top –1;

}
// top == 0 and everything from top to end of queue is sorted
}

Here, the invariant separates the queue into two parts: unsorted and sorted. The top
pointer moves gradually downward, until the whole queue is in the sorted part.

If you were called to review such a refinement, you should check that (1) the claimed
invariant is bound to be satisfied on first entry to the loop (it is satisfied here, because
there’s nothing beyond top); (2) if the invariant is true before any iteration of the body, it is
bound to be true after; (3) the invariant and the exit condition together guarantee the effect
claimed for the whole thing (true in this case because when top gets to 0, the whole queue
must be sorted).

Notice that a postcondition has been written to stand in for a chunk of code not yet fin-
ished; we are simply using known techniques to defer details, except that now we’re using
them in code. (How would you design it? What would be the loop invariant?)

0 top�
�

Chapter 6 Abstractions, Refinement, and Testing 267
6.7.3.3 Operation Conformance and Action Conformance: Differences

Both operation and action conformance show how a single action with an overall goal is
released by a composition of smaller actions, and some of the techniques for establishing
the relationship are the same. The differences are summarized in Table 6.2.

6.7.4 Operation Conformance: Summary
Operation abstraction makes it possible to state what is required of an object without
going into the detail of how the requirements are met. The implementation will use what-
ever constructs are provided by the programming language, such as sequences, branches,
and loops; it will choose its own set of variables and stored data. There are well-defined
rules for verifying that the implementation meets the specification or, more pragmatically,
systematic techniques for instrumenting and testing the implementation.

268 PART III FACTORING MODELS AND DESIGNS
Table 6.2 Operation Conformance versus Action Conformance

Operation Conformance Action Conformance

An operation begins with an An action is identified only in retrospect. If someone
invocation: a function call or message selects some goods in a shop, it will often be the first
send. This prescribes the limits on step to a sale; but the shopper might decide not to
the sequence of events that should buy or might walk off without paying; so it turns out not
happen. We know from the beginning to have been a sale but a theft.
of the sequence which operation An action is a name for an effect. We can provide a
we’re dealing with protocol of smaller actions whereby it can be achieved,

but the same actions may be composed in some other
way to achieve something different.

When we design a procedure that When we design a protocol of actions that satisfies
refines an operation spec, we can focus an action spec, we focus not on any one participant
on the receiving object and devolve but on the interactions between them. If we change the
subtasks to other objects we send refinement, we affect the specs of all the participants.
messages to. If we change the design,
we are changing this one object.

Refining an operation is like design- Refining an action is like devising an interface standard
ing a computer monitor: You have for the signals on a video connection. You must involve
the specs of the signals that come all the designers who might make a box to go on either
along the wires and their required end of this connection—or at least all those you know at
manifestations on the screen. Your the moment. You must agree to a specification for what
work is to define the insides of the box; is achieved and then refine it to a set of signals that, in
you may involve others by specifying some parallel or sequential combination, achieves the
parts you will use inside. Your design overall required effect.
talks about the specifications of the You cannot talk in terms of any thing inside the boxes,
constituent parts and how they are because they will all be different; you can only make
wired together. models that abstract the various boxes and talk in terms

of the signals’ effects on them.

To test an operation refinement, you To test an action refinement, you must see whether it
push a variety of signals in, from permits a variety of different combinations of participants
different initial states, and see to collaborate and achieve the desired effect.
whether the right responses come Interoperability is the general goal. The goal here is to
out. There are various ways to use explore each sequence of refined actions that should
a precise specification to generate realize the abstract one—a much larger, sequential
test cases that reasonably cover the state space. Scenarios defined during modeling form
state space of input parameters a useful starting point; the specs can be used to systemati-
and initial state. cally get broader coverage than just the scenarios.

6.8 Refinement of State Charts

In the Catalysis interpretation, the states in a state chart are Boolean conditions and the
transitions are actions. As such, actions may take time; there is a gap between one state
going false and the next state lighting up (rather like the floor indicator in many eleva-
tors).9 Most state charts focus on a given type, and the states are defined in terms of its
attributes.

A C ell can contain a Blank, a Number, or a Sum. Let’s consider the abstract setSum
action, which should set the target cell to be a sum of two others, shown on a simple state
chart in Figure 6.39. We would have to wait for the user to enter two operands before the
transition to a Sum was completed. During the interval, the implementation is in no state

Chapter 6 Abstractions, Refinement, and Testing 269

that the abstract spec understands. The addition of the intermediate state is a valid change
specifically in a refinement.

Each state in a state chart should be documented with a condition stating when it is
true. In this case, isBlank corresponds directly to the attribute of that name; isSum == (con-
tent : Sum) (“the content attribute is of type Sum”).

Because states are Boolean attributes, retrieving a state is no different from retrieving
any model. The abstract states can still be seen in the refinement, although you must use
the abstraction functions to translate from sumpart to content (Figure 6.20). Also, the extra
state must be given its own definition.

6.8.1 Distinguishing States of Spec Types
from Design Types

Considering the GUI for a moment, it may be useful to make a small state chart about
whether or not a C ell is selected (see Figure 6.40). The C ell type forms part of the spread-
sheet’s model; the actions are those of the spreadsheet as a whole (see Section 3.9.4, State
Charts of Specification Types). The states diagram applies simultaneously to every C ell in
the model. Any C ell that is the subject of a select operation gets into the selected state; all
others go into unselected, as defined by the guard.

To accommodate the new bit of information, we could add an optional link to the model.
It is then easy to write a definition for the selected state (see Figure 6.41). Now, when we
come to the implementation, the pointer to the currently selected C ell comes from some-
where in the GUI, and, because the pointer is one-way, the C ell itself does not know that it
is selected. (In fact, it would be common in an MVC design for the implemented cell to
remain unaware of many such changes in UI state.) Is the original state diagram still valid
if the C ell has no information about its state of selection (see Figure 6.42)?

9. We prefer our state charts like this, because they are easier to reconcile with the actuality of the
software compared with instantaneous event models; and they tie in better with the actions. In some
notations, they would have an event representing the start of an action and another for the end of it,
and a state in between representing the transitional period. But at a given level of abstraction, we do
not know enough to characterize the intermediate state, because that is defined only in the more-
detailed layers of the model.

Figure 6.39 Intermediate states due to refinement.

isBlank

isSum

setSum(a,b)

isBlank

isSum

OneOpndSum

setAddition(a)

addOperand(b)

270 PART III FACTORING MODELS AND DESIGNS
Yes, the state diagram is valid. For one thing, the state diagram is of a C ell and not a
C ell_I; and the abstraction function to Spreadsheet from Spreadsheet_I should yield all
the information about each C ell. In any case, it would still be valid to draw that diagram
for a C ell_I. We need only define the state with a little more imagination—something like
this:

C ell :: selected = (there is a Spreadsheet_I si, f or w hich
si.gui.current_selection = self)

The there is means in practice that you must search around the object space until you
come to a Spreadsheet and try it for that property; but we said that specification functions
need not execute efficiently to be meaningful.

Figure 6.40 Cell selection state chart.

Figure 6.41 Link for indicating cell selection.

Figure 6.42 Implementation: Does a cell still have

a “selected” state?

Spreadsheet

C ell

unselected selected

select(c) [c=self]

select(c) [c <> self]

Spreadsheet

C ell

1 0,1

0,1 currentSelectionshow s *

C ell:: selected = (~ currentSelection <>null)

C ell_IG UI
0,1

current_Selection
*

Spreadsheet_I

Chapter 6 Abstractions, Refinement, and Testing 271
6.8.2 Other State Chart Refinement Rules
If your project uses state charts extensively, you may wish to look at {Cook94], where a
complete set of rules for refining state charts is provided.

6.9 Summary

The various kinds of abstraction make it possible to discuss the essentials of a specifica-
tion or design without regard to the details and to define systematic approaches to verify-
ing that an implementation does what it is supposed to do.

Catalysis provides a coherent set of abstraction techniques and also provides the ratio-
nale to relate more-detailed accounts to the abstractions and to document the conformance
with specific descriptions.

The justification associated with a refinement can be formal or informal; it could even
simply say, “Joe said this will work.” The verification techniques can be applied in vary-
ing degrees of rigor, from casual inspection to mathematical proof. In between, there is the
more cost-effective option of making refinements the focus of design reviews and basing
systematically defined test code on the specifications (see Figure 6.43).

Figure 6.43 Refinements and justifications.

Products of abstraction and refinement

An Abstract M odel
(static type model, operation spec, action, object type)

A Detailed M odel
(implementation code, another type, or collaboration)

Refinement (conformance) relation

A justification for the “claim” of conformance
• retrieval of abstract attributes
• map sequential code to postcondition
• map detailed action sequences to abstract action
• map constituent objects to abstract object
• reasons for choices made, choices rejected
• test specifications and test data (with results)

Justification

272 PART III FACTORING MODELS AND DESIGNS
6.10 Process Patterns for Refinement

Following is a set of high-level process guidelines for applying refinement techniques.

• Pattern 6.1, The OO Golden Rule (Seamlessness or Continuity): This shows how to

achieve one of the most important benefits of objects: a seamless path from problem

domain to code.

• Pattern 6.2, The Golden Rule versus Other Optimizations: This is the pattern to use

when stringent requirements about reuse, performance, or flexibility keep you from

maintaining the most straightforward continuity to code.

• Pattern 6.3, Orthogonal Abstractions and Refinement: Sometimes the most dramatic

simplifications and flexibility come by adopting a whole new view of domain terms

(e.g., spreadsheets, cells, and formulas can support accounting, inventory tracking, and

baseball scores).

• Pattern 6.4, Refinement Is a Relation, Not a Sequence: Do not make the common mis-
take of thinking that refinement means top-down development; it is a fundamental rela-
tion between different descriptions regardless of which one was built first.

• Pattern 6.5, Recursive Refinement: The ideas of refinement apply at all levels, from

describing organizations and business processes to program code. This means that it
can form the single consistent basis for traceability.

Chapter 6 Abstractions, Refinement, and Testing 273
Pattern 6.1 The OO Golden Rule (Seamlessness
or Continuity)

In ths pattern, you build a system that clearly maps to a model of the problem or real world
and keep it that way (also called continuity or seamlessness).

Intent
An object-oriented design is one in which the structure of the designed system mirrors, to
the extent possible, a well-chosen model of the world in which it works. Many of the
advertised benefits of object technology come from this principle. It is made somewhat
easier because object-oriented languages provide mechanisms that roughly simulate the
real world’s dynamic interaction between state-storing entities; object technology has
strong roots in simulation techniques and languages (such as Simula). Objects have a
strong relationship to the artificial intelligence (AI) subculture’s frames, which are units of
an agent’s understanding of the world around it.

Considerations

Truth and Reality. You must begin by making a model of the real world. But what does
real mean?

• One person’s view of reality will be different from another’s. There are numerous

views of reality. Many of them may be self-consistent but may be cast in terms different
from those of others. It is important that the model of each class of user be clearly

reflected in the system as the user sees and uses it.

• There are numerous ways to use the notation to model the same set of ideas.

• While constructing a model, you will ask and resolve many questions that have never
previously been resolved. This is a good thing, but you must be aware that by forcing

precise and consistent descriptions of reality you are actually constructing reality and

not passively discovering it. And again, the various interested parties will have varying

views on what the answers should be.

Compromise with Practicality. The design that mirrors the users’ concepts most closely
is not always the most efficient, and it sometimes takes significant factoring in design to
achieve flexibility. Compromises must be made, and there is an architectural decision
about how far to do so. Fortunately, this can be taken to different degrees in different parts
of the design; see Pattern 6.2, The Golden Rule versus Other Optimizations.

Strategy

Build and Integrate Users’ Business Models. See Pattern 14.2, Make a Business
Model. This is always a good starting point. On a typical software project, an astonishing

274 PART III FACTORING MODELS AND DESIGNS
number of downstream problems can be prevented by clarifying and building a clear
vocabulary of the problem domain.

Cast System Requirements in Terms of the Business Model. See Pattern 15.7, Construct a
System Behavior Spec. Particularly if the domain model has been clearly defined, system
requirements can be discussed, understood, and decided far more precisely.

Choose Classes Based on the Business Model. To maintain traceability, deviations
forced by performance, current or planned reuse, and other constraints should be local and
clearly documented as refinements.

Maintain Development Layers (Business Model to Code) in Step. This strategy clearly
conflicts with the usual short-term imperative of getting changes done immediately and
directly in the code; but a clear separation of domain, system, and technology infrastruc-
ture descriptions (and code) helps localize changes, and experience shows clear, long-term
benefits. Furthermore, because the documents are more abstract as you go up the tree, you
come to a point where there is no change. Performance improvements, for example, usu-
ally change the code but perhaps not the requirements or the model in which they are
expressed; or some design refactoring for reuse and flexibility may have no effect on the
external spec, affecting only the refinement and its associated mapping.

Build Many Projects on the Same Model. A problem domain model is useful across
more than a single project. But don’t take this as a reason for perfecting a model before
building your first system; see Pattern 14.2, Make a Business Model.

Benefits
Many of the advertised benefits of object technology come from this pattern.

• The resulting system relates better to the end users because it deals in the terms they are

familiar with (assuming a reasonable problem domain model) and traces back to the

business tasks they perform.

• Making changes is easier because users express their requirements in terms that are

easy to trace through to the model and implementation. In a good problem domain

model, things are factored so that common requirements changes do not cause massive

model updates; the design should reflect this structure.

• The same business model can be used for many projects within the same business. As a

result, more of the code can also be generalized and reused.

Chapter 6 Abstractions, Refinement, and Testing 275
Pattern 6.2 The Golden Rule versus Other Optimizations

Consciously tradeoff performance, reuse, and flexibility optimization against entirely
seamless design; document a refinement clearly whenever you must stray significantly
from a pristine domain model.

Intent
In an ideal sense, the structure of the design could be based directly on a model of the
world in which it works (to an appropriate extent). Performance, flexibility, and reuse con-
straints sometimes dictate against naive continuity, and elements from architectural design
down may need to differ from a real-world model. The question is how to balance the
goals of seamlessness, maintainability, reuse, and tuned performance.

Considerations
Will the program code be object-oriented? If it is, should we choose the classes directly
from the domain model or based on design patterns or following the gut instincts of the
project guru?

Mirroring a good model of the world in your code is good for simulations: Every time
you change your picture of the world, you can more easily find which parts of the simula-
tion code to change. This is how OOP originated with the Simula language.

The flexibility provided by polymorphism and dynamic binding in an OOP language,
combined with a well-factored design, makes it better suited for writing any kind of pro-
gram whose requirements change regularly—that is, almost all of them. (It’s been esti-
mated that 70% to 80% of total spending in a program’s life cycle is in the maintenance
phase after first delivery.) However, we gain this flexibility at the cost of making many
extra decisions about which object should take responsibility for each small part of the
job—something that is often not obvious from the problem domain model itself—and at
the cost to runtime performance of all those objects passing control to one another. The
former can make a difference in initial project development time; the latter can make a big
difference in performance-critical real-time control software such as communications or
avionics.

Moreover, there is little flexibility and reuse at the level of individual problem domain
objects. Each object plays roles in different collaborations; a far more likely unit of reuse
is the collaboration or its manifestation as a framework in code (see Chapter 11, Reuse and
Pluggable Design: Frameworks in Code).

Code that makes miraculous-seeming leaps from the domain vocabulary into design
decisions, even if based on the best gut instincts, will not retain its intended form for long.

Flexibility comes from decoupling: making components independent of one another.
Optimization for performance generally means that pieces of code that were ideally
decoupled become dependent on one another’s details. So the more you optimize, the

276 PART III FACTORING MODELS AND DESIGNS
more you mix concerns that were independent before. In the extreme, you end up with a
traditional monolithic program.

Strategy
Make an early architectural decision about how much you will tradeoff performance,
seamlessness, reuse, code flexibility, and so on. If your clients shout for little functional
enhancements every day (something that is typical for in-house financial trading soft-
ware), optimize the underlying communications and infrastructure but leave the business
model pristine. But if your software will be embedded in a million car engines for 10
years, optimize for performance.

Eighty percent of the execution is done by 20% of the code. Design your system in a
straightforward object-mirroring way and then abstract and re-refine the pieces that are
most critical to performance. (Or analyze a prototype and worry about the execution
hotspots.) See Pattern 15.12, Avoid Miracles, Refine the Spec.

Buy faster hardware and more memory. They’re much cheaper than programmers.

Benefits
An OO program is one that is refined from an OO design. A clearly defined refinement
carries a retrieval that relates it to the abstraction even when the design has been optimized
from a real-world abstraction.

Chapter 6 Abstractions, Refinement, and Testing 277
Pattern 6.3 Orthogonal Abstractions and Refinement

Sometimes the greatest improvements in reuse and flexibility come by adopting a signifi-
cantly more abstract (or even orthogonal) view of problem domain terms. Use refinement
and frameworks so that you don’t lose traceability to domain terms.

Intent
Gain flexibility by using orthogonal abstract views of different parts of the problem, but
retain traceability to the straightforward domain terms.

Considerations
You get only so much reuse and flexibility by adopting the most straightforward model of
the problem domain. The terms have evolved to be specific to that domain and may be
inconsistent with terms used elsewhere.

Consider a couple of examples. First, in an application for supporting a seminar busi-
ness, we need to schedule instructors and rooms for seminar sessions; track customer pref-
erences and trends to better target our marketing efforts; and maintain a stock of course
materials, producing new ones as needed. Although we could analyze this problem in its
simplest domain terms, there would be much more opportunity for reuse if we character-
ized the problem in an abstract, orthogonal way as follows: Assign resources (instructors,
rooms) to jobs (seminar sessions); track customer trends for different products (seminar
topics); and maintain a just-in-time inventory of items (course notes) of our products
(seminar topics). Note that our requirements are now much more generic, merely special-
ized to our domain specifics. (This example is worked out in more detail in
Section 11.4.1.1, Combining Model Frameworks.)

Second, in an application for processing credit cards at a gas station, there are many
variations in choices (paying outside versus paying inside), in product offerings (optional
car wash or discount items), and in sequences of interactions with the user and the remote
financial hosts. We could tackle some of this variability by appropriate design of types and
class hierarchies; however, we gain the biggest increase in flexibility when we recognize
that we should reify the steps in the card processing (product offerings, payment authori-
zation, amount entry) from the sequences in which these steps are executed. If we build an
explicit representation of sequencing and other dependencies, we could even use a generic
Petri Net interpreter as an abstract machine for handling arbitrary sequences and depen-
dencies.

However, code that makes miraculous-seeming leaps from the domain vocabulary into
design decisions, even if based on the best gut instincts, becomes irreversibly deformed by
the first few modifications made by a new programmer.

278 PART III FACTORING MODELS AND DESIGNS
Strategy
Do not lose sight of the domain terms even in your code. Use refinement to maintain trace-
ability even as your code becomes more decoupled and reusable. Wherever possible,
recast the problem domain descriptions themselves using these orthogonal and more
abstract views; remember, you are actively constructing a model of reality and not pas-
sively discovering it. Use frameworks (see Chapter 9, Model Frameworks and Template
Packages) to explicitly document the mapping from domain terms to terms and roles in the
abstract problem descriptions.

Chapter 6 Abstractions, Refinement, and Testing 279
Pattern 6.4 Refinement Is a Relation, Not a Sequence

Use refinement for any combination of top-down, bottom-up, inside-out, or assembly-
based development; it does not imply sequential top-down development.

Intent
Refinement results in realistic deliverables for each development cycle depending on what
development process is most suited to the project.

Considerations
We have a clear picture of the ideal refinement relations from business model to code.
How is this related to the actual series of cycles of the development process on a particular
project?

Clearly, there are some dependencies between prior and consequent phases. Even the
most unregenerate hacker does not begin to code without at least a vague idea of an objec-
tive (well, not many of them, anyway!) .

But it is obstructive to be overly concerned about completing all the final touches on
any phase before going forward to the next. It is a well-known demotivator, paralyzing the
creative processes, and is often an excuse for people who don’t know how to proceed.

But if too much is undertaken without clear documentation of the aims of each phase
(as determined by the outcome of the preceding ones), all the usual misunderstandings and
divergences will arise between team members and between the original target and the final
landing.

In any case, it’s an illusion that every design is determined entirely by the requirements.
It’s often the other way around. When technologists developed the laser, it was not so that
they could make CDs. Few of us knew that we needed musical birthday cards before they
were provided for us. We build and use what we have the technology for, and this will
become increasingly relevant in a world of component-based development.

Strategy
The typical deliverables of a development cycle (see Pattern 15.13, Interpreting Models
for Clients) are not individual completed documents from the linear life cycle. More usu-
ally, they might be first draft requirements; GUI mockup; client feedback; second draft
requirements; critical core code version 1; requirements modified to what we find we can
achieve; . . .

Get It 80% Right. To avoid “analysis paralysis”—the tendency to want to get a perfect
business model, requirements, or high-level design before moving on—deliberately start
the next phase when you know its precursor is still imperfect. Move to the next phase as
early as you like but no later than when you estimate there’s still about 20% to finish. (Per-

280 PART III FACTORING MODELS AND DESIGNS
sonal wisdom about the exact percentage varies, of course.) The results from the next
phase will in any case feed back to the first.

Bottom-up and Top-down Approaches. Our approach to refinement between spec and
design (and other layers of documentation) in no way constrains you to begin with the
requirements and end with the code. Called upon to write an article, you need not begin at
the beginning. Instead, you edit the whole in any order you like as long as it makes sense
when you’ve finished. Similarly, the context of a project may call for a different route
through the method (see Section 13.2.1, Multiple Routes through the Method).

In the same way, consider the various documents of a development to be elements in a
structure that you are editing (see Figure 6.44). The goal of the project is to fill in all the
slots in the structure and make them all consistent when finished. Feel free to begin at the
bottom, if appropriate, and don’t worry if things get inconsistent en route provided that
they come back in line at some planned milestone.

Coding Can Even Help with Analysis. People know what they don’t want better than
they know what they do want. (Ask any parent!) When you put a finished system in front
of customers, they’ll soon tell you what changes they need. And the system will alter their
mode of work, so their requirements will change anyway. To circumvent some of this,
deliver early a slide show or a prototype or a vertical slice—whatever will stimulate the
imagination. OO can be great for this incremental design, but it must be a clear part of the
plan.

• What information will be extracted and fed back to analysis from an early delivery?

(And how will the information be obtained? Is the planned delivery adequate to expose

that information?)

• What will happen to the code? Is it a throwaway? If not, all proper documentation and

reviews must be applied. Often, prototypes are not exposed to proper QA—and then

are incorporated into the real thing!

• What will happen to the other design documents? The design material usually repre-
sents more valuable work than the code itself, so you can build a prototype as a throw-

Figure 6.44 Refinement is a relation and not a sequence.

spec

component
spec

component
code

The important thing is getting
the ref inement relationships right
in the end—not the order in w hich
you complete them.

Chapter 6 Abstractions, Refinement, and Testing 281
away even in some other language. This assumes that, as a reader of this book, you’re

documenting the design in some form other than the code.

282 PART III FACTORING MODELS AND DESIGNS
Pattern 6.5 Recursive Refinement

Establish a traceable relationship, based on refinement, between the most abstract spec
and the detailed implementation (program code).

Intent
The abstract spec should bear a systematic relationship to the code, and this relationship
should be expressed as a series of refinements. Many of these are decompositions, which
break the problem into smaller pieces.

We wish to document the outcome of design.

Strategy
• Model separate views. Rather than build a single monolithic model, recognize when
there are useful different external views of your component. Model each such view sepa-
rately so that the model relates seamlessly to that part of the problem domain.

• Compose views into one spec. When designing, it helps to have a single combined spec
on which you base your design; then you refine, and map to, only that single specification.
Hence, compose your views into a single spec that you relate to your design and imple-
mentation.

• Refine the spec using one of the standard refinements. Some refinements are one-to-
one; others are decompositions. The latter split the spec into several separate ones, each of
which can be dealt with as a separate goal.

• Document each decomposition with a refinement that states how the constituents work
together to fulfill the abstract spec.

• Each decomposition divides the job into a set of constituents, each with a specification
that can be fulfilled separately. The same principles can be applied recursively to its
design. Thus, you can specify an entire application as a type and then decompose it into
internal collaborating components. If the components are of a nontrivial size, recursively
model and specify each of them as a type.

• “Basic design” shortcuts some of the recursive refinement process by going straight for
a set of decisions that accept the specification types as protoclasses. A judicious combina-
tion of basic design, subsequent optimization, and recursive refinement is practical for
many projects.

• Use frameworks to build specifications and designs as well as refinements between the
two. Frameworks (see Chapter 9, Model Frameworks and Template Packages) capture
recurring patterns of types, collaborations, and refinements. Used properly and with the
right tool support, frameworks let you document the main refinement decisions in a single
place rather than duplicate them each place they are used. A single framework named
Cache could have the design and refinement rationale independently of the many different
contexts in which it is used.

Chapter 6 Abstractions, Refinement, and Testing 283
Result
The result is a design that is traceable through the refinements.

284 PART III FACTORING MODELS AND DESIGNS

	Part III Factoring Models and Designs
	Chapter 6 Abstraction, Refinement, and Testing
	6.1� Zooming In and Out: Why Abstract and Refine?
	6.1.1 � Four Basic Kinds of Abstraction and Refinement
	6.1.1.1 � Behavior of an Object
	6.1.1.2 � Collaborations among Objects

	6.1.2 � Refinement Trees
	6.1.3 � Operation Abstraction
	6.1.4 � Model Abstraction
	6.1.5 � Action Abstraction: Messages and Actions
	6.1.5.1 � Refining Actions
	6.1.5.2 � Summary: Action Abstraction

	6.1.6 � Object Abstraction
	6.1.6.1 � Summary: Object Abstraction
	6.1.6.2 � Abstracting Objects and Actions Together

	6.1.7 � Zooming In to the Software
	6.1.8 � Reified and Virtual Abstractions
	6.1.9 � Composition and Refinement
	6.1.10 � Summary: Kinds of Abstraction

	6.2� Documenting Refinement and Conformance
	6.2.1 � Documenting the Refinement Relationship
	6.2.1.1 � Refinement and Subtype
	6.2.1.2 � Refinement and Aggregation

	6.2.2 � Traceability and Verification

	6.3� Spreadsheet: A Refinement Example
	6.3.1 � A Specification for a Spreadsheet
	6.3.1.1 � Using Snapshots to Animate the Spec

	6.3.2 � An Implementation
	6.3.3 � The Refinement Relationship

	6.4� Spreadsheet: Model Refinement
	6.4.1 � What a Type Model Means and Doesn’t Mean
	6.4.2 � Documenting Model Conformance with a Retrieval
	6.4.3 � Drawing a Model Conformance
	6.4.4 � Testing Using Abstraction Functions
	6.4.5 � Model Conformance: Summary
	6.4.6 � Testing by Representing the Specification in Code
	6.4.7 � Specifications in Code: Summary

	6.5� Spreadsheet: Action Refinement
	6.5.1 � Action Conformance: Realization of Business Goals
	6.5.2 � Checking Action Conformance
	6.5.3 � Documenting Action Conformance
	6.5.4 � Testing Action Conformance
	6.5.5 � Action Conformance and Layered Design: Action Refinement Brings Model Refinement
	6.5.5.1 � Reifying Actions
	6.5.5.2 � Action Refinement and Design Layers

	6.5.6 � Action Conformance and Collaborations
	6.5.7 � Action Conformance within Software
	6.5.8 � Action Conformance: Summary

	6.6� Spreadsheet: Object Refinement
	6.6.1 � What an Object Means and Doesn’t Mean
	6.6.2 � The Process of Object Refinement
	6.6.2.1 � Start with the Specification
	6.6.2.2 � Design the Object Model
	6.6.2.3 � Refine the Actions and Mask the Specs
	6.6.2.4 � Localize Each Action to a Constituent Object
	6.6.2.5 � Operation Refinement for Each Component-Level Action
	6.6.2.6 � Visibilities

	6.6.3 � Documenting Object Conformance
	6.6.4 � Object Access: Conformance, Façades, and Adapters
	6.6.4.1 � Direct Access
	6.6.4.2 � Façade
	6.6.4.3 � Multiple Façades
	6.6.4.4 � Adapters
	6.6.4.5 � Boundary Decisions in Object Refinements

	6.6.5 � Object Conformance: Summary

	6.7� Spreadsheet: Operation Refinement
	6.7.1 � What Operation Abstraction Means and Doesn’t Mean
	6.7.2 � Strong Decoupling
	6.7.3 � Documenting Operation Spec Conformance
	6.7.3.1 � Comparing Two Operation Specs
	6.7.3.2 � Comparing Operation Specs with Code
	6.7.3.3 � Operation Conformance and Action Conformance: Differences

	6.7.4 � Operation Conformance: Summary

	6.8� Refinement of State Charts
	6.8.1 � Distinguishing States of Spec Types from Design Types
	6.8.2 � Other State Chart Refinement Rules

	6.9� Summary
	6.10 Process Patterns for Refinement
	Pattern 6.1 The OO Golden Rule (Seamlessness or Continuity)
	Intent
	Considerations
	Truth and Reality
	Compromise with Practicality

	Strategy
	Build and Integrate Users’ Business Models
	Cast System Requirements in Terms of the Business Model
	Choose Classes Based on the Business Model
	Maintain Development Layers (Business Model to Code) in Step
	Build Many Projects on the Same Model

	Benefits

	Pattern 6.2 The Golden Rule versus Other Optimizations
	Intent
	Considerations
	Strategy
	Benefits

	Pattern 6.3 Orthogonal Abstractions and Refinement
	Intent
	Considerations
	Strategy

	Pattern 6.4 Refinement Is a Relation, Not a Sequence
	Intent
	Considerations
	Strategy
	Get It 80% Right
	Bottom-up and Top-down Approaches
	Coding Can Even Help with Analysis

	Pattern 6.5 Recursive Refinement
	Intent
	Strategy
	Result

