Glossary

abstract class A classthat defines a partial implementation for a set of objects.

abstraction (1) An abstraction (noun) is a description of something that omits some
details that are not relevant to the purpose of the abstraction; the converse of refine-
ment. Types, collaborations, and action specs are different kinds of abstraction. (2)
Abstract (verb) means to create an abstraction; also called generalize, specify, and
sometimes analyze.

action occurrence A related set of changes of states in a group of objects between two
specific points in time. An action occurrence may abstract an entire series of interac-
tions and smaller changes.

action spec A specification of an action type. An action spec characterizes the effects of
the occurrences on the states of the participating objects (for example, with a postcon-
dition).

Actions can be joint (use cases): They abstract multiple interactions and specific
protocols for information exchange and describe the net effect on all participants and
the summary of information exchanged.

Actions can also be localized, in which case they are aso called operations. An
operation is a one-sided specification of an action focused entirely on a single object
and how it responds to a request, without regard to the initiator of that request.

action type The set of action occurrences that conform to a given action spec. A partic-
ular action occurrence may belong to many action types.

architectural style An architectural style (or type) defines a consistent set of architec-
tural elements, patterns, rules for using them, and stereotype or other notational short-
hand for expressing their use, all within a package.

architecture (system) The architecture of a system consists of the structure(s) of its
parts (including design-time, test-time, and runtime hardware and software parts),
the nature and relevant externally visible properties of those parts (modules with
interfaces, hardware units, and objects), and the relationships and constraints
between them (there are a great many possibly interesting such relationships).

architecture The set of design decisions and rules about any system (or smaller compo-
nent) that keeps its implementors and maintainers from exercising needless creativity.
Every refinement can have such architectural rules.

715

716

GLOSSARY

architecture implementation(s) The way each category of connector works internally,
including the protocol of interactions between ports. Component or object-oriented
frameworks are effective ways to implement an architecture.

association A pair of attributes that are inverses of each other, usually drawn as a line
connecting two types.

attribute A named property of an object whose value describes information about the
object. An attribute's value is itself the identity of an object. In software, an attribute
can represent stored or computable information. An attribute is part of a model used
to help describe its object’s behavior and need not be implemented directly by a
designer.

class (1) A language-specific construct defining the implementation template for a set of
objects, the typesit implements, and the other classes or typesit usesin itsimplemen-
tation (including by class inheritance). (2) An implementation concept that defines
the stored data and associated procedures for manipulating instances of the class; the
implementation construct can be mapped to OO languages and to procedural and even
assembly language.

collaboration A set of related actions between typed objects playing defined rolesin
the collaboration; these actions are defined in terms of a common type model of the
objects involved. A collaboration is frequently a refinement of a single abstract
action or adesign to maintain an invariant between some objects.

collaboration spec A collaboration is specified by the list of actions between the collab-
orators, an optional list of actions considered “outside” the collaboration, action
specs, static and effect invariants that may apply to either set of actions, and an
optional sequence constraint on the set of actions.

component (general) A coherent package of software artifacts that can be independently
developed and delivered as a unit and that can be composed, unchanged, with other
components to build something larger.

component (in code) A coherent package of software implementation that (a) has
explicit and well-specified interfaces for the services it provides; (b) has explicit and
well-specified interfaces for services it expects from others; and (c) can be composed
with other components, perhaps customizing some of their properties, without modi-
fying the components themselves. As a consegquence of these properties, a component
can be independently developed, delivered, and deployed as a unit.

component architecturetype, or style The categories of connector that are permitted
between components, what each of them does, and the rules and constraints on their
use. Some (unary) connector types can even be used to define standard infrastruc-
ture services that will always be provided by the environment.

component-based design The mind-set, science, and art of building with and for com-
ponents and ensuring that the result of plugging components together has the
expected effect.

component-based development (CBD) An approach to software development in which
all artifacts—from executabl e code to interface specifications, architectures, and busi-
ness models, and scaling from compl ete applications and systems down to individual
components—can be built by assembling, adapting, and “wiring” together existing
components into avariety of different configurations.

Glossary

717

component instance The object, set of objects, or predetermined configuration of such
a set of objects that is the runtime manifestation of a component when composed
within a particular application.

component spec A specification of the external behavior of a component, covering the
services provided and required and the underlying component technology.

components Units of software that can be plugged in to awide variety of others. They
range in scale from small user-interface widgets to large transaction-processing appli-
cations.

conformance One behavioral description conforms to another if (and only if) any
objects that behave as described by one are also behaving as described by the other
(given a mapping between the two descriptions). A conformance is a relationship
between the two descriptions, accompanied by a justification that includes the map-
ping between them and rationale for choices made. Refinement and conformance
form the basis of traceability and document the answer to the question, Why is this
design done thus?

connectors The connections between ports that build a collection of components into a
software product (or larger component). A connector imposes role-specific con-
straints on the ports that it connects and can be refined to particular interaction proto-
cols that implement the joint action.

convenience attribute A redundant attribute (possibly parameterized) that is introduced
to simplify the specification of actions or invariants—for example, age defined as
well as birthday.

dialect A packagethat contains a useful and agreed-on set of mutually consistent stereo-
types, together defining aparticular “dialect” of the modeling language. All modeling
work is done in the context of selected dialect(s).

dictionary The collected set of definitions of modeling constructs; the definitions must
include not only the formal modeling and specification hits (relating the formal names
and symboals to each other) but also the (usually informal) glossary of descriptions
that relate the symbols and names to thingsin the problem domain. Dictionary defini-
tions are scoped according to package scope rules.

dynamicinvariant Seeeffect invariant.

effect A convenience postcondition introduced (and named) to factor parts of postcondi-
tions that are common across more than one action. Unlike ordinary predicates, an
effect can contain the special postcondition operator @pre.

equality A generic relation on atype, in which the relation must satisfy certain mathe-
matical properties; defined as a standard framework.

framework application Animport of aframework with substitutions; usually depicted
graphically using a UML “pattern” symbol, with labeled lines for the type substitu-
tions and text annotations for finer-grained substitutions (attributes, actions, and so
on).

framework, model A template package; a package that is designed to be im-ported with
substitutions: It “unfolds’ to provide aversion of its contents that is specialized based
on the substitutions made. (Note that our usage of framework is somewhat broader
than its traditional usage as a collection of collaborating abstract classes.)

718

GLOSSARY

A framework can abstract the description of a generic type, a family of mutually
dependent types, a collaboration, a refinement pattern, the modeling constructs them-
selves, and even a bundle of fundamental generic properties (associative, commuta-
tive, and so on). Frameworks are themselves built on other frameworks; at the most
basic level, the structure of frameworks represents the basis for the organization of all
models.

implementation Program code that conforms to an abstraction; requires no further
refinement (strictly speaking, it still goes through compilation and so on).

import, extension An extension import is a relation between packages whereby all
names and definitions exported by the imported package are accessible in the
importer, together with any new elements and added statements about the imported
elements that the importer may introduce. A package exports all introduced elements
as well as all elements accessible via extension imports. Import by extension is the
default rule for import.

import, usage A usage import is a relation between packages whereby all names and
definitions exported by the imported package are accessible in the importer, together
with any new elements and added statements about the imported elements that the
importer may introduce. However, elements accessible only via usage imports are not
exported by a package.

invariant effect A transition rule that applies to the postcondition of every action in the
range of the invariant; by writing a conditional (effl ==> eff2), you can impose the
rule selectively on those actions that have effect effl—for example, “all operations
that alter x must also notify y.”

object Any identifiable individual or thing. It may be a concrete, touchable thing, such
as a car; or an abstract concept, such as a meeting, relationship, number, or a com-
puter system. Objects have individual identities, characteristic behaviors, and (per-
haps mutable) states. In software, an object can be represented by a combination of
stored state and executable code.

object behavior The effects of an object on the outcomes of the actions it takes part in
and their effectson it.

package A named container for a unit of development work. All development arti-
facts—including types, classes, compiled code, refinements, diagrams, documenta-
tion, change requests, code patches, architectural rules and patterns, tests, and other
packages—are in a package. A package is treated as a unit for versioning, configura-
tion management, reuse, dependency tracking, and so on. It also provides a scope for
unique names of its elements.

package, nested A package whose name is itself scoped within a containing package.
The contained package implicitly imports its container.

package, virtual A named package that informally denctes (as opposed to actually con-
taining) a set of terms and definitions that you want to refer to from other packages. A
virtual package can be “virtually” imported by a“real” package.

parameterized attribute An attribute with parameters such as priceOf(Product). Its
value isafunction from alist of parameters to an object identity. Unlike an operation,

Glossary

719

it isused only as an ancillary part of a behavioral description and need not be imple-
mented directly. A partial parameterized attribute has a precondition.

ports The exposed interfaces that define the “plugs’ and “sockets’ of components:
Those places at which the component offers access to its services and from which it
accesses services of others. A plug can be coupled with any socket of a compatible
type using a suitable connector.

provisions A set of prerequisites associated with aframework; any elements substituted
when applying this framework must meet the prerequisitesin order for the framework
to be applicable. Provisions are anal ogous to design-time preconditions.

quoted actions A postcondition can refer to another action by naming it within
brackets: [[action(...)]]. This is called quoting, and it means that the effect speci-
fied for that action is a part of this postcondition. If written as [[->action(...)]], then
the action must actually be invoked as part of the postcondition; if further prefixed
with sent, it indicates that an asynchronous invocation must be made.

redundant specs A specification (including invariants and pre- and postconditions) that
isimplied by other parts of the model but is included for emphasis or clarity. Such
specs are prefixed witha“/”.

refinement (1) A refinement (noun) is a more-detailed description that conforms to
another (its abstraction). Everything said about the abstraction holds, perhapsin asome-
what different form, in the refinement. (2) Refinement, or refinement of, isalso used to
mean the relationship between the abstract and detailed descriptions rather than to only
the detailed description itself. (3) Refine (verb) is to create a refinement; also called
design, implement, or specialize.

retrieval A function that determines the value of an abstract attribute from the stored
implementation data (or otherwise detailed attributes); used with a conformance to
show how the attributes map to the abstraction, as a prerequisite to showing how the
behavior specifications are also met. Also called an abstraction function.

ReuseLaw 1 Don't reuse implementation code unless you also intend to reuse the spec-
ification. Otherwise, you have no reason to believe that arevised version of theimple-
mentation won't break your code.

Reuse Lemmas (1) If you reuse a specification, try a component-based approach: imple-
ment againgt the interface and defer binding to the implementation. (2) Reuse of spec-
ifications leads to reuse of implementations. In particular, whenever you can implement
standardized interfaces, whether domain-specific or for infrastructure services, you
enable the reuse of all other implementations that follow those standards. (3) Success-
ful reuse needs thorough interface specifications. (4) If you can “componentize” your
problem domain descriptions themselves and reuse domain models, you greatly
enhance your position to reuse interface specifications and implementations down-
stream.

scenario A prototypical trace of interactions, showing a set of action occurrences start-
ing from aknown initial state. Usually described as narrative steps, with accompany-
ing interaction diagrams, and accompanying snapshots of an evolving state.

sequence expression A textual representation of temporal composition of actions; some
can be translated into an equivalent state chart.

720

GLOSSARY

snapshot A depiction (usually as adrawing) of aset of objects and the values of some of
their attributes at a particular point in time.

specification type versus design type A specification type is one that isintroduced as a
part of the type model of another type to help structure its attributes and effects in
terms closer to the problem domain. The behaviors of the spec type are not them-
selves of external interest, and it may never beimplemented directly. A design type,
in contragt, is one that participates directly in actions; its behaviors are of primary
importance, and it is not just a means to factor the specification of some other type.

state A Boolean attribute that is drawn on a state chart. The structure of the states defines
invariants on those attributes (such as mutually exclusive states, inclusive states, or
orthogonal states); additionally, you should write explicit invariants relating the state
attributes to other attributesin the type model.

statechart A graphical description of a set of states and transitions.

statetransition A partial specification of an action drawn as adirected edge on a state
chart. The initial and final states are part of the pre- and postcondition in the spec,
and additional pre/post specs are written textually on the transition.

statetype A set of objects defined by a predicate: Unlike a true type, objects can move
into and out of it during their lives. The predicate is defined within a parent true type;
for example, caterpillar is a state within lepidopter.

staticinvariant A predicate that forms part of atype model and that should hold true on
every permitted snapshot—specifically, before and after every action in the model.
Some static invariants are written in text; other common ones, such as attribute types
and associations as inverse attributes, have built-in notations.

staticmodel A set of attributes, together with an invariant, constitutes the static part of a
type model. The invariant says which combinations of attribute values make sense at
any one time and includes constraints on the existence, ranges, types, and combina
tions of individual attributes.

stereotype A shorthand syntax for applying a framework; a stereotype is used by refer-
ring to its name as «name», attached to any model element. Frameworks provide an
extensibility mechanism to the modeling language; stereotypes provide a syntax for
using this mechanism.

subclass A classthat inherits some of itsimplementation from its superclass(es).

subtype A type whose members form a subset of its supertype; all the specifications of
the supertype are true of the subtype, which may add further specifications. (Note
that we use subclass to mean inheritance of implementation.)

testing Theactivity of uncovering defectsin an implementation by comparing its behav-
ior against that of its specification under a given set of runtime stimuli (the test cases
or test data). Any refinement can have corresponding tests.

traceability The ability to relate elements in a detailed description with the elementsin
an abstraction that motivate their presence and vice versa; the ability to relate imple-
mentation elements to requirements.

type A set of objectsthat conformsto a given type spec throughout their lives.

Glossary

721

type constant A named member of the type—for example, 7 is atype constant of Integer.
Type constants can be globally referred to by type_name.member_name.

type expression An expression denoting a type using set-like operators—for example,
Women + Men.

type intersection A combination of two specifications, each of which must be fully
observed (without restricting the other) by an object that belongs to the resulting type.
The designer must guarantee each postcondition whenever its precondition is met
regardless of the other’s pre/post condition.

Type intersection—or subtyping—happens when a component or object must sat-
isfy different clients. Each specification must be satisfied independently of the other.
A type specification defines a set of instances. the objects that satisfy the spec. Sub-
typing is about forming the intersection of two sets: those objects that happen to sat-
isfy both specifications.

typejoin A combination of two views of the same type; each view may impose its own
restrictions on what the designer of the type must achieve (conjoining postconditions)
or what a client must ensure (conjoining preconditions).

Joining happens when two views of the same type are presented in different places;
they might be in the same package or imported from different ones. Joining is about
building the text and drawings of a specification from various partial descriptions.

type spec A description of object behavior. It typically consists of a collection of action
specs and a static model of attributes that help describe the effects of those actions. A
type spec makes no statement about implementation.

unfolding Depicting the results of an import, possibly including substitutions, in the
context of the importing package with the appropriate el ements substituted.

use case A joint action with multiple participant objects that represent a meaningful
business task, usually written in a structured narrative style. Like any joint action, a
use case can be refined into a finer-grained sequence of actions. Traditionally, the
refined sequence is described as a part of the use case itself; we recommend it be
treated as arefinement even if the presentation be as a single template.

722 GLOSSARY

	Glossary

