
 Chapter 1 A Tour of Catalysis

As a software professional you have just been charged with the following task:

Build an application for a seminar company. Clients call and request courses, and the company

says yes or no based on the availability of qualified instructors. Instructor qualification is

based on exams instructors take and results from the courses they teach. Your solution must
integrate with the existing calendar package (which is currently used for vacation planning)
and the database of clients.

Where do you begin attacking this problem? What objects should you have? How
should you use the ready-made components? When are you finished?

This chapter takes you through the principal stages of a Catalysis development, cover-
ing the main features. We recommend that if you read a single chapter of this book, this
should be the one. For a greatly abbreviated sound-bite version of the tour, see
Section 1.15, Summary.

The rest of the book deepens and generalizes the ideas developed in this chapter so that
they are applicable to a wide variety of problems. In reading the rest of the book, if you
feel lost you can reorient yourself by coming back to this chapter.

1.1 Objects and Actions

Object-oriented development (OOD) bases the software structure on a model of the users’
world within which the software will work. One benefit is that when the users talk in their
own vocabulary about changes in their requirements, it is easier to see which parts of the
software are relevant. The mirroring is not always exact—because of the constraints of plat-
form, performance, and generalization—but if the differences are localized and clearly docu-
mented, the benefits of OOD are not lost.

Object-oriented analysis and design therefore use the same basic concepts to describe
both the users’ domain and the software. In Catalysis, these basic concepts are the object,
representing a cluster of information and functionality; and the action, representing any-
thing that happens: an event, task, job, message, change of state, interaction, or activity
(see Figure 1.1). Catalysis places the action on an equal footing with the object, because
good decoupled design requires careful thought about what actions occur and what they
achieve.
3

4 PART I OVERVIEW
This analysis is done separately from focus on any one object. (Diagrams such as this
one help make clear the principal relationships in a description but are insufficient in
themselves. They should always be accompanied by an explanation, in a separate dictio-
nary or embedded in narrative, of what the elements represent.)

Unlike some object-oriented design methods, Catalysis does not always begin by
assigning responsibility for actions to specific objects. We believe in not taking decisions
all at once. We first state what happens; then we state which object is responsible for doing
it and which one is responsible for initiating it; and finally we state how it is done.1

1.1.1 Actions Affect Objects
Not only do objects participate in actions, but they are also used to describe the actions’
effects on the participants.2 Actions are characterized primarily by what they achieve and
only secondarily by how they achieve it; there might be many different ways. For exam-
ple, we might say

action (student, teacher) :: teach (skill)
post -- this skill has been added to the student’s accomplishments

This description uses new terms to describe the effect, or postcondition. It implies that
every Student has a set of Skills called her accomplishments. We can draw this relationship
or can write it textually as an attribute of Student (see Figure 1.2).

The stars indicate that every Student can have any number of accomplishments, and
every Skill can be the accomplishment of any number of Students. The stick figure and the
box represent types of objects; the use of the stick figure instead of a box is optional and
highlights the expectation that Student may be one of many roles played by any one
object.

To visualize an occurrence of an action, we can use a snapshot.3 Figure 1.3 shows sam-
ple instances of objects in two states: immediately before and after an example occurrence
of the action. In this book, the alterations in the “after” state are shown in bold; you might
prefer to draw them in two colors.

Figure 1.1 Objects participate in actions.

1. Details on refinement are in Chapter 6.

2. Defining actions is covered in Chapter 4 and specifying actions in Chapter 3 and Chapter 4.

3. Snapshots are described in detail in Section 2.2.

Action type = use caseStudent Teacher

teach

Object type

Chapter 1 A Tour of Catalysis 5
The associations may represent real-world relationships: if we asked Jo some deep ques-
tion about lettuce curling, she should now know the answer. Or associations can represent
software: there is now a row in a database table saying that Jo has completed the lettuce-curl-
ing course, or Jo’s name is in a record somewhere. The useful aspect of associations is that we
don’t have to say exactly how they are realized, but we can still make meaningful statements
about how actions affect them.

This use of the associations, or a static model, to provide a vocabulary for the actions,
or a dynamic model, gives a clear guide as to what objects you need: those that are
required to describe the actions.

1.1.2 Precise Specifications
Associations provide a vocabulary in which it is possible to describe the effects of actions
as precisely as in programming language:

action (student, teacher) :: teach (skill)
post -- this skill has been added to the student’s accomplishments

student.accomplishments = student.accomplishments@pre + skill

A postcondition is a relationship between the before and after states; @pre refers to the
before state.

Figure 1.2 Participants have associations.

Figure 1.3 Action occurrence and snapshots.

Association

* accomplishments

*
Skill

Student

Links of a multiple association

weeding: Skill

accomplishments

jo: Student

pat: Student

Effect of (jo, aTeacher) :: teach (lettuceCurling)

whitening: Skill

lettuceCurling: Skill

wigdicing: Skill

Underline means
instance

Bold means newly
created

6 PART I OVERVIEW
Postconditions allow us to make precise statements about what happens in a business or
what is required of a piece of software even though we are working at an abstract level.
Unlike natural-language requirements documents, these specifications are abstract and yet
precise. Experience shows that the effort of writing them exposes inconsistencies that
would be glossed over in natural language. Although there is extra effort involved, it saves
work further down the line and focuses attention on the important issues.

1.2 Refinement: Objects and Actions
at Different Scales

Figure 1.4 shows a picture of some interacting . . . let’s just call them “things” for a
moment. Each one has a set of tasks it can perform, and each one performs its tasks in part
by making requests to others. You can look at the picture in different ways and at different
scales.4 The picture might represent the seminar business, the boxes representing depart-
ments interacting to achieve the corporate goals. We could look inside any department and
find the same sort of picture, with different people sending one another memos and docu-
ments and exchanging phone calls. Some of the actors in the picture might be pieces of
software such as the scheduling system; we could zoom in on one of these boxes and find
the same kind of picture again, showing major components such as the vacation planner.

Looking inside any component, we can identify the same kind of structure again: if it’s
an object-oriented program, the units will be (we hope) neatly encapsulated objects. Each
object has a set of tasks it performs and data that it uses to perform these tasks—just as, at

the larger scale, the people have their jobs to perform, and their filing cabinets and Internet
browser shortcuts are full of (we hope) relevant information.

4. For more than you ever wanted to know about refinement, see Chapter 6.

Figure 1.4 Objects at all scales interact.

Chapter 1 A Tour of Catalysis 7
We consider the essential issues in design to be the same at all scales, with some differ-
ences only in detail. To this fractal5 picture, we apply a fractal method. In this book, we
call all these units objects: business departments, machines, running software compo-
nents, programming language objects. The interactions between them are called actions, a
term that encompasses big business deals, phone calls, bike rides, file transfers, electronic
signals, taps on the shoulder, function calls, and message sends in an object-oriented pro-
gramming language. Like objects, actions contain smaller actions and are parts of bigger
ones.

1.2.1 Actions at Different Scales
The seminar system is part of a larger organization, some aspects of which we must under-
stand before we can design it. The company teaches courses to clients. We show the inter-
action as an ellipse (see Figure 1.5). We can zoom in on the action to show a more detailed
picture, as in Figure 1.6. We can draw another diagram to relate together the two levels of
description, stating that the teach action is a composition made up of the smaller ones. Or
we can overlap them on the same diagram (see Figure 1.7).

We haven’t detailed here how the composition works. The smaller actions might hap-
pen in parallel or in sequence, or they might be repeated: we give that detail separately.
One way to do that is with a sequence diagram. This is used to illustrate a typical occur-
rence of an action (see Figure 1.8). The horizontal bars in these diagrams are occurrences
of actions; the vertical bars are instances of objects.

5. A fractal picture has the same appearance at all scales.

Figure 1.5 An abstract action.

Figure 1.6 Zoomed-in actions that constitute teach.

Collaboration
Diagram

Subject
Action typeClient Seminar

Company

teach

Object type

Subject

Schedule the course

Client Seminar

Company

arrange

Deliver the course
run course

8 PART I OVERVIEW
By contrast, the ellipses in the previous diagrams are action types representing defini-
tions of all the interactions that can take place. The actors they link are types of object:
each type describes a role that specific instances can play. (We don’t always put arrows on
the actions at this stage, because each action may represent a sequence of smaller interac-
tions between the participants; there may be several alternative sequences, each of which
has a different initiator. We’ll see shortly how we distinguish who does the teaching and
who gets taught.)

Notice that the different levels of detail correspond to the way we normally account for
things in everyday life. You might say, “I had a Java course last week from SeminoMax”
to a friend who doesn’t care when or whether you arranged it in advance, or whether they
grabbed you off the street. But such detail is appropriate when you work out exactly how
to become taught.

Of course, the arrange or the run_course can be further detailed into finer and finer
actions, some of which might involve or be inside computer software.

1.2.2 Objects at Different Scales
The objects can also be detailed or abstracted. A seminar company has a Sales department
and an Operations department; a Seminar System, which helps coordinate activities; and a
portfolio of courses, each of which deals with a number of Subjects (see Figure 1.9). As
before, boxes are the default representation of object types. We can use stick figures

Figure 1.7 Showing action constituents.

Figure 1.8 Sequence diagram.

Assembly

arrange

teach

run course

Object instances

Action occurrencesTi
m

e

ibm : Client

arrange (java)

run course (java)

An occurrence of the teach action

seminoMax: Seminar Company

Sequence
Diagram

Chapter 1 A Tour of Catalysis 9
instead to highlight roles; several roles can be played by one object. There is no implica-
tion that the stick figures represent individual people, although there is usually some
human element involved.

The line from Course to Subject is an association; it represents the fact that you can ask
about a Course, “What topics does it cover?” and the answer will be a set of Subjects. By
implication, you can ask which Courses have any one Subject as their topic. The associa-
tion says nothing about how the information is represented or how easy it is to obtain. Like
objects and actions, associations can be refined, going into more detail about the informa-
tion they represent.

At this level of refinement, we can show that the arrangement of courses is dealt with
not only by the Seminar Company as a whole but more particularly by Sales, assisted by
the Seminar System; and Operations run courses, also with the help of the Seminar Sys-
tem (see Figure 1.10).

Normally we zoom actions and objects at the same time. Notice that at the coarser
scale, you are not compromising the truth but only telling less of it. Everything you say in
the big picture is still true when you look at the finer scale.

Figure 1.9 Showing object constituents.

Figure 1.10 More-detailed description.

Association

*

topic

portfolio *

Seminar

Company

Seminar

System

Subject

Sales Operations

Course

Assembly

arrange course

Seminar

System

Sales

Client

Operations

run course

10 PART I OVERVIEW
This technique of zooming in and out is useful when you’re seeking to understand what
a business does and why it does it. It is also useful for understanding the requirements on a
software component separately from the internal design and for understanding the overall
design separately from the fine detail. The ability to see not only the big picture but also
how it relates to the fine detail is essential to coherent, traceable, maintainable design.

1.3 Development Layers

Abstraction is the most useful technique a developer can apply: being able to state the
important aspects of a problem uncluttered by less-important detail.6 It’s equally important
to be able to trace how the more-detailed picture relates to the abstraction. We’ve already
seen some of the main abstraction techniques in Catalysis—the ability to treat a complex
system as one object and to treat complex interactions as one action and yet state the out-
come precisely. This approach contrasts with more-traditional design techniques in which
abstract also tends to mean fuzzy, so you can’t see whether a statement is right or wrong
because it might have many different interpretations.

Different projects will use these abstraction techniques differently. Some project teams
may work with a simple design that needs little transformation from concepts to code.
Others, starting with an existing system and existing procedures for using it, may need to
abstract its essentials before devising an updated solution.

A “vanilla” development from scratch is typically treated in two to five layers of
abstraction:7 bigger projects have more abstraction layers, each one separately maintained.
Typical layers are as follows.

• Business model (sometimes called domain or essential model): Describes the users’
world separately from any notion of the target software. This model is useful if you are

building a range of software all in the same world or as a draft to transform into a require-
ments spec.

• Requirements specification: Describes what is required of software without reference

to how it is implemented. This spec is mandatory for a major component or complete sys-
tem. It may be approached differently when the complete system is created by rapidly

plugging kit components together.8

• Component design: Describes on a high level how the major components collaborate,
with references to a requirements specification for each one. It is needed if there are dis-
tinct major components.

• Object design: Describes how a component or system works, down to programming

language classes or some other level that can be coded (or turned into code by a genera-
tor). It is mandatory.

6. For an overview of the development process, see Chapter 13.

7. There are many “routes” through the method—see Section 13.2.1.

8. Heterogenous components: see Section 10.11. Homogenous component kits: see Section 10.6.

Chapter 1 A Tour of Catalysis 11
• Component kit architecture: Describes the common elements of the way a collection of
components work together, such as standard interaction protocols. It is needed to allow a

variety of developers to build interoperable components that can be assembled into fami-
lies of products.

1.4 Business Modeling

The examples we have looked at so far are typically part of a business model.9 The main
objective is for the model to represent how the users think of the world with which they
work. A great many of the questions that arise during a project can be uncovered by good
business modeling.

The construction of a business model is a subject for a book in itself. Typically, there is
a cycle of reading existing material and interviewing domain experts.

• The starting questions are “What do you do?” and “Whom do you deal with?”

• Every time a verb is mentioned, draw an action and add to your list of questions “Who

and what else participates in that? What is its effect on their state?” The answers to

these questions lead you to draw object types and to write postconditions; these in turn

lead to associations and attributes with which to illustrate the effects.

• Every time you introduce a new object type, add to the list of questions “What actions

affect that? What actions does it affect?” Or ask it individually about the type’s associ-
ations and attributes.

• Go up and down the abstraction tree. Ask, “What are the steps in that action?” “What
are the parts of that object?” “What does that form part of?” “Why is this done?”

Here’s an example.

ANALYST THINKS: What is the postcondition of (Client, SeminarCo) :: arrange (Subject)?
ANALYST SAYS: What is the result when a client arranges a course with you?

CLIENT: We find a course that suits the subject they’re interested in. Then we must find an

instructor qualified to teach that course. We assign him or her to do a run of the course for the

client on a date the client is available. An instructor is available when not on vacation or doing

another course.

ANALYST: Presumably it’s a rule of the business that instructors can teach only courses they’re

qualified for; and an instructor can’t be on more than one holiday or assignment on the same

day.

ANALYST THINKS: So we need to refer to instructor qualifications and their schedules, including

vacations and assignments to course runs along with the dates, courses, and clients for any

assignment (among other things).

9. A more detailed discussion of business modeling is in Chapter 14.

12 PART I OVERVIEW
1.4.1 Static Models and Invariants
This interview yields the static relationships and attributes10 shown in Figure 1.11. (The
analyst decided that CourseRun and Vacation are both kinds of InstructorOutage—that is,
situations when that instructor is not available.)

These business rules can be written as invariants:

inv -- for every CourseRun, its instructor’s qualifications must include the course
CourseRun :: instructor.qualifications -> includes (course)

inv -- for any Instructor, and for any date you can think of, the number of the
instructor’s outages on that date is never more than 1

Instructor :: d:Date :: outage[when=d] <= 1

An invariant, like a postcondition, is written by following the links from a given start-
ing point. The invariants are described informally and are written in a simple language of
Boolean conditions and set relationships. Again, their power lies in the ability they give
you to write unambiguous statements about abstract descriptions.

The action’s postcondition can be written in terms of these static relationships. We can
draw snapshots to help visualize the effect (see Figure 1.12). This might lead to some fol-
low-up questions—“What actions affect the Instructor’s qualifications? What other actions
create an outage?”—and so on.

action (c: Client, s: SeminarCompany) :: arrange (t: Course, d: Date)
post -- a new CourseRun is created with date, client, course

r : CourseRun.new [date=d, client=c, course=t,
-- assigned instructor who was free on date d and qualified

for the course

10. Static invariants are detailed in Section 2.5; precise action specification is discussed in Section
3.4.

Figure 1.11 Static type model.

Subtype—“kind of”

Could write as textual attribute
of Instructor outage

* topic
*

*

*

*
*

course 1

* qualifications

* when

*

outage

instructor

1
Subject InstructorOutage Instructor

Client CourseRun Vacation Date

Course

Chapter 1 A Tour of Catalysis 13
instructor.outage@pre[when=d] = 0 &
instructor.qualifications -> includes (t)]

1.5 Model Frameworks as Templates

Some of the same patterns of relationships and constraints crop up frequently in modeling
and design. In a package separate from our project-specific models, we can define a
generic modeling framework for resource allocation; it acts as a macro-like template that
can be applied in many places. A template can contain any of the modeling constructs in
the form of both diagrams and text. Additionally, any name can be written as a <place-
holder>, which will be substituted when it is applied to a model.11

The resource allocation constraints of the seminar company are quite common. They
can be generalized as shown in Figure 1.13. Now we can re-create the original model by
using the generic model for resource allocations. We can easily add allocation of, say,
rooms (see Figure 1.14).

The framework is applied twice, with placeholder names substituted as indicated. Each
substitution for <Resource> defines a derived type <Resource>_Use. The framework
applications can be unfolded to reveal the complete model. The benefits of frameworks are
that they simplify a picture, and, having been tried and tested, they often deal with matters
you might not have thought of (such as the possibility of a Room being closed). The
details and precise specifications have already been worked out for you.

Templates can also contain actions and can be used to generalize interaction protocols
between components.

Figure 1.12 Action postconditions.

11. Such frameworks can be used in a great many ways; see Chapter 9.

Association
inherited
from supertype

Newly created
objects, links

topic

course

when

java: Subject j02: Course
pat: Instructor

jo: Instructor

ibm: Client

: CourseRun : CourseRun

1998/9/6: Date
1999/7/8: Date

1999/6/4: Date

: CourseRun

14 PART I OVERVIEW
1.6 Zooming In on the Software: System Context

The seminar company uses a software system12 to run its courses. If we proceed with our
successive refinement, we will get down to interactions between people and the Seminar

Figure 1.13 Generic framework model of resource allocation.

Figure 1.14 Applying the resource allocation framework.

12. For information about describing a system’s context and proceeding to specify it, see Chapter
15.

<placeholder> type—to be substituted for

Type name derived from placeholder <Resource>

Nonplaceholder type

inv <Job> :: res.capabilities->includes(requirement)
-- job’s resource must be ok for its requirement

inv <Resource> :: d:Date :: outage[when=d] → size<=1
-- no overlapping outages for any resource

requirement 1

* capabilities

* when

*
outage

res

1

*

ResourceAlloc

<Job Type>

<Job> <Outage> Date

<Resource>_Use <Resource>

A separate “template package”
with the generic model

Resource

Outage

Job

Job Outage

Job Type

Job Type Resource* topic

Room

ResourceAlloc

Maint. Closure Course Run Vacation

Course

Subject

Client

Instructor

ResourceAlloc

*

*

*

Chapter 1 A Tour of Catalysis 15
System, which we initially treat as one object (see Figure 1.15). Once again, we can draw
a sequence diagram to illustrate how the refinement works (see Figure 1.16).

What other roles does the Seminar System play? The Operations department uses it to
schedule the various tasks involved in running a course and to record the qualifications
and availability of instructors. Also, the administrators perform various systems manage-
ment and peformance tuning tasks on it (see Figure 1.17).

We can show separately how these objects and actions are part of what we’ve already
seen. Some objects and actions, such as those associated with the system management
tasks, may not be relevant to what we’ve seen at the abstract level (see Figure 1.18).

So we can now see the actions in which a Seminar System takes part from the view-
points of several different users. (Notice that even when we focus on the system we’re
proposing to design, we don’t limit ourselves to the actions that the system is immediately
involved with. We also show, for example, teach course, to emphasize that this is not
among the responsibilities of this particular object but is something that will be taken care
of by someone else.)

We can also trace the software requirements back through the assembly (or refinement)
links up to the business goals: print materials is part of run course, which is part of teach.

Figure 1.15 Zooming in to the software system boundary.

Figure 1.16 Sequence diagram, including the role of the software system.

Client

Sales

Seminar

System

inquire(Subject) check schedule

negotiate date set up (course, date, client)

arrange course

Parallel

ibm: Client

inquire(java)

negotiate date check schedule

setup (java101, 1998/4/4, ibm)

arrange a course

: Sales : Seminar System

16 PART I OVERVIEW
Presumably, we could go further up and see that teach is part of make_money or maybe
satisfy_ego—who knows what motivates pedagogues?

1.7 Requirements Specification Models

Now that we know which actions we want our software to take part in, we have the option
of making the descriptions more precise. We can describe the effect of each action on this
system.

As in the business model, we can illustrate an effect of an action with a snapshot; but in
this case, the objects in the diagram denote not the real objects but rather the system’s own
representation of them (see Figure 1.19). For that reason, we draw the objects inside the
system boundary, whereas the actions themselves are still actions on the whole system.
This reflects the fact that we are not yet designing the internals of the system.

A system requirement spec often reflects the business model closely, as in this case.
Differences occur where the business model is general to several systems or where there
are special mechanisms of interaction with the user apart from any domain concepts (for

Figure 1.17 Other roles of the software system.

Figure 1.18 Object and action constituents.

Operations

Assistant

Examiner

Client

Administration

arrange

accommodation manage

examine
record

qualification

(Instructor)

print

materials

negotiate

vacation

teach

course

Materials

Database

Seminar

System

Operations

Instructor Examiner Operations

Assistant

arrange

accommodation

print

materials

teach

course

run course

Chapter 1 A Tour of Catalysis 17
example, a word processor’s clipboard has nothing to do with the basic model of the docu-
ments it manipulates).

Gathering all the specs for the actions the system is required to take part in and the
static models needed to draw snapshots for those specs, we compile a formal functional
requirements model. Notionally it looks like the drawing in Figure 1.20.

The static model is a hypothetical picture created for the purpose of explaining the sys-
tem’s externally visible behavior to its users. There is no absolute mandate on the designer
to implement it exactly with classes and variables that directly mirror the types and associ-
ations in the spec. For one thing, there are usually complications such as managing a data-

Figure 1.19 Snapshots of software system state.

Figure 1.20 Requirements model—basis.

setup (java101,
1998/4/4, ibm)

: SeminarSystem

action SeminarSystem :: setup (Course, Date, Client)
post A new CourseRun has been created, linked to the client,

 the date, the course, and any Instructor available on that
 date qualified to teach that course

Association
inherited
from supertype

Newly created
objects, links

topic

course

when

java: Subject j02: Course
pat: Instructor

jo: Instructor

ibm: Client

: CourseRun : CourseRun

1998/9/6: Date
1999/7/8: Date

1999/6/4: Date

: CourseRun

Postconditions
specified in
documentation

Written in vocabulary
provided by static model

Type spec

setup
check Sched

arrange accom
print materials

Sales
Instructor

Operations

check Sched
set vacation

Examiner
record exam

Administration
manage

Seminar System

Subject

Course

*

*

*

*
*

*
1

1

1

*

Vacation

Date

CourseRun

Instructor

Instructor
Outage

Client

18 PART I OVERVIEW
base, and there may be performance and decoupling issues. Also, there may be a layer of
partitioning between different components. Nevertheless, it is preferred to keep to this
model as much as possible to minimize the conceptual gap between the users and the
implementation.

The principal difference between the requirements spec and the implementation is
therefore that the latter defines how the objects inside the design collaborate to achieve the
effects specified by the former.

1.7.1 Packaging
A package is a container for development artifacts; it is roughly like a section in a docu-
ment or a directory in a file system.13 A package contains some quantity of information,
whether models, software, refinement relationships, or information about the structure of
other groups of packages. Development work should be separated into packages. Typical
packages might contain a component specification; a component implementation; a reus-
able collaboration framework; and a single type specification. Documentation is part of a
package; document structure parallels the package structure.

A real requirements document14 will be spread over many pages, covering action spec-
ifications, narrative, rationale, and so on. Different external views of the system might be
partitioned across multiple packages, separated from packages that will reflect internal
design decisions (see Figure 1.21). One package can import another: if one set of terms
refers to another, in code or in models, you should import its package; if you want to say
something to relate two other descriptions, use a package that imports them both.

It is often useful to manage dependencies on the package level, checking that the num-
ber of dependencies from and to any one package is not too large.

1.8 Components

The actions we’ve so far documented at the Seminar System boundary are abstract in two
dimensions. First, they show us nothing of how they are implemented inside any of their
participants, and in particular our system. Second, each of them still represents what will
turn out to be a more detailed dialog; by refining in this dimension, we ultimately get
down to menus, keystrokes, and mouse clicks. But let’s take the implementation track and
peer inside the system.

Our sample system consists of several major components.15 They could be modules
within a single program, or they could be running on different machines. There is a semi-
nar scheduler and a separate vacation planner (and that is just the way we use a more gen-
eral calendar program).

13. Chapter 7 says more about packaging.

14. For guidelines on how to structure documentation, see Chapter 5.

15. More discussion of component-based design is in Section 10.11 and Section 16.3. A broader
discussion of component technology is in Chapter 10.

Chapter 1 A Tour of Catalysis 19
1.8.1 Two Versions of the System Design
Actually, there are two designs for this system. In version 1, the vacation calendar, the
qualifications database, and the seminar planner are not significantly coupled in software:
it’s up to the Sales people to make sure that they don’t schedule a course for an unsuitable
or recuperating Instructor (see Figure 1.22).

Figure 1.21 Multiple packages and document structure.

Figure 1.22 Sequence diagram including internal software components.

Three sections for
three external views

External Reqs

Usage Admin

«import»

Internal Design

Seminar

App

«import»

Database

Calendar

document

internal
external

Repeat until a suitable combination of Instructor and dates found

check dates (Seminar Sys 1)

: Sales1 : Qualification Database

find suitables(course) : Set(Instructor)

check vacations(Instructor) : Dates

check when not working(Instructor) : Dates

vacations: Calendar : Seminar planner

20 PART I OVERVIEW
Version 2 of the system does some of this work: it compiles a list of the available
instructors within a range of dates (see Figure 1.23). We introduce a role called Date
Checker, which might be combined with others in some object not yet decided, such as a
Schedule; it may be useful to create such a role explicitly. Again, we can summarize the
breakdown of actions and objects, as shown in Figure 1.24.

Not only are the two variants of the system different, but so are the users. Although the
effects achieved by the overall action are equivalent, the details of using the two systems
are different—human salespeople would need retraining, and mechanical ones would need

Figure 1.23 Alternative sequence diagram, design version 2.

Figure 1.24 Summary of action and object constituents.

Repeat for every suitable instructor

check dates (with Seminar Sys 2)

: Sales2

check dates

(course,

date range)

Map (Instructor

–> Dates)

: Date Checker : Qualification Database

find suitables(course) : Set(Instructor)

check vacations(Instructor) : Dates

check when working(Instructor) : Dates

vacations

: Calendar
: Seminar

planner

Different variants
of checkdates

Seminar

Sys 1

Sales

Seminar System

Sales S1 Sales S2

Calendar

vacations

Seminar Planner Date Checker

check dates

check dates

with sys 1
check dates

with sys 2

Qualification

Database

Seminar

Sys 2

Chapter 1 A Tour of Catalysis 21
reprogramming—so we give them different type names. Nevertheless, many of the Sys-
tem components are the same (that is, different instances of the same designs).

(For the sake of the illustration, we’ve cut a corner here. The different system variants
imply different operating procedures throughout, so we should strictly go up to the top-
most level of analysis at which the system was introduced and break it all down sepa-
rately.)

1.8.2 Roles
We have begun to put arrows on the actions because they have definite initiators. At this
stage we can also identify roles16 that should be played by the same component—because
they access the same information or their functions are closely related. The Date Checker,
for example, might turn out to be a role of the same component that helps Sales staff set up
courses17 (see Figure 1.25).

The façade symbol denotes an object type that we could draw with a plain box. The
symbol highlights the nature of this object’s role as an interface between the central com-
ponents of the system and the users.

1.8.3 Partitioning the Model between Components
Each of the components18 performs only some of the system’s functions and includes only
part of its state, which we can see by drawing the static models (see Figure 1.26).

16. Façades and other interface issues are discussed in Section 6.6.4.

Figure 1.25 Combining roles in the design into Sales FrontEnd.

17. Chapter 8 explains composition of roles (and other descriptions).

Qualifications DB

Sales

check dates

find suitables

fix course

check vacations

check when

already workingset up

Date

Checker

Seminar Sys 2

Course

Arranger

Calendar

Seminar Planner

Sales Front End

Plays role

Façade role

22 PART I OVERVIEW
Each component has its own model. Because some of them are more general than
required for this system—for example, the Calendar associates any Strings with dates and
is not specific to Instructors and CourseRuns—not all of them use the same vocabulary.
But we can retrieve or map the separate components’ models back to the system model.
For example, each SeminarSystem::Instructor is primarily represented in Seminar Sys 1
components by a String, which is the Instructor’s name. To obtain the associations of a
SeminarSystem::Instructor given a String n, use these definitions:

qual = qualsDB.courses [name=n]
-- all the courses in the qualsDB linked to name n

outages = vacations.dates [n:entries]
-- all the dates in the vacations component whose entries contain the name n

+ planner.instructors [name=n].runs
-- all runs associated with those instructors in the planner that have name n

In this manner, we can reconstruct all the attributes and associations we used in the
requirements model from the component design.

1.8.4 Collaborations
Now let’s compare the functional requirements summaries for the spec and implementation
1 (see Figure 1.27). The dashed boxes are collaborations.19 A collaboration is a collection

18. A full discussion of such partitioning from business to code is in Section 10.11.

Figure 1.26 Refinement and state mapping: implementation to spec.

Refines, or
implements

Seminar System

Subject

Course

*

*

*

*

*

*
*

*
1

1
outages

qual

1

*

Vacation

Date

CourseRun

Instructor

Instructor

Outage

Client

Seminar Sys 1

Qualifications DB

String

Course

* name

qualsDB 1

*

Course

*
*

*
1

1*

runs

Name

InstructorCourseRun

Client

Seminar Planner

1 planner

Calendar

String

Date

* entries

1 vacations

*

Chapter 1 A Tour of Catalysis 23
of actions and the types of objects that participate in them. Note that it is the collaboration
that is being refined rather than only the software systems, because the different versions
require different user behaviors to achieve the requirements. The same thing generally
applies to collaborations between components or objects at any scale.

Catalysis treats collaborations as first-class units of design work. This is because we
take seriously the maxim that decisions about the interactions between objects are the key
to good decoupled design. Collaborations can be generalized and applied in many con-
texts.

1.8.5 Postcondition Retrieval
Each action can be documented with a postcondition in the terms of its participating com-
ponent. We can check that, given the mappings between the components’ models and the
overall specification, the various operations in Seminar Sys 1 achieve what was set out for
them in the requirements spec for Seminar System.

For example, Calendar::make_entry is supposed to implement SeminarSystem::
set_vacation. Let’s presume that the postcondition of make_entry is to associate a String to
a Date. In the preceding section, we said that what the spec calls Outages include the dates
in which the instructor’s name appears in the vacations diary. So make_entry of the
Instructor’s name will indeed add an outage, as required by the spec’s set_vacation. With a
bit more work, we can document how some sequence of find suitables, check vacation,
and check working together constitute a correct implementation of the abstract action
check schedule.

A practical advantage of postconditions is that they can be executed as part of a test
harness. As we’ve just seen, this is true even when they are written in terms of an abstract
model: the retrievals can be used to translate from the implementation to the specifica-
tion’s terms.

1.9 Assigning Responsibilities

Until now we have used actions to represent something that happens between a set of par-
ticipants. We can write exactly what the outcome is but still abstract away from the exact
dialog: who takes responsibility for what and how the outcome is achieved. So we could
draw, for example, Figure 1.28.

This is part of the Catalysis philosophy of being able to write down the important deci-
sions separately from the detail. At some stage in a completed design, we must have ren-
dered all actions down to a dialog, in which each action is a message with a definite sender
(with responsibility for initiating the action), a receiver (with responsibility for achieving
the required outcome), and parameters (that do what the receiver asks of them). These are

19. The refinement of collaborations is covered in Chapter 6.

24 PART I OVERVIEW
called directed actions; when viewed strictly from the side of the receiver, they are called
localized actions.

Figure 1.27 Action refinement.

Seminar Sys 1

Qualifications DB

Examiner S1

Sales S1

Instructor S1

String

Course

* name

qualsDB 1

*

Course

*
*

*
1

1*
runs

Name

InstructorCourseRun

Client

Seminar Planner

1 planner

Calendar

String

Date

* entries

1 vacations

*

Type spec

Refines, implements
Abstract actions with
refined constituents

setup
check Sched

arrange accom
print materials

Sales Instructor

Operations

check Sched
set vacation

Examiner
record exam

Seminar System

Seminar System U sage spec

Subject

Course

*

*

*

*
*

*
1

1

1

*

Vacation

Date

CourseRun

Instructor

Instructor
Outage

Client

Seminar System U sage Implementation 1

record
exam

check Sched

setup

find
suitables

check
vacation

set
vacation

check
working

check
Sched

make
entry

Chapter 1 A Tour of Catalysis 25
Directed actions may be implemented in CORBA, in COM, as method calls in an OO
programming language, or as a set of calling conventions in some other style; the directed
actions are mapped based on technical architecture choices.20 There is still a dialog at
some level (such as call and return), but this is set by the architecture and local conven-
tions rather than being specific to the participants.

A general strategy for assigning responsibilities is to begin with the holder of the
responsibility as a separate role, such as VacationScheduler (see Figure 1.29). Then you
decide whether and how to combine the roles (see Figure 1.30).

So when you describe roles in a collaboration using types, you can still defer decisions
about how those roles are packaged into objects or components. Appropriate combinations
are those that place responsibilities together whose nature and implementation may be
changed together.

1.9.1 Flexibility and Decoupling
As a designer, you have a number of concerns. Your job is to put together some objects
and make a bigger one that meets a requirement. You must be clear what that requirement

is; you must ensure that the design meets the requirement (perhaps renegotiating the
requirement after the design!), and you must bring in the finished result on time with the
available resources. You need considerable skill to balance these constraints.

A further constraint, traditionally not so high on the list, is the primary thrust of object-
oriented and component-based design. This is to ensure that the finished system not only
works but also can be changed easily to meet changing business requirements.

We do this (on any scale) by decoupling: separating concerns.21 The object that deals
with vacations need not be the same as the one that deals with exams. The two concerns
should be separated so that (1) it is easy to change the way that vacations are scheduled
without disturbing how exams are set and (2) it would be possible to create a different

20. Technical architecture is discussed in Section 10.7 and Section 12.6.

Figure 1.28 An action postcondition can abstract a detailed dialog.

21. Section 7.4 discusses package-level decoupling. Design patterns (such as Pattern 16.15, Role
Decoupling, or Pattern 16.17, Observer) provide specific techniques for decoupling.

Seminar Planner

Instructor

schedule

vacation

post a vacation is set up

for this Instructor at a time

when she or he is not already

booked for a seminar

Calendar

26 PART I OVERVIEW
configuration of the same kit of objects in which there were vacations but no exams or
vice versa.

The design may also have to provide for a family of related products rather than only one
end product. For example, our seminar company’s branches in various countries may have to
comply with various local regulations. One solution is to make several copies of the code
and make small modifications to the code wherever the differences apply. As other modifi-
cations are made through time, the national versions will become separate and will need sep-
arate teams of programmers to maintain them. A better solution is to move all the national
differences into one object so that we need substitute only that one to set up for a different
country.

This skill of decoupling, or separation of concerns, distinguishes good designs from
those that merely work. Decoupling (at any scale) means a careful distribution of responsi-
bilities among the objects and careful design of how they collaborate to achieve the over-
all goals of the larger object of which they form a part.

Figure 1.29 Role and interaction design.

Figure 1.30 Composing roles.

Joint action—
a dialog specific
to this pair

Directed action

Instructor set
vacation

Vacation
Scheduler

Ensures vacation is
set with no conflicts

schedule vacation

schedule
vacation

Calendar

check when working

Seminar Planner

Instructor does own scheduling
—boils down to this:

Seminar Planner does scheduling—
boils down to this:

Instructor
Vacation

Scheduler Instructor
Vacation

Scheduler

Instructor

schedule
vacation

Calendar

Instructor

check when
workingSeminar Planner

Calendarset vacation

Seminar Planner

Chapter 1 A Tour of Catalysis 27
Because this skill is crucial, in Catalysis we provide the means to separate different lay-
ers of design decisions:

• The behavior that is required (postconditions)

• Assignment of responsibilities (roles and collaborations)

• The way each object and action is implemented (successive refinement)

1.9.2 Component Frameworks
Let’s look at an overall view of the second implementation of the Seminar System, the one
with the front end. Indeed it could have different front ends for the different user roles.
This view (see Figure 1.31) combines the various façade roles we’ve discussed previously.

The Seminar System Implementations may be complete in the sense that every required
action is dealt with, but what we see in the diagram are specifications of the components.
We can’t really take our money and go home until we’ve procured or made an implemen-
tation for each one.

In fact, there may be several implementations for each component, but the functional
success of the overall scheme is dependent only on their specifications. The choice of
implementation to plug in to each component socket is independent of the others (at least
from a functional point of view—there may be performance or other couplings).

In general, a component framework is a collaboration in which all the components are
specified with type models; some of them may come with their own implementations.22 To
use the framework, you plug in components that fulfill the specifications. The plug-in
implementations may do far more than the spec requires; that doesn’t matter, provided that

Figure 1.31 A specification of the design.

22. Chapter 11 discusses such framework techniques. Specific techniques for “plugging in” to a
larger implementation are discussed in Section 11.5.

Each internal
box represents
a specification

Sales

Front

End

Sales
check dates;

set up
fix course;

check when

working

find

suitables

check vacations

set

vacation

check when

working

Seminar System Implementation 2

Instructor

Front

End

Qualifications DB

Calendar

Seminar Planner Instructor

28 PART I OVERVIEW
we can retrieve the models and postconditions as we illustrated before. For illustration,
let’s draw implemented objects in bold (see Figure 1.32).

Preferably, the relationship between the sockets in the framework and the components
that plug in to them is a pure implementation relationship not involving inheritance of pro-
gram code. Inheritance in that sense tends to introduce coupling between the superclasses
and the subclasses. It restricts the plugs and sockets to being written in the same language,
and it means that the framework designers must provide some source code, which they
may not want to give away.

1.9.3 Component Kits
Car designers don’t usually design a car entirely from scratch. At least the nuts and bolts
are usually borrowed from previous designs. Designers usually design a whole family of
products, which are built from a kit of components.23 The components are built to a com-
mon architecture—that is, a set of design conventions that allow interoperability between
components in many different configurations. Steering wheels might have different
shapes, but all of them have the same attachment to the central shaft. Components from
different kits are hard to couple together, because they don’t share architecture.

Our seminar system might one day be expanded to support scheduling equipment,
invoicing the clients (as soon as possible) and paying the instructors (as late as possible).
Several such systems may be federated in the different branches of the company world-
wide (so that they can borrow resources from one another). Different branches may want

Figure 1.32 A framework is a partial implementation with specs

of missing parts.

23. The need for standardization across components is discussed in Section 10.2.2.

Framework with
specification
“sockets”

Implementations
“plug into”
sockets

Implements

Dark border =
implementations

Light border =
specs only

Sales FE

Seminar System Implementation 2

Qualifications DB

FancyPlanner

PlanT astic
Datime

Our Q DB
Carl’s Cal

Instructor FE

Planner

Calendar

Chapter 1 A Tour of Catalysis 29
different configurations of the system to support their own working practices (as deter-
mined by analysts and written down as a business model).

This family of software systems is best built with pluggable components. Some of this
partitioning will allow behavior to be changed easily by plugging in alternative compo-
nents; other partitioning will reflect the fact that operations and accounting departments
are distributed to different rooms and use different computers.

The component architecture covers three principal areas:

• The choice of technology (CORBA, function calls, and so on) for connecting compo-
nents.

• The interchange models—how Clients, Instructors, and so on are represented. This is

done with static models.

• Definition of abstract connectors24 between components and their realization down to

localized actions (see Figure 1.33). This is done with template collaborations, showing

a scheme of interaction that can be mapped into specific types for any pair of compo-
nents.

1.10 Object-Oriented Design

Components can be treated as robustly packaged objects.25 This might mean that a compo-
nent comes with a test kit, that it is designed to be fairly defensive against its interlocutors
that do not observe the documented preconditions, that it executes in its own space, and
that it can cope with intermittent failure of its neighbors. All the principles we have dis-
cussed hitherto are therefore just as applicable within a single programming space as they
are between objects that are distributed all over the planet.

Nevertheless, it is often useful to make a distinction between a component layer of
design and an object layer. There are factors that in practice impose differences in style.

24. See Section 10.8.3 for specifics on how to define abstract connectors.

Figure 1.33 Defining higher-level component connectors.

25. More-detailed discussion of object-oriented design can be found in Chapter 16. Classes and
types in OO languages are discussed in Section 3.13.

Template defines
protocol of actions
between components
that use this
connector type

Placeholder types map to
existing façades within
connected components,
or to code-generated
“adapters”

Connector

«workflow»

<xxx>

Workflow connector

<yyy>

30 PART I OVERVIEW
One is that there may be significant replication of information between the components in
a distributed system, for both performance and reliability reasons. A component generally
works with others (including people) to support a particular business-level action (or use
case); an object generally represents a business concept. These two process-biased and
object-biased views give rise to separate tiers in many designs.

The vanilla process of object-oriented design begins with the types used for a compo-
nent model and turns many of them into classes (see Figure 1.34). Hence, Instructor,
Course Run, and Course now become classes. Collaborations are worked out and roles are
assigned to the classes, as we did for components in Section 1.8. The actions at this level
are finally standard OO messages. The associations become pointers, decisions are made
about their directionality, and object cleanup is designed (if garbage collection is not built
into the language).

Design patterns are used to guide these decisions (as they can be used throughout the
development process). The end result of OO design is a collection of

• Classes that encapsulate program variables and code.

• Types that define the behavior expected at the interfaces to classes. Classes implement
types. In some design styles, all parameters and variables are declared with types;
classes are referred to in the code only to instantiate new objects, and even that is

encapsulated within factory objects.

Figure 1.34 Package imports and structured documents.

Implements

Messages inside
system

Directionality assigned
to associations

Static model (associations only)
based on business concepts
used to provide terms for specs
of actions representing
required behavior

Component

Component Implementation 1

Component spec

Chapter 1 A Tour of Catalysis 31
1.11 The Development Process

There is no single process26 that fits every project: each one has different starting points,
goals, and constraints. For this reason, we provide process patterns that help you plan a
project appropriately to your situation. However, there are some general features.

• Component-based development: The main emphasis of component-based development
(CBD) is on building families of products from kits of interoperable components. CBD
separates design into three major areas:

– Kit architecture: The definition of common interconnection standards, in which

great skill and care are required
– Component development: Careful specification and design and subsequent enhance-

ment of reusable assets
– Product assembly: Rapid development of end products from components

• Short cycles: The principles of rapid application development (RAD) are recom-
mended. In particular, short development cycles with a well-defined goal at the end of
each cycle are good for morale and for moving a project forward. Also, we follow the
maxim “Don’t wait until it’s 100% done” for any one phase.

• Phased development: This approach is sometimes known as the Empire State Building:
take a small vertical slice as far as you can as early as possible in order to get early feed-
back. Build the rest gradually around it. Phased development is possible if the design is
well decoupled.

• Variable degree of rigor: The extent to which postconditions are written in a formal
style or in natural language is optional. We prefer more rather than less rigor because we
have found it helps find problems early.

The same variability applies to the number of separate layers of design you maintain.
Clearly, more layers require more maintenance work as well as suitable support tools.

• Robust analysis phase: The construction of Catalysis business and requirements mod-
els covers more than in the more conventional style. In Catalysis, more of the important
decisions are pinned down. As a result, there is less work later in the design stage and less
work over the maintenance part of the life cycle, the part that accounts for most of a soft-
ware system’s cost. (To cope with any uncomfortable feeling of risk that this approach
may generate, see the remarks in Sections 1.11.2 and 1.11.3.)

• Organizational maturity: Depending on where your team is in its organizational matu-
rity, there are different ways to approach and adopt Catalysis. If your team is used to a
repeatable process with defined deliverables and time scales, fuller adoption would be
advised; otherwise, start with a “Catalysis lite” process. The team should be prepared to
learn the same notations and techniques so as to be able to communicate effectively, and
management should sign up to invest in component design and to provide resources for
migration.

26. For a process overview, see Chapter 13. The entire process is detailed in Part V.

32 PART I OVERVIEW
1.12 Three Constructs Plus Frameworks

Catalysis is based on three modeling concepts—type, collaboration, and refinement—and
frameworks are used to describe recurring patterns of these three (see Figure 1.35). With
these concepts we build a great variety of patterns of models and designs. Types and
refinement are familiar to people who are accustomed to precise modeling. Collaborations
and frameworks are perhaps more novel, and they add an important degree of expressive
power.

1.12.1 Collaboration: Interactions among a Group of Objects
The most interesting aspects of design involve partial descriptions of a group of objects
and their interactions. For example, a trading system might involve a buyer, a seller, and a
broker. Their behavior can be described in terms of their detailed interaction protocols or,
more abstractly, in terms of a single high-level action, trade.

Figure 1.35 Three modeling constructs, with patterns as frameworks.

Specify behavior of a group of objects

Purpose
Model

Construct

Specify external behavior of an object

Relate different levels of description of behavior

Map or trace from realization to abstraction

Recurring patterns of collaborations, types, designs, etc.

Define generically, “plug in” to specialize

Refinement

F
ram

ew
ork

T ype

Collaboration

Chapter 1 A Tour of Catalysis 33
A collaboration defines a set of actions between objects playing roles rel-
ative to others in the collaboration. It provides a unit of scoping—con-
straints and rules that apply within versus outside the group of
collaborators—and of refinement: more-detailed realizations of joint
behavior. Each action abstracts details of multiparty interactions and of
detailed dialogs between participants.

Chapter 4, Interaction Models: Use Cases, Actions, and Collaborations,
describes modeling of interactions among a group of objects.

1.12.2 Type: External Behavior of One Object
A type defines an object by specifying its externally visible behavior. Whereas a class
describes one implementation of an object, a type does not prescribe implementation; you
can have many implementations of the same type specification.

Precise description of behavior needs an abstract model of the state of any
correct implementation and of input or output parameters. Catalysis uses a type
model for this. Types specify behavior in terms of the effect of operations on
conceptual attributes. For a simple type, these attributes and their types are
listed textually; more-complex types may have a type model drawn graphically
and even factored into separate drawings.

Chapter 2, Static Models: Object Attributes and Invariants, describes how attributes
abstract variations in the implementation of object state. Chapter 3, Behavior Models:
Object Types and Operations, describes how operation specifications describe externally
visible behavior of an object, independently of algorithmic and representation decisions.

1.12.3 Refinement: Layers of Abstraction
A refinement is a relationship between two descriptions of the same thing
at two levels of detail, wherein one—the realization—conforms to the
other—the abstraction. A refinement is accompanied by a mapping that
justifies this claim and shows how the abstraction is met by the realization.

There are several kinds of refinement. A component design—a realiza-
tion—refines the component specification—its abstraction. A

class implements its behaviors in terms of a particular representation that conforms to a
type spec. A particular sequence of fine-grained actions may realize a single, more
abstract action. Refinement in Catalysis is more general than the standard ideas of sub-
classing and subtyping.

A significant part of a Catalysis development process consists of refining or abstracting
a description, creating a series of refactorings, extensions, and transformations that ulti-
mately shows the implementing code to conform to the highest-level requirements abstrac-
tion (although not necessarily produced in top-down order!). Reengineering, whether
business or code, consists of abstracting the existing design to a more general requirement
and then refining it to a new design having better performance and so on. In Catalysis, a
design review is largely concerned with refinement: what did you set out to build, and how
did you build it?

T ype1

T ype2

action T ype3

action

T ype

operations

type-model
attributes

abstraction

realization

mapping

34 PART I OVERVIEW
Catalysis uses packages to separate design units that will be managed
separately, such as different levels of abstraction, permitting reuse of
abstract models by multiple independent realizations. A package groups a
set of definitions—including types, actions, and collaborations—that can
then be imported into other packages, making its definitions visible in the
importing package.

Chapter 6, Abstraction, Refinement, and Testing, discusses refine-
ment in detail; basic forms of refinement are introduced in Part II,
Modeling with Objects.

1.12.4 Frameworks: Generic, Reusable Models and Designs
Specifications, models, and designs built with the three preceding con-
structs all show recurring patterns. The collaborations for processing an
order for a book at an on-line bookstore and for accepting a request to
schedule a seminar are also similar in structure—a generic collaboration.

The key to such patterns is the relationships between elements, as opposed to individ-
ual types or classes. An application of such a pattern specializes all the elements in parallel
and mutually compatible ways. Catalysis provides a fourth construct to capture the
essence of such patterns: frameworks. A framework is described as a generic package; it is
applied by importing its package and substituting problem-specific elements for the
generic model elements as appropriate.

Chapter 9, Model Frameworks and Template Packages, describes how frameworks are
defined in Catalysis and shows how frameworks provide an enormous degree of extensi-
bility to a modeling language.

1.13 Three Levels of Modeling

As shown in Figure 1.36, Catalysis addresses three levels of modeling: the problem
domain or business, the component or system specification (externally visible behavior),
and the internal design of the component or system (internal structure and behavior).

1.13.1 Problem Domain or Business: The “Outside”
The term domain or business covers all concepts of relevance to your clients and their
problems—that is, the environment in which any target software will be deployed. If you
are designing a multiplexor in a telecommunication system, your users are the designers of
the other switching components, and the business model will be about things such as pack-
ets, addresses, and so on. If you are redesigning the ordering process of a company, the
business model is about orders, suppliers, people’s roles, and so on.

package-3

package-1

package-2

pattern

Chapter 1 A Tour of Catalysis 35
There may be many views of a business. The concerns of the marketing director may
overlap those of the personnel manager. Even when they share some concepts, one may
have a more complex view of one of them than the other. The modeling constructs support
separating and joining of such views. Chapter 14, How to Build a Business Model,
describes how to go about building a business model.

1.13.2 Component Specification: The “Boundary”
A component specification describes the external behavior required of the component.
Catalysis uses a type specification to describe behavior that is visible at the boundary
between the component and its environment. A type specification defines the actions in its
environment that a component or object participates in.

Chapter 10, Components and Connectors, discusses more-general component models,
in which the kinds of the connectors between components can themselves be extended to
include new forms of component interaction, such as properties and events. Chapter 15,
How to Specify a Component, describes how to go about writing a component specifica-
tion.

1.13.3 Component Implementation: The “Insides”
The internal design of a component describes how it is assembled from smaller parts that
interact to provide the required overall behavior. The design is described as a collabora-
tion, and it must conform to the specification of the component. Note that the “outside” for
this design is the type model in the component specification.

At some point during internal design, you must consider the implementation technol-
ogy and make trade-offs on performance, maintainability, reliability, and so on. Hardware

Figure 1.36 Three recursive levels of description.

Specify system: “boundary”

Scope and define component responsibilities
Define component and/ or system interface
Specify desired component operations

Identify problem: “outside”

Establish problem domain terminology
U nderstand business process, roles, collaborations
Build as-is and to-be models

Domain/ business

Component spec

Internal design Implement the spec: “inside”

Define internal architecture
Define internal components and collaborations
Design the insides of the system and/ or component

GoalLevel and/or Scope

36 PART I OVERVIEW
choices (solitary or distributed) and software choices (database, user interface, program-
ming language, tiered architectures) affect how the system is implemented.

Chapter 16, How to Implement a Component, describes how to do the internal design
of a component. Chapter 10, Components and Connectors, discusses how to define com-
ponent designs abstractly and precisely; and Chapter 11, Reuse and Pluggable Design:
Frameworks in Code, discusses the design of pluggable class and component frameworks.

1.14 Three Principles

Catalysis is founded on three principles: abstraction, precision, and pluggable parts (see
Figure 1.37).

1.14.1 Abstraction
To abstract means to describe only those issues that are important for a purpose, deferring
details that are not relevant.

The word abstract often has connotations such as esoteric, academic, and even imprac-
tical. In our context, however, it means to separate the most important aspects of a prob-
lem from the details, enabling us to tackle first things first. Abstraction is essential in
dealing with complexity.

© abstraction A process of hiding details that provides the following benefits:
– The ability to deal with far-reaching requirements and architecture decisions uncluttered

by detail
– Layered models—from business rules and processes to code
– Methodical refinement and composition of components

Think of a software development project as a stream of decisions. Some of them
depend on others. There would be no point in trying to design database tables before you
establish what the system is going to do. In other words, some decisions are more impor-
tant than others; making them is a prerequisite to getting the others right.

The important abstractions include the following.

• Business model and rules: The context our design is operating in

• Requirements: What must be done, as opposed to how it is to be achieved

• Overall schemes of interaction: General descriptions without detailed protocols

• Architecture: The big decisions about major patterns and components

• Concurrency: Which functions can be performed simultaneously and how they will
avoid interference while working in coordination

The important choices often don’t get made, or even noticed, until way down the line,
often in coding. And almost as often, people worry about trivial problems to avoid tack-
ling the big issues.

We need a language to describe the important decisions separately from the clutter of
performance and platform issues involved in full implementations. Typical programming

Chapter 1 A Tour of Catalysis 37
languages are better suited for expressing solutions than problems. For this reason,
requirements and other high-level descriptions are usually written in a mixture of prose
and ad hoc diagrams.

1.14.2 Precision
Whereas code is precise, natural language and ad hoc diagrams are not. How often do
groups of analysts or designers discuss requirements around a whiteboard and leave with
different interpretations of the problem to be solved? or produce reams of documents rid-
den with latent bugs and inconsistencies? Documentation that is concise and accurate is
far more likely to be useful.

© precision A characteristic of accuracy that allows you to do the following:
– Expose gaps and inconsistencies early by being precise enough to be refutable
– Trace requirements explicitly through models
– Support tools at a semantic level well beyond diagrams and databases

During implementation, the unforgiving precision of the programming language forces
any gaps and inconsistencies to the surface. For this reason, many of us feel confident
about a design only when the code has been written. Unfortunately, code also makes us
deal with many detailed language and platform-specific issues.

Abstract descriptions are not necessarily ambiguous. If I say “I am quite old, really,”
that’s ambiguous. You might think I am geriatric or perhaps that I am a teenager pleased at
nearing the age of 18. But if I say “I’m over the age of 21,” that is abstract but perfectly
precise. There is no question about what I am prepared to tell you, nor about what I am not
prepared to give away.

Abstract high-level descriptions that are not clearly defined are often impossible either
to refute or to defend convincingly. Although being precise takes effort, when appropri-
ately used it enhances testability and confidence at all levels. We place a high value on
refutable abstractions.

Figure 1.37 Three principles of Catalysis.

Principle Intent

Focus on essential aspects, deferring others
Create uncluttered description of requirements

and architecture

Expose gaps and inconsistencies early
Make abstract models accurate, not fuzzy

All work done by adapting and composing parts
Models, architectures, and designs are assets

Pluggable parts

Precision

Abstraction

38 PART I OVERVIEW
Given a precise notation for abstractions, you can determine whether a given design
conforms to the abstraction and can trace how each piece of an implementation realizes
each requirement. Tools can help keep track of the propagation of changes in either
requirements or implementations.

1.14.3 Pluggable Parts
Building adaptable software is about designing components and plugging them together.
Each component is a cohesive piece of design or implementation.

© pluggable parts The portions of a software effort that are designed to let you do the follow-
ing:

– Get the most from each piece of design work
– Gain fast, reliable development through reuse
– Reuse not only classes but also frameworks, patterns, and specifications

Software built without using well-defined components will be inflexible: difficult to
change in response to changes in requirements. If you don’t use previously built compo-
nents in your designs, you’re doomed to repeatedly cover the same ground and make
many of the same mistakes. And changes will be much more difficult to incorporate.

A good component is one that can be made to work with a wide variety of others, and
that is the key idea behind polymorphism. Such a design makes sense only if you can
express accurately what you expect of the other components to which it may be coupled.
Plug-in compatibility relies on unambiguously specified interfaces.

This idea of adapting and using components to produce other components should apply at
all levels of development, from business models to components that encapsulate generic prob-
lem specifications to assembling binary components to produce a running system.

1.15 Summary

The three sections that follow briefly recap this chapter’s overview of the Catalysis
method.

1.15.1 Process Overview
We have seen an example taken through various stages in design:

• Business process modeling

• System context design and requirements specification

• Component design and component specification

• Object-oriented design and implementation of components

The rest of the book elaborates these techniques.

Chapter 1 A Tour of Catalysis 39
1.15.2 Features Overview
The tour has taken us through a number of features of Catalysis.

• The most important decisions can be separated from the more-detailed ones. What hap-
pens, who does it, and how it is done are all separable issues (see Section 1.9.1).

• The states of objects are modeled with associations and attributes (see Section 1.4.1).

• Actions are described in terms of their effects on objects. They can be defined with

postconditions (or state charts, as we’ll see later) and illustrated with snapshots (see

Section 1.1.1).

• Abstract specifications can be made very precise, avoiding ambiguities (see Section

1.1.2).

• Actions and objects can be abstracted and refined—that is, described at different levels

of detail. The relationship can be traced, or retrieved, all the way from business goals to

program code (see Section 1.2).

• Development is separated into a number of layers, dealing with business analysis,
requirements specification, components, and object design (see Section 1.3).

• Templates abstract similar models. We have seen them used to simplify a static model
and to define component connectors (see Section 1.5).

• Collaborations—schemes of interaction—are first-class units of design (see Section

1.8.4).

• Components and objects are designed similarly, although with different emphasis on

the way they are chosen and responsibilities assigned (see Sections 1.8 and 1.9).

• Components with different views and representations of a business concept can be

related to the common business model with retrievals (see Sections 1.8.3 and 1.8.5).

• Components can be designed to plug in to each other and in to frameworks. The plug-
points are defined with action specifications (see Sections 1.9.2 and 1.9.3).

• A component architecture defines a kit by establishing the conventions of interopera-
tion, which are represented by connectors (see Section 1.9.3).

1.15.3 Benefits Overview
• Enterprise-level design: The separability of different layers of decision makes Cataly-
sis particularly suitable for design in very substantial projects.

• High-integrity design: The precision of Catalysis specifications makes them suitable

for the design of mission-critical systems and embedded software, where reliable design is

an important issue. The rigor can be used in a variable manner.

• Traceability: Catalysis refinement lets you separate abstract models from many possi-
ble realizations. The abstract models are still precise enough to be traced to, and even

refuted or defended against, concrete realizations; the refinement also enables change

propagation management.

• Pattern reuse and full extensibility: Catalysis frameworks can be used to define

domain-specific patterns of models, collaboration protocols, and component/connector

40 PART I OVERVIEW
architectures. In fact, primitive types and even the modeling constructs themselves are

defined in Catalysis.

• Component-based development: Components can be specified by one party, imple-
mented by a second, and used by a third. All these parties must understand the specifica-
tions they are working to. To be truly configurable, the components in a kit must work

with a wide variety of other members of the kit. Therefore, each designer cannot know

exactly what other components he or she is dealing with. For this approach to work, com-
ponent kit architecture and component development must be seen as a high-integrity

design. Catalysis extends clear component specification with the connector abstraction,
simplifying the design of component-based products.

• A behavior-centric and data-centric approach: Previous methods, such as OMT, have

been criticized by “behaviorists” for what is perceived as a data-centric approach. In

Catalysis the two views support each other simply. You describe the behavior of a compo-
nent in terms of attributes that relate to the clients’ concerns rather than any implementa-
tion.

• Tool support: Catalysis enables a high level of tool support far beyond drawings on a

database with some document generation. The standard notations and the clear relation-
ship between artifacts also mean that you can use popular object-modeling UML tools on

a Catalysis process by following simple usage guidelines.

Chapter 1 A Tour of Catalysis 41

	Part I� Overview
	Chapter 1 A Tour of Catalysis
	1.1 Objects and Actions
	1.1.1 � Actions Affect Objects
	1.1.2 � Precise Specifications

	1.2 Refinement: Objects and Actions at Different Scales
	1.2.1 � Actions at Different Scales
	1.2.2 � Objects at Different Scales

	1.3 Development Layers
	1.4 Business Modeling
	1.4.1 � Static Models and Invariants

	1.5 Model Frameworks as Templates
	1.6 Zooming In on the Software: System Context
	1.7 Requirements Specification Models
	1.7.1 � Packaging

	1.8 Components
	1.8.1 � Two Versions of the System Design
	1.8.2 � Roles
	1.8.3 � Partitioning the Model between Components
	1.8.4 � Collaborations
	1.8.5 � Postcondition Retrieval

	1.9 Assigning Responsibilities
	1.9.1 � Flexibility and Decoupling
	1.9.2 � Component Frameworks
	1.9.3 � Component Kits

	1.10 Object-Oriented Design
	1.11 The Development Process
	1.12 Three Constructs Plus Frameworks
	1.12.1 � Collaboration: Interactions among a Group of Objects
	1.12.2 � Type: External Behavior of One Object
	1.12.3 � Refinement: Layers of Abstraction
	1.12.4 � Frameworks: Generic, Reusable Models and Designs

	1.13 Three Levels of Modeling
	1.13.1 � Problem Domain or Business: The “Outside”
	1.13.2 � Component Specification: The “Boundary”
	1.13.3 � Component Implementation: The “Insides”

	1.14 Three Principles
	1.14.1 � Abstraction
	1.14.2 � Precision
	1.14.3 � Pluggable Parts

	1.15 Summary
	1.15.1 � Process Overview
	1.15.2 � Features Overview
	1.15.3 � Benefits Overview

