
 Chapter 10 Components and

Connectors

Many software managers, harried by budgets and delays, envy hardware designers. To
design a steam engine, the engineers did not start by designing screws from scratch. Elec-
tronic systems are built by plugging together chips, boards, or boxes that are widely
interoperable. A well-chosen set of components can have many possible configurations:
many end products that can be made quickly and reliably.

Over the past few years, the same thing has begun to happen in software. Word proces-
sors can talk to spreadsheets, and graphs to databases. Standards such as COM and
CORBA allow you to plug together components in different languages and platforms. Jav-
aBeans, or any similar protocol, allows separately designed objects to find out more about
each other’s capabilities before negotiating a collaboration. Visual building tools help you
plug components together pictorially.

Large-grained components are becoming a practical part of an enterprise component
strategy. These components interact with one another as much as their smaller cousins do,
and they must be analyzed and designed so that they interoperate as expected.

This chapter explains how to meet requirements using component-based designs and
how to design components that work well together. After introducing component con-
cepts, discussing pluggable parts, and describing how components have evolved over the
years, we look briefly at three component standards: JavaBeans, COM+, and CORBA.

Rather than limit ourselves to a specific component technology, we then introduce the
port-connector model of component architectures. We discuss a typical example of such
an architecture and show how to specify and design with components in this architecture.
Then we show how even ad hoc and heterogenous component systems are amenable to
systematic development in Catalysis.

10.1 Overview of Component-Based Development

By itself, the use of object-oriented programming is not enough to get stupendous
improvements in software delivery times, development costs, and quality. Some people
383

384 PART IV IMPLEMENTATION BY ASSEMBLY
wonder why, having bought a C++ compiler, they’re not seeing all the glorious benefits
they’ve heard of.1 But it doesn’t work that way. The greatest benefits depend on good
management of the software development process. The bag of techniques, languages,
methods, and tools lumped under the “object-oriented” heading is an enabling technology:
It makes it easier to achieve fast, cheap, robust development, but only if you use it prop-
erly.

If you want to achieve significant improvements in software productivity, one of the
most important shifts is to stop writing applications from scratch every time you embark
on a new project. Instead, you should build by using software components that already
exist. The building blocks that you use for software development should not be limited to
those offered by the programming language but should also include larger-grained, encap-
sulated units.

Over the past five years or so, we have seen this change happening. Many applications
are now built on purchased third-party frameworks or by gluing together existing applica-
tions. Many programmers have come across Microsoft’s OLE/COM (and before it,
DLLs), which provides a way of bolting together entire applications. The OMG’s CORBA
provides similar facilities.

For example, an application that reads stock figures from a newsfeed can be ”wired up”
to a spreadsheet; this component does some calculations and passes the results to a data-
base, from which a Web server extracts information on demand. Each of these components
may be a stand-alone application, perhaps even with its own user interface, but is provided
with a way to interact with other software.

Many development teams think only of gluing together large third-party components
that can also work as stand-alones. But the spreadsheet in our example doesn’t need a user
interface: It is used only as a calculating engine within a larger chain. The example could
be built more efficiently by using a calculating mechanism designed to be used as a com-
ponent in a larger design and so lacking all the GUI overhead (perhaps with a suitable GUI
as an optional add-on). And the persistence mechanism need not be a part of the spread-
sheet itself. It could use a separate data-access component for that; again, it could include
a default one.

Most development teams could benefit from thinking more in terms of building their
own components for their application area. This is the key to fast, reliable development: to
do it the way hardware designers have been doing it for two centuries and build compo-
nents that can be assembled together in many combinations. Most end products—and
indeed most components—should be assemblies of smaller components, built either else-
where or in-house.

The aim must be to invest in the development of a component library as a capital asset
(see Figure 10.1). Like any investment, this one requires money to be spent for a while
before any payback is seen. A conventional software development organization requires a
considerable shift of attitudes and strategy to adopt a component-based approach. Like all

1. And some of them then go around saying, ”It doesn’t work”!

Chapter 10 Components and Connectors 385
big shifts, it must be introduced in easy stages, and you must plan carefully the risks, fall-
backs, and evaluation of each phase.

A lot of marketing hype surrounds the terms component and component-based develop-
ment. It includes radical pronouncements suggesting that object technology is dead and
components are the next salvation. Separation of concerns, encapsulation, and pluggable
parts continue to distinguish good, flexible designs from bad.

10.1.1 General Components
What is new about components? If they are reusable software pieces, how are they differ-
ent from modules? If they are like objects, in what ways are they different? At the most
basic level, components are parts that can be composed with others to build something
bigger. Let’s start with some basic definitions.

© component-based development (CBD) An approach to software development in which all
artifacts—from executable code to interface specifications, architectures, and business mod-
els; and scaling from complete applications and systems down to small parts—can be built
by assembling, adapting, and “wiring” together existing components into a variety of config-
urations.

© component (general) A coherent package of software artifacts that can be independently

developed and delivered as a unit and that can be composed, unchanged, with other compo-
nents to build something larger.

Based on this broad definition, all the following items conform to the general spirit of
component-based development:

Figure 10.1 Component development and distribution.

Application 1

Generalize
and validate

Specialize and
plug together

Application 2 Application 3

Develop

Architect

… ...

386 PART IV IMPLEMENTATION BY ASSEMBLY
• Dropping a user-interface widget, such as a master-slave pair of list boxes, onto a can-
vas and connecting the lists to the appropriate data sources from the problem domain.

• Using the same C++ List template to implement any number of domain classes by spe-
cializing the template parameter:

class Order {
private: List<LineItem> items;

};

• Using an off-the-shelf calendar package, word processor, and spreadsheet in an assem-
blage of several heterogenous components and writing scripts so that these components

together fulfill a particular business need.

• Using a class framework, such as Java’s Swing components, to build the user interfaces

for many applications and to connect those UIs to their domain objects.

• Using a model framework, such as resource allocation, to model problems ranging

from seminar room allocation to scheduling machine time for production lots in a fac-
tory.

• Using predefined language constructs in an infinite variety of contexts:
for (...; ...; ...) { ... }

A component can include anything that a package can include: executable code, source
code, designs, specifications, tests, documentation, and so on. In Chapter 9, Model Frame-
works and Template Packages, we show how the idea of composing software based on inter-
faces also applies to designs and models, leading to a more general idea of component-based
modeling: All work is done by adapting and composing existing pieces. To make effective
use of implementation components, we should start with componentization of business mod-
els and requirements. In this more general sense, a Catalysis package constitutes a compo-
nent.

10.1.2 Implementation Components
In this chapter we focus on implementation components: executable code, source code,
interface specs, code templates, and the like. In this context, a component is similar to the
well-known software engineering idea of a module, although we have standards in place
and technology infrastructure that makes building distributed component systems a reality.

For one component to replace another, the replacement component need not work the
same internally. However, the replacement component must provide at least the services
that the environment expects of the original and must expect no more than the services the
environment provides the original. The replacement must exhibit the same external behav-
ior, including quality requirements such as performance and resource consumption.

© component (in code) A coherent package of software implementation that (a) can be inde-
pendently developed and delivered, (b) has explicit and well-specified interfaces for the ser-
vices it provides, (c) has explicit and well-specified interfaces for services it expects from

others, and (d) can be composed with other components, perhaps customizing some of their
properties, without modifying the components themselves.

Chapter 10 Components and Connectors 387
10.1.2.1 A Unit of Packaging

A component is a “package” of software that includes implementation, with a specification
of interfaces provided and required. The mechanics for this packaging differ. In some com-
ponent technologies, such as JavaBeans and COM+, the compiled code for a component
includes an explicit runtime representation of interfaces; you can programatically inquire
about these interfaces and use the information to establish suitable connections between
components. In other component technologies, the compiled implementation may be
stripped of this extra information and reduced to a minimal executable or DLL; in this case,
the packaging unit must include separate and explicit descriptions of interfaces provided and
required. COM (prior to COM+) required a separate and explicit type library containing
component interface information to be registered in the shared system registry.

A component package typically includes the following.

• A list of provided interfaces: These are often imported from other packages, containing

only the specs of these interfaces.

• A list of required interfaces: These are often imported from separate packages, just like

the provided interfaces.

• The external specification: This is a specification of external behavior provided and

required, relating all the interfaces in a shared model.

• The executable code: If built according to a suitable and consistent architecture, this

can be coupled to the code of other components via their interfaces.

• The validation code: This is code, for example, that is used to help decide whether a

proposed connection between components is OK.

• The design: This includes all the documents and source code associated with the work

of satisfying the specification; it may be withheld from customers.

Components can also contain modifications to, and extensions of, existing classes. This
is used often in Smalltalk—in which existing classes and methods can be dynamically
modified and extended—and also is generally useful for any system that cannot be
halted to install software upgrades. The interesting thing in terms of modeling is to pro-
vide mechanisms and rules for ensuring that the components do not interfere improperly
with one another after they’re installed in a system.

In some situations it can be useful to further distinguish the specification of a compo-
nent, an executable that implements that spec, a particular installation of that executable,
and a “running” incarnation of that executable that is available as a server. We will use the
term component loosely to include all these. A tool or metamodel that dealt more fully
with component deployment and management would separate them.

10.1.2.2 A Unit of Independent Delivery

Being independently deliverable means that a component is not delivered partially. Also,
it must be specified and delivered in a form that is well separated from any other compo-
nents it may interact with when deployed.

388 PART IV IMPLEMENTATION BY ASSEMBLY
10.1.2.3 Explicit Provided and Required Interfaces

The only way one component can interact with another is via a provided interface. The
specification of a component must explicitly describe all interfaces that a client can expect
as well as the interfaces that must be provided by the environment into which the compo-
nent is assembled.

For components to be plug-replaceable, it is essential that the component specs be self-
contained and symmetrical; it is the only way to be able to design reliably using parts
without knowledge of their implementations. In contrast, a traditional server, in a client-
server setting, is one-sided: It provides a set of services, but the services it expects from
others are not documented explicitly. Object-oriented languages have also focused almost
exclusively on services implemented by a class without any explicit description of the ser-
vices it expects from other objects.

10.1.2.4 Complete Separation of Interfaces from Implementation

Component software demands a complete separation of interface specifications from
implementations. The interface specs, rather than the source code, define what a compo-
nent will provide and expect when used. In fact, if you are ever forced to use an existing
component that does not have an explicitly documented interface, it is usually worth writ-
ing a specification of it “as perceived and used”; this document greatly simplifies testing
and reduces the time to evaluate the suitability of new and alternative versions of the com-
ponent.

10.1.2.5 Component Composition

The basic idea is that, to assemble a larger component or applica-
tion, the composer of components (a) selects which components to
compose; (b) connects required interfaces of one component to pro-
vided interfaces of others to plug them together; and (c) perhaps
writes some glue using scripting or adapters between components.
Composites often provide standard services to structure their child
structure at runtime and to expose some of their children’s services.

As with packaging, the exact form of component composition varies across different
component technologies and tools. The key point is that the composition can be done by a
different party, and at a different time, from the building of the components themselves.
Section 10.7, Component Architecture, discusses a component-port-connector model for
describing compositions in a simple way. Ports are the access points in a component where
its services can be accessed or where it can access another’s services; connectors couple
ports. The kinds of compositions supported by a particular technology or style can be
described by its connector kinds.

10.1.3 Components and Binding Times
Components are designed and built in one activity; they are composed with others in a
separate step. When designing and building a component, you can relate it to the others it

Chapter 10 Components and Connectors 389
will (eventually) be composed with only by their contractual interfaces. Actual implemen-
tations are selected at composition time or, sometimes, even at runtime. We usually want
to delay the bindings made when components are composed so that the composition can
be done as late as possible. One view of the range of binding times is shown in Table 10.1.

Exhibit 10.1 Binding Times for Composition

Binding Time How It Works

Coding time Straight-line code, without even procedural separation.

Compile time The standard separation of procedures; all calls are bound to an implementa-
tion at compile time.

Link time Separate compilation units, with interfaces declared separately from their
implementations; calls are compiled against interfaces and are bound when
the compiled units are linked into an executable.

Dynamic linking Separate compilation units that do not need to be linked into a single execut-
able up front; instead, a compiled unit (a DLL) can be dynamically linked
into the running system. Calls are compiled against interfaces and are bound
the first time the implementation is loaded.

Runtime Calls are compiled using a level of indirection; this indirection is used to
dynamically bind a call against an interface to a specific implementation at
runtime based on the “receiving” object; this can be combined with dynamic
linking (Java) or static linking (C++).

Reflective Calls are not compiled against interfaces at compile time. Instead, the runt-
ime keeps an explicit representation of interfaces offered; calls are issued
dynamically against these at runtime based on “reflection” about the services
and (of course) are resolved dynamically. Scripting services, in which com-
ponents are coordinated by interpreted scripts, are best built on such a facil-
ity.

10.1.4 Objects Versus Components
There is confusion in popular writings about the similarity and differences between an
object and a component. Some of this confusion stems from the fact that component tech-
nology is often best implemented using an object-oriented language; more fundamentally,
it stems from loose usage of the terms object, class, and component.

10.1.4.1 Is an Object a Component?

Components are software artifacts and represent the work of software developers and their
tools; objects are identifiable instances created in running systems by executing code that
is a part of some component. So, in that strict sense, an object is not a component. It is the
component code that is reused—the calendar package, perhaps with some customizable
properties—rather than a specific calendar instance and its state.

That said, a running component is often manifested as a collection of objects and can
be usefully treated as though it were one large-grained object, based on our approach to

390 PART IV IMPLEMENTATION BY ASSEMBLY
refinement. So we sometimes use the term component a bit more loosely in this chapter to
refer to the object or set of objects that manifest a particular usage of a component in an
application.

© component instance The object, set of objects, or predetermined configuration for such a set
of objects that is the runtime manifestation of a component when composed within a particu-
lar application.

10.1.4.2 Is a Class a Component?

Only if packaged to include explicit descriptions of the interfaces that it implements and
the interfaces it expects from others. Consider the following Java class:

class C1

implements I1, I2 -- interfaces this class implements
{

public T0 foo (T1 x);
private T2 y;

}

The minimal component that could contain C1 would also have to include the specifi-
cations of I1, I2, T0, T1, and T2. A package with a single class; the interfaces it imple-
ments (perhaps those interface specs are imported from another package); and the
interfaces it requires of any other objects it deals with (input parameters, returned objects,
factory objects it uses to instantiate other objects, and so on) would constitute a minimal
OO component.

If class C1 inherited part of its implementation from another class, there would be a
direct implementation dependency between the classes. Many people believe that imple-
mentation inheritance, although often useful, should not cross component boundaries.
When the boundary must be crossed, it may be better to adopt a composition or delegation
style approach (see Section 11.5.3, Polymorphism and Forwarding).

In general, a component could implement its interfaces by directly exposing them to
clients or by implementing classes that provided the interfaces; to use the interfacer, cli-
ents would need to obtain a handle to an instance of such a class.

10.1.4.3 Component-Based Design versus OO Design

When you build a design from components, you don’t need to know how they are repre-
sented as objects or as instances of a classes or know how the connectors between compo-
nents work.2 In federated systems, just as in OO programs, each component is a collection
of software; it is chosen for the support it provides of the corresponding business function
and uses local data representations best suited to the software. Just as in OO programs,
objects must access the information held by other objects, so in a component architecture,
components intercommunicate through well-defined interfaces so as to preserve mutual
encapsulation.

The smaller-grained components in Section 10.6.1 and Section 10.6.2 are also very
similar to objects. In fact, they would be easiest to implement as objects in an object-ori-
ented programming language. This shows that the differences between component-based

Chapter 10 Components and Connectors 391
design and object-oriented design are mainly of degree and scale and are not intrinsic to
either type of design.

• Components often use persistent storage; although objects in an OO programming lan-
guage always have local state, they typically work only within main memory, and per-
sistence is dealt with separately.

• Components have a richer range of intercommunication mechanisms, such as events

and workflows, rather than only the basic OO message. These mechanisms support eas-
ier composition of the parts.

• Components are often larger-grained than traditional objects and can be implemented

as multiple objects of different classes. They often have complex actions at their inter-
faces, rather than single messages.

• A component package, by definition, includes definitions of the interfaces it provides

as well as the interfaces it requires; a traditional single class definition focuses on the

operations provided and not on the operations required.

• Objects tend to be dynamic; the number of customers, products, and orders you have,
and their interconnections, changes dynamically. In contrast, larger-grained compo-
nents may be more static; there will probably always be only one payment control and

one finance component, and their configuration will be static.

Components, like objects, interact through polymorphic interfaces. All our modeling
techniques apply equally well in both cases, including the more general connectors for
components. Plus, we can usefully talk about a component instance, component type, and
component class.

10.1.5 Components and Persistence
 A component instance has state represented by its object(s) and is part of a larger compo-
nent. Hence, its persistence needs to be in the context of its containing component. Java
and COM provide differing versions of such protocols.

In simple cases, persistence can be achieved by a protocol by which a component
instance serializes itself into a stream that is managed by its container. For larger, server-
side components, each component can manage its own persistent storage and transactions;
effective composition now requires that the container be able to coordinate nested transac-
tions that cross its subcomponent boundaries. Enterprise JavaBeans, CORBA, Microsoft
Transaction Server, and COM+ provide their own versions of this.

2. Components can also be built without explicitly using object-oriented design techniques at all;
but OO makes it a lot easier. If you tried to build a component architecture without mentioning
objects, much of the technology you’d use would amount to object orientation anyway. We’ve
recently read a few reports proclaiming ”Objects have failed to deliver! Components are the
answer!” The authors either have a poor understanding of how componentware is built, or, being
journalists and paid pundits, they enjoy a disconcerting headline. The reality is that OOP, like struc-
tured programming before it, has become part of the body of ideas that constitute good software
engineering. Having learned how to do it, we can now move on to putting it to work.

392 PART IV IMPLEMENTATION BY ASSEMBLY
10.2 The Evolution of Components

We should not assume that objects are intrinsic to component-based development; in fact,
one of the advantages of components is that they can encapsulate legacy systems regard-
less of how the systems are implemented inside. The idea of components goes back almost
as far as the idea of software, but a number of things have changed significantly over the
years.

• The granularity of the components and the corresponding unit of pluggability: from

monolithic systems, to client-server partitions, to the operating system and its services,
to today’s object-based component approaches.

• The effort and ease of dynamically connecting components to compose larger systems,
from writing screen-scrapers for host-based systems (discussed in a moment) to creat-
ing complex applications by visually configuring and connecting server-side compo-
nents to one another and to user interfaces.

• The overall effort and cost of creating applications: from monolithic custom-made sys-
tems to gigantic “package” solutions3 to the assembly of smaller components built on

standard infrastructure and interfaces.

The earliest mainframe-based systems were written as monolithic applications manipu-
lating data shared across all the application procedures. Internal procedures could rarely be
considered encapsulated; they typically operated on shared data, making composition at that
level difficult and error-prone. The only visible interface was to an external dumb terminal,
and the nature of the interface was primitive: paint to the terminal screen and read character
commands from the keyboard.

Calling these host-based applications “components” is a stretch; composing them was
painful. Because the only interface offered to the outside was to a dumb terminal, the only
way to connect two such ”components” was to write pieces of code called screen-scrapers
and terminal emulators. These programs acted as dumb terminals to the host but inter-
preted the screen painting commands and generated character commands. The granularity
of components was very large, connections could not be established dynamically, and the
technology for connecting parts was primitive.4

At the time, it was possible to deliver complete applications only in the form of an exe-
cutable. Moreover, the executable had to be prebuilt in a static manner and could be replaced
or upgraded only as a single unit. Software libraries contained source code, which you used
by including the text and compiling it with your own.

But software vendors aren’t keen on letting people see their source code; they’d rather
give you the executable and (if you insist) the spec. This meant providing ways in which

3. These are sometimes so inflexible that they either work wonderfully for your business or your
business must adapt to fit what the package solution offers.

4. This is changing substantially, with mainframe applications reborn as server-side components
using technologies such as Enterprise JavaBeans.

Chapter 10 Components and Connectors 393
applications could communicate. In the early days, this meant that they passed files to one
another, a slow process that required that every output and input from a program be con-
verted to the form of external records. It lent itself to pipeline processing rather than dialog
between programs.

This led to the development of the application program interface—which could be seen
as a way in which a program could pretend to be an application’s user using facilities stan-
dardized at the level of the operating system—and dynamic linking, which enabled code
to be linked at runtime without further processing. Two distinct forms of large-grained
components evolved from this.

The first form led to client-server-styled systems, with the client combining user-
interface and application logic and communicating via SQL requests with a database
server that dealt with persistence, transactions, security, and so on. All communication
involved database processing requests in SQL, and clients did not communicate with
one another (except indirectly through shared data on the server).

Finer-grained application components also started to interact, using operating system
support. In the world of Windows, generic applications were built with APIs that enabled
them to be interconnected and interact via the operating system, exchanging information
through standardized data representation schemes. Thus, a spreadsheet application could
communicate with a word processor and a stock feeder to produce a formatted financial
report. In UNIX, we saw the emergence of the elegant, but limited, pipe-and-filter archi-
tecture.

The first APIs were sets of functions that an external component could invoke. If there
was any notion of an object receiving the function calls, it was the entire running execut-
able itself. But the most recent developments in this field have put the executable program
into the background (see Figure 10.2). The objects are the spreadsheet cells, the para-
graphs in the document, the points on the graph; the application software is only the con-
text in which those objects execute. The component architecture determines what kinds of
object interactions are allowed.

Clearly, the granularity of components became much finer with object technology. No
longer was it only the spreadsheet interacting with the database; now it was the sheets and
cells that were connected to the columns and rows in the database, generating paragraphs
and tables in the word processor. These relatively dynamic objects connect to other
objects, regardless of the applications within which they exist.

The virtual enterprise of the future is built with components and objects locating each
other, connecting, and interacting on a standardized infrastructure. This happens for com-
ponents of all granularity, from large server applications to fine-grained objects, across
boundaries of language, processor, and even enterprise, and with binding times from com-
pletely static to highly dynamic.

394 PART IV IMPLEMENTATION BY ASSEMBLY
10.2.1 Components and Pluggable Reuse
Reuse comes in a wide variety of flavors ranging from cut-and-paste through complete
application frameworks that can be customized. The component approach to reuse man-
dates that a component not be modified when it is connected to others; components should
simply plug together, via defined interfaces for their services, to build larger components
or systems. This makes it easier to replace or upgrade parts; if they support the same (or
compatible) interface, one part can be replaced by another (see Figure 10.3).

The fact that a component should not be modified does not mean that it cannot be cus-
tomized externally. A component can be designed to provide, in addition to the interfaces
for its primary services, additional interfaces for plug-ins that customize the behaviors of
its primary services; settable properties are a special case of this. This style of pluggable
design is discussed in Chapter 11.

Figure 10.2 Old versus new styles of component interactions.

Figure 10.3 Primary and customization interfaces.

Word
processor

Newsfeed
software

Spreadsheet
application

(:Word processor)

:Doc

:Para

Old-style APIs
New-style object

linking

(:Newsfeed software)

:Stock table

:Heading

(:Spreadsheet Application)

:SSheet

:Cell

:Quotation

Interfaces for
primary services

C A B

pPlug-ins to
specialize behavior

Chapter 10 Components and Connectors 395
The precise meaning of a connection between components varies depending on the
needs of the application and the underlying component technology. It could range from
explicit invocation of functions via the connection to higher-level modes such as transfer
of workflow objects, events being propagated implicitly, and so on. Section 10.7, Compo-
nent Architecture, examines this in detail.

10.2.2 Components and Standardization
If we are to build systems by assembling components, we need a set of standards that are
agreed to by component developers so that these components can interoperate and reduce
the development burden of common tasks. Many of these issues would need to be
addressed even without components, but the need for standardization would be less. There
are three broad categories of standards: horizontal, vertical, and connectors (see Figure
10.4).

10.2.2.1 Horizontal (Infrastructure) Standards

Components need a common mechanism for certain basic services, including the follow-
ing.

• Request broker: This mechanism maintains information about the location of compo-
nents and delivers requests and responses in a standard way.

• Security: This category includes mechanisms for authentication of users and authoriza-
tion for performing various tasks.

• Transactions: Because each component potentially maintains its own persistent state
information, business transactions must cross multiple components. A common mecha-
nism is needed for coordinating such distributed transactions correctly. These transactions
will be nested rather than flat.

• Directory: Many components need access to directory services—for example, to locate
resources on a network or subcomponents within a component. They must be based on a
common interface, with a uniform way to reference entities inside different components
and across different naming schemes.

Figure 10.4 Horizontal, vertical, and connector standards across components.

Vertical standards: What is a Patient? Prescription?

Horizontal standards: request/response, transaction, security, naming,…

Connector standards:
synchronous, asynchronous,
message queue, shared
data, …

396 PART IV IMPLEMENTATION BY ASSEMBLY
• Interface repository: Component interfaces and their specifications must be defined in a
common way so that they can be understood both by people and by other components.

10.2.2.2 Vertical Standards

In addition to the underlying mechanisms being shared, components must agree on the
definition of problem domain terms—usually manifested as problem domain objects—on
which they will jointly operate. Components in a medical information system, for exam-
ple, must share a common definition of what exactly a Patient is and what constitutes an
Outpatient Treatment. They must share this definition at least in terms of the interfaces of
those objects.

As of 1998, the OMG was actively working toward such vertical standards in domains
that include telecommunications, insurance, finance, and medical care. Microsoft has a
less coordinated effort under its DNA project. Every project must invariably also define its
own domain-specific standards.

10.2.2.3 Connector Standards

We must also use standard kinds of connectors between components, defining a variety of
interaction mechanisms for various kinds of components and compositions. The basic
object-oriented message send is not the only, nor even the most suitable, way to
describe all interactions.

• Connectors that support explict call and return: The call could be synchronous or asyn-
chronous. Asynchronous messages could be queued until processed, and return values
could be treated as futures5 or callbacks.

• Connectors with impicit event propagation: Certain state changes in one component are
implicitly propagated to all components that registered an interest in that event.

• Connectors that directly support streams: Producers insert values or objects into the
stream, where they remain until consumed by other components.

• Connectors that support workflow: Objects are transferred between one component and
the next, where this transfer is itself a significant event.

• Connectors that support mobile code: Rather than just receive and send data and refer-
ences to objects, you can actually transmit an object, complete with the code that defines
its behaviors.

10.2.3 Why the Move to Components?
Components and component-based development are rapidly becoming buzzwords; like
those before them, they bring a mixture of hype and real technical promise. The main
advantages of adopting a component-based approach to overall development are as fol-
lows.

5. An encapsulation of a ”promise” of a value; it may block if the value is accessed before being
available.

Chapter 10 Components and Connectors 397
• It permits reuse of implementation and related interfaces at medium granularity. A sin-
gle domain object may not be a useful unit of reuse; a component—packaging together
an implementation of services as it affects many domain objects—can be.

• Effective components also form the basic unit for maintenance and upgrading. There

should no longer be a need to upgrade entire “systems”; instead, components get
replaced or added as needed.

• Component partitioning enables parallel development. Identifying medium-grained

chunks and focusing on early design of interfaces make it easier to develop and evolve

parts in parallel.

• Interface-centric design gives scalable and extensible architectures. By letting each

component have multiple interfaces, we reduce the dependency of any one component
on irrelevant features of another component that it connects with. Also, adding new ser-
vices incrementally can be accommodated more easily; you can introduce new compo-
nents and add the relevant interfaces to existing ones. Scalability is somewhat more

easily addressed, because replication, faster hardware, and so on can be targeted at a

finer grain. Moreover, modern component technologies such as Enterprise JavaBeans

move many of the burdens of resource pooling and scaling away from the business

components to the containers within which they run.

• It lets you leverage standards. Because component technology implies a base set of
standards for infrastructure services, a large application can leverage these standards

and save considerable effort as a result.

• It can support capabilities that are impractical for “small” objects, such as (1) language-
independent access of interfaces—so that you can use components written in other lan-
guages—and (2) transparent interaction between distributed components.

10.3 Building Components with Java

JavaBeans is the component technology for building components using Java. A JavaBean
can be a single Java class whose external interfaces are described using the following.

• Properties: Object attributes that can be read and written by access methods

• Methods: Services with specified effects that a client can invoke

• Events: State changes that an object will notify its environment about, with no expecta-
tion of any resultant effect

Properties and methods represent services provided by the component. Events repre-
sent notifications from the component. There is no explicit way to represent services
required by the Bean.

JavaBeans was designed to distinguish properties, methods, and events without any
change to the basic Java language. It does this by using a facility called reflection.

398 PART IV IMPLEMENTATION BY ASSEMBLY
10.3.1 Reflection
Java retains an explicit runtime representation of class, interface, and method definitions
in its compiled class form; the reflection API is a facility for accessing this information.
For every class that is loaded into a running system, Java instantiates a single instance of
the predefined class Class. There is a static method for dynamically loading any class
based on its name and several methods for examining the structure of a class definition.

class Class {
static Class forName(String); // load class by name, instantiate Class
Class getSuperclass(); // return the superclass
Class[] getInterfaces(); // return list of interfaces implemented
Method[] getMethods(); // return list of methods
Field[] getFields(); // return list of stored fields
Method[] getConstructors(); // return list of constructors
Object newInstance(); // create a new instance

}

There are several other related classes, of which the most interesting one is Method.

class Method {
Class getDeclaringClass(); // return home class
String getName(); // return method name
Class getReturnType(); // return type
Class[] getParameterTypes(); // list of parameter types
Class[] getExceptionTypes(); // list of exception types
void invoke(Object target); // (very late bound) method invocation

}

The following example illustrates a runtime use of these facilities:

// locate and load the class dynamically
Class c = Class.forName (“UserDefinedClass”);

// instantiate the class
Object o = c.newInstance ();

// get one of the methods on that class
Method m = c.getDeclaredMethod (“userMethod”, { });

// invoke that method on the new instance
m.invoke (o);

In addition to supporting the mechanisms needed by JavaBeans, as explained later, reflec-
tion enables very late binding of calls by dynamically looking up interfaces and methods
and invoking them against objects of statically unknown types.

10.3.2 Basic JavaBeans
The simplest way to write a JavaBean is to program a single class, following certain nam-
ing patterns for the methods on your class. Using the reflection API on an instantiated

Chapter 10 Components and Connectors 399
Bean (a process called introspection), a visual tool or other application can categorize the
methods into properties, methods, and events.

• Property: Write a pair of methods named Y get<X>() and set<X>(Y) to define a prop-
erty named X of type Y.

• Event: Write a pair of methods named add<X>Listener (XListener) and remove<X>Lis-
tener (XListener) and add the event signature to the operations that the XListener inter-
face must support; this defines a single event your bean can publish to registered

parties.

• Method: Write a method that follows neither a property nor an event pattern.

You can implement Beans without following the naming rules. You implement addi-
tional methods on the bean that (indirectly) explicitly identify the methods corresponding
to properties, events, and methods on that Bean. We omit the details here.

10.3.3 Improved Components with JavaBeans
Attempting to program a Bean as a single class is not practical for nontrivial components;
a component instance would typically consist of several connected objects of different
classes, each implementing some of the external component interfaces. The more recent
specifications for JavaBeans make it simpler to build complex Beans from several classes.

• Do not use language primitive “casts” to access other interfaces of a component,
because they would understand only language-level objects. Instead, there is a pre-
scribed explicit query protocol for getting to other interfaces.

• Bean instances will be nested. The containing “context” may (1) provide standard con-
tainment services and (2) interpose its own behavior before its parts execute their meth-
ods. Standard interfaces are defined for this purpose.

10.3.4 Persistence
Java provides a light-weight serialization mechanism; the implementor need do no addi-
tional work for objects to serialize and restore themselves correctly. The mechanism uses
the underlying reflection services to implement generic save and restore functionality only
once.

10.3.5 Packaging Using JAR Files
Compiled Java components are packaged into JAR files and include the class files that
implement the component services, additional class files (if any) for explicitly defined
properties, methods, and events, and some additional information.

10.3.6 Enterprise JavaBeans
Server components typically implement significant business functions and run on a server.
In a multitier architecture, most business logic in an application runs on dedicated servers

400 PART IV IMPLEMENTATION BY ASSEMBLY
rather than on the client machine. In general, a multitier design increases the application’s
scalability, performance, and reliability—because components can be replicated and dis-
tributed across many machines—but at the cost of some “middleware” complexity. Java’s
Enterprise JavaBeans (EJB) standard is a server component model that simplifies the pro-
cess of moving business logic to the server by implementing a set of automatic services to
manage the component.

The Enterprise JavaBeans model lets you implement business functions as JavaBeans
and then plug them in to a standard container that provides automatic management of
resources and contention from multiple threads, transaction programming based on two-
phase commit across multiple independent components, and distributed programming. An
EJB component, packaged into a JAR file, has four main parts.

• Home interface: The client interface to a factory object that instantiates the main server
Bean. A client locates this factory using a standard directory-based name lookup.

• Remote interface: The interface to the primary server Bean itself, providing the busi-
ness operations to the client.

• EJB class: The class that implements the business operations.

• Deployment descriptor: A description of the preceding parts and additional attributes

such as transactional and security behaviors that can be decided at deployment time

rather than in the code for the main server component itself.

When the component, packed into its JAR file, is deployed, you must designate a

• Container: A component implemented by a middleware vendor; it acts as a container for
your server component. It provides exposure of your services to clients (who actually do

not directly access your implementation), remote access, distributed transaction manage-
ment, security (including authentication and authorization), resource pooling, concurrent
service for multiple clients, clustering, and high availability. In short, a container gives
you all the things that, if they were absent, would make implementing a multitier system

a nightmare.

Java presents a compelling technical base for component-based development, includ-
ing enterprise-scale server components. Its main drawback is the single-language model,
which is addressed by the integration of Java and CORBA.

Chapter 10 Components and Connectors 401
10.4 Components with COM+

As it does almost everyplace else, Microsoft proceeds to
define its own set of standards in the area of components. The
foundation of its component software starts with COM: a
binary standard for interfaces. A client reference to any object
via an interface is represented by a pointer to a node that
refers to a table of interface functions. If the reference is to an
object with state, the intermediate node will also contain or
refer to that object’s state representation. A component offers
some number of interfaces, each referred to by the client in
this way. The implementation could involve many objects and
classes or could involve none.

Every interface supports QueryInterface, a common function that queries for other
interfaces based on unique identifiers assigned to interfaces. Each interface is immutable
once published; a new version is a new interface. Because references to an object via dif-
ferent interfaces are physically different pointers, determining whether two references
refer to the same object is not direct. Instead, COM prescribes that each component pos-
sess a single distinguished interface called IUnknown, which reliably serves as the identity.

COM is an interface standard and not a programming language; hence, it does not pre-
scribe specific mechanisms for implementation reuse, such as class inheritance. However,
it offers two mechanisms for composition.

• Containment: In this simple and straightforward approach, a container object receives

every client request and explicitly forwards all requests as needed to its child objects.

• Aggregation: A container can directly expose references to (interfaces of) its inner
objects; a client can then directly invoke operations on it. To behave like a single

object, each inner object delegates all its QueryInterface requests to its container.

New objects are instantiated by a library call to CoCreateInstance, with a unique iden-
tifier for a particular implementation to be instantiated and the identifier of the interface of
the new object that should be returned. The appropriate server is identified (from those
registered in the system registry), started, and requested (via a factory) to create a new
object; it returns an interface reference to the client.

COM interfaces are defined in an interface description language called IDL.6 These
interfaces can be compiled to produce type libraries—the runtime representation of the
structure of interfaces and methods—and to produce appropriate proxy, stub, and marshal-
ing code for the case of remote object references.

Client
reference

Function
tableObject

Object
data

Binary standard

Client
Interface

ComponentNotation

6. It is different from the OMG’s IDL.

402 PART IV IMPLEMENTATION BY ASSEMBLY
COM does not have the equivalent of Java’s reflection, relying instead on the type
library. Consequently, scripting and other applications that require very late binding—in
which even the method called is not compiled against an interface but is looked up at runt-
ime—require explicit support in the component itself. Each component can support what
are called dispatch interfaces, in which a client requests an operation by a number; the
component resolves the mapping from numbers to methods to invoke. COM uses outgoing
interfaces to define events, just as JavaBeans uses its events.

COM includes a model for compound documents called OLE (a collection of standard
COM interfaces) and includes ActiveX controls, another set of COM interface standards
that include outgoing interfaces to permit events to be signaled by a control to its con-
tainer. ActiveX controls also have properties that are similar to JavaBeans properties.

COM+, a relatively recent entry in the furiously renamed space of Microsoft’s compo-
nent technologies, has serious technology merit. It essentially defines a virtual machine
model for components, similar in many respects to the Java virtual machine. COM+ pro-
vides garbage collection (eliminating the pesky reference counting approach of COM),
extensive metadata (permitting reflection and eliminating dispatch interfaces), and infra-
structure services (security and transactions) for server-side components. One of its more
interesting features is called interception: the ability for the virtual machine to intercept
requests sent to a component and interject special processing. This feature could be used
to provide late-bound cross-component services, much as Enterprise JavaBeans uses the
container as an intermediary to access component services.

10.5 Components with CORBA

CORBA (Common Object Request Broker Architecture) was designed by the Object Man-
agement Group (OMG) to support open distributed communication between objects across a
wide variety of platforms and languages. Interestingly, despite the “Object” in its name,
CORBA does not directly expose the notion of object identity; it could more properly be
considered a distributed component framework.

To meet its goals of heterogenous computing, CORBA opted to become a source code
standard rather than a binary one. Component interfaces are defined within modules using
the CORBA IDL; different programming languages have standardized bindings to the
IDL. Programmers either (a) manually write IDL and then compile it into the source code
versions needed to write their implementations or (b) use a vendor’s programming lan-
guage compiler that offers direct generation of IDL.

The OMG’s Object Management Architecture looks somewhat like the drawing in Fig-
ure 10.5. The architecture comprises four parts:

• CORBA bus: The base level of IDL-based interface definitions, the interface and server
repositories, and the request broker

• CORBA Services: A variety of largely infrastructure services ranging from events to

transactions, relationship, naming, life cycle, licensing, and externalization

Chapter 10 Components and Connectors 403
• CORBA Facilities (horizontal): Printing, e-mail, compound documents, structured

storage, workflow, and so on

• CORBA Facilities (vertical): Standards for business objects in “vertical” domains,
including health care, telecomm, financials, and so on

CORBA recently defined mappings for the Java language and aligned closely with Jav-
aBeans and Enterprise JavaBeans for its component model. In fact, the Java Transaction
Service is defined based on the CORBA model.

10.6 Component Kit: Pluggable Components Library

This section is about component kits: collections of components that are designed to work
with one another. The contents of a kit need not be completely fixed; you can add to it and
have various accessory kits and subkits of pieces that work particularly closely together. But
a kit has a unifying set of principles—the kit’s component architecture type—that makes it
easier to plug together the members of a kit successfully compared with components built
separately or chosen from different kits. Plugging arbitrary components together usually
requires that you build some sort of glue. We deal with that in Section 10.11, Heterogenous
Components.

We’ll begin our discussion of component kits with an example to illustrate the basic
principles and later show how they apply to larger-scale (and more business-oriented)
components. These examples use various kinds of connectors between component instan-
tiations, coupling service requirement points (ports) in one to service provision points
(ports) in another. We use arrows and beads to represent connectors: .
Section 10.8.2, Defining the Architecture Type, shows how varying kinds of connectors
can be defined.

10.6.1 Graphical User Interface Kit of Components
GUIs form the most widely used kits of components. Windows, scrollbars, buttons, text
fields, and so on can be put together in many combinations and coupled to your database,

Figure 10.5 The CORBA architecture.

CORBA “bus”

CORBA Services

CORBA
Applications

CORBA
Facilities
(vertical)

CORBA
Facilities
(horizontal)

404 PART IV IMPLEMENTATION BY ASSEMBLY
your Web server, or some other application. You rarely need to program the software that
sets up and builds the forms: Instead, you use a GUI wizard to design them directly.

Using the connector notation discussed earlier, a typical design might look like the con-
figuration of component instances shown in Figure 10.6. The connectors represent cou-
plings between properties of two components (; a pair of values is kept continually in
sync) or events of two components (; a published occurrence from one component
triggers a method of another component).

There is some need for adapters between, for example, the content of the Text Viewer and
the contact history of the Contact Record. The design calls for continuously updated proper-
ties, such as the scrollbar’s connector to the Text Viewer, as well as events such as the But-
ton’s hits. Some of the connectors are bidirectional: The checkbox both sets the priority and
immediately shows a change in the property.

10.6.2 Kit of Small Components
Suppose you are given a collection of pieces of hardware: a motor of some sort, a couple
of push-button switches, and a meter. Suppose the motor has a few wires attached: one
labeled ”start,” another ”stop,” and a third tagged ”speed «output».” The buttons and
meter also have labeled connections. Now imagine connecting the components as shown
in Figure 10.7.

Of course, a push-button can be used for many other purposes; if you had a lamp, you
might use the push-button to switch it on and off, and your Meter might be used to display
a temperature. There might be other ways of controlling the motor and other ways of using
its speed to control other things. Let’s root around in the box of parts and do some creative
wiring (see Figure 10.8).

When the motor is running slowly, the meter doesn’t show the low speed very clearly,
so we’ve decided to multiply the speed by 10 or 100 before it gets to the meter. From the

Figure 10.6 GUI component kit.

Contact

Database

Contact

Record

commit
hit

high priority state

current call

content

content

content

contact
history

search
name

offset

Text Viewer

Text Field

Text Field

Record

Selector

Button

Scrollbar

Checkbox

percent

Chapter 10 Components and Connectors 405
box of components we’ve pulled a Multiplier and a Selector. A Selector is a user-interface
widget that provides a fixed choice of values, which in this case we’ve set to the factors
we want to allow.

We’re also worried that the Motor might run too fast sometimes (perhaps if its load is
removed), so we’ve pulled out a Threshold.7 It converts a continuously varying value,
such as the speed, into a Boolean off/on, switching on when its input rises above a certain
limit. Then we’ve connected it and the stop button (through an OR gate) to the Motor’s
stop input. So the Motor will be stopped either by the button being pushed or the Motor
running too fast.

Any model railroad enthusiast will recognize this as a neat kit of parts with which you
could build a lot of different projects—many more potential products than the number of
components in the box. Note the ease of modifying the first version to realize the second.
It’s not difficult to imagine such a kit in hardware nor to visualize it in software. The Motor
could be a software component controlling a hardware motor; the Buttons, Meter, and
Selector could be user-interface widgets; and the other components could be objects not
directly visible to the user.

Figure 10.7 Electronic hobbyist component kit.

Figure 10.8 Electronics kit: a nontrivial configuration.

7. Hardware people call it a Schmitt trigger.

Button

Button

Motor

start
speed value

stop

pressed

pressed

Meter

Button

Button

Threshold

OR

Motor
Selector

{1, 10, 100}

start

speed

in

ip1 ip2

value

selected

value

product

stop

pressed

overLimit

pressed

Meter

Multiplier

406 PART IV IMPLEMENTATION BY ASSEMBLY
10.6.3 Large Components
Components need not be little things; they can be entire applications or legacy systems.
The nature of the connectors between these components differs. The components shown in
Figure 10.9 are the support systems for some of the departments in a large manufacturing
company.

The components and their lines of communication mirror those of the business. The
diagram could represent a business structure of departments and flows of work, or a soft-
ware structure of components and connectors. Just as departments are composed of teams
and people, so a closer look at any one of these components would reveal that it is built
from smaller ones.

The company places orders, which are mailed and forwarded to payment control for sub-
sequent payment. When the shipping department receives goods, it forwards a notification to
payment control. Invoices received are also forwarded. When an invoice is received for
goods that were delivered, a payment is generated.

Whereas the smaller example sent primitive values across the connectors, these com-
ponents send larger objects, such as orders, invoices, and customer information, to each
other. The connectors between these components serve to transfer objects, in one case
with a duplication or split to two or more destination components.

The configuration is a modern one. Rather than a single central database with clients all
over the enterprise, there are separate components, each holding appropriate data and per-
forming appropriate operations tailored to support the business operations. There are sev-
eral benefits of this federated scheme.

• Flexibility: It is more extensible and flexible than centralized systems clustered around
one database. Business reorganization is rapidly reflected in the support systems.

• Scalability: It is more scalable to serve more people and buy more machinery. You are
not constrained by having a single server that will scale only so far.

Figure 10.9 Large business components.

orders
made

goods
received

goods
received

payment
orders

payments

invoices

Mail out

Purchasing Goods Inward

Payment Control

Finance

Mail in

Chapter 10 Components and Connectors 407
• Graceful degradation: Each business function is supported by its own machinery, so
one malfunction doesn’t stop the whole enterprise.

• Upgradability: You do not have to set up and subsequently update the system as a single
entity. As the business grows and is reorganized, new software can be added. You can plug
in commercial off-the-shelf components rather than build every enhancement into a single
program.

• Appropriateness: Because it requires less central control, it is less prone to local politi-
cal and bureaucratic difficulties. There is no one authority that must agree to every change
or must be persuaded to address the evolving requirements of every department. Instead,
the business users hold much more responsibility for providing support appropriate for
themselves.

An inefficiency was diagnosed in the process; goods were being delivered and paid for
that had never been ordered, and reconciling purchase orders with goods received was
becoming expensive. The company reorganized its departmental roles and the software to
match (see Figure 10.10). Goods Inward now has records of all orders that have been made
and will turn away spoof deliveries.8 Because the component structure reflected the busi-
ness structure at the level of granularity of the change required, the change was accommo-
dated fairly well. Finer-grained business changes, such as the introduction of a new
pricing plan for existing products, require a corresponding finer-grained component (or
object) structure to accommodate the change.

10.6.4 Component Building Tools
Component technology is often associated with visual building tools. Once a systematic
method of connecting components has been established, tools can be devised that let you

Figure 10.10 Reconfigured business components.

8. Thanks to Clive Mabey, Michael Mills, and Richard Veryard for this example.

After reengineering

orders

made

orders expected

orders fulfilled

goods

received

payment

orders

Purchasing Support

Goods Inward

Payment Control

Finance

408 PART IV IMPLEMENTATION BY ASSEMBLY
to plug the components together graphically. Digitalk’s Parts and IBM’s Visual Age were
early examples; Symantec’s Visual Café works in Java, as does Sun’s Java Workshop.
Similar-sounding visual programming tools are restricted to building user interfaces rather
than composing general components. There are tools (for example, Forté) that specialize
in distributed architectures, in which the components may be executing on different
machines. Others are good at defining workflow systems in which components of one
kind—work objects—are passed for multiple stages of processing between components of
another kind, the work performers.

10.7 Component Architecture

An architecture is an abstraction of a system that describes the design structures and rela-
tionships, governing rules, or principles that are (or could be) used across many designs.
Here are examples:

“Four-tier with Web servelets.”

“We shall all write in Java.”

“Here’s how we make one property observe another.”

“Use these interfaces and protocols to implement a spell-checking feature.”

“Use Fred’s class whenever you want to wongle foobits.”

“Never use return codes to signal exceptions.”

The architecture is what lends the coherence and consistency to the design.

An architecture broadly comprises two parts (we defer a more detailed discussion to
Chapter 12, Architecture).

• The generic design elements or patterns that are used in the architecture, such as sub-
ject-observer, Fred’s class, the event-property connectors, or the generic design for
spell checking.

• The rules or guidelines that determine where and how these architectural elements are

applied, such as “For any composite user-interface panel that may be reused, make all
internal events available via the composite.” In the extreme case, these rules can be for-
malized to fully define a translation scheme.

Design is about relating several independent pieces together and claiming, “This particular
way of combining these pieces will make something that does so-and-so.”

The pieces might be the result of applying architectural rules, or they might be a
sequence of statements making up a subroutine. They might be a group of linked objects,
an assembly of hardware components, or large software subsystems that intercommuni-
cate in some way. Or they might be a composition of several collaboration patterns on
problem domain objects. The essence of design is that the composition of various pieces,
each one designed separately, somehow meets a requirement.

That said, we sometimes refer to a high-level partitioning structure as architecture,
either technical architecture (having to do with underlying component technology, inde-

Chapter 10 Components and Connectors 409
pendent of business logic) or application architecture (having to do with partitioning of
application logic).

10.7.1 The Component-Port-Connector Model
The rest of this chapter deals with how to model and specify components: executable units
that can be plugged together with different interaction schemes connecting them. Our
modeling approach is based on the ideas put forth in three definitions.

© ports The exposed interfaces that define the plugs and sockets of the components; those

places at which the component offers access to its services and from which it accesses ser-
vices of others. A plug can be coupled with any socket of a compatible type using a suitable

connector.

© connectors The connections between ports that build a collection of components into a soft-
ware product (or larger component). A connector imposes role-specific constraints on the

ports that it connects and can be refined to particular interaction protocols that implement the

joint action.

To us, a component architecture defines the schemes of how components can be
plugged together and interact. This definition may vary from one project or component
library to another and includes schemes such as CORBA, DCOM, JavaBeans, database
interface protocols such as ODBC, and lower-level protocols such as TCP/IP as well as
simpler sets of conventions and rules created for specific projects.

Component models are specifications of what a component does—based on a particular
component architecture, including the characteristics of its connectors—and descriptions
of connections between components to realize a larger design.

© component-based design The mind-set, science, and art of building with and for compo-
nents and ensuring that the result of plugging components together has the expected effect.

It’s impossible to allow a designer to stick components together just any old way: An
output that yields a stream of invoice objects can’t be coupled to an input that accepts
hotel reservation cancellation events. But we would like to be able, at least within one kit
of components, to couple any input with any type-compatible output if their behaviors are
compatible. To be able to do this confidently across independently developed components
means that certain things must be decided across the whole kit.

• Specification: What must you do to specify a particular component, with its input and
output ports?

• Instantiation: What must you do to create an instance of a component and to couple
components together?

• Connectors: How do connectors (connections between components) work—as function
calls, messages on wires, data shared between threads, or some other way? If there are dif-
ferent kinds of connectors, what are they, and how do their implementations differ?

• Common model: What types are understood by all the components (only integers or
Customers too?)? How are objects represented as they are passed from one component to
another?

410 PART IV IMPLEMENTATION BY ASSEMBLY
• Common services: How does a component refer to an object stored within another?
How are distributed transactions coordinated?

The answers to these questions are common across any set of components that can
work together (see Section 10.2.2, Components and Standardization). Together, they form
a set of definitions and rules called a “component architecture.” Microsoft’s DCOM, the
Object Management Group’s CORBA, and Sun’s JavaBeans are examples. Project teams
often devise their own component architecture either independently or (more sensibly) as
specializations of these types. Highly generalized architectures cannot provide, for exam-
ple, a common model of a Bank Customer, but this would be a sensible extension within a
bank.

In this chapter, we concern ourselves with architecture at the generic level of the kinds
of ports and connectors supported, although, more broadly, an architecture definition
could include much more.

10.7.1.1 Component Connector

We use arrows and beads to represent connectors, based on the
UML notation for defining an interface and a dependency on it. However, our
use of connectors between ports is more refined.

A type of connector is defined as a generic collaboration framework (see Chapter 9).
The interactions between components can be complex, and part of the complexity comes
from the techniques that permit them to be coupled in many configurations. The same pat-
terns are repeated over and over—each time, for example, we want work to flow from one
component to another or we want a component to be kept up-to-date about the attributes of
another.

Connectors hide complex collaborations. The stream of payment orders from Payment
Control probably requires a buffer along with a signaling mechanism to tell the receiving
component to pick up the orders. The stream of invoices from Purchasing follows the
same pattern. The continous update of the Meter’s value from the Motor’s speed requires a
change-notification message; other values transmitted in that example need the same mes-
sage.

Rather than describe these complex collaborations from scratch for each interface, we
invent a small catalog of connectors, which are patterns of collaboration that can be
invoked wherever components are to be plugged together. Then we can concentrate on
only the aspects that are specific for each connector, mainly the type of information trans-
mitted.

A design described using connectors doesn’t depend on a particular way of implement-
ing each category of connector. What’s important is that the designer know what each one
achieves. We can distinguish the component architecture model (which connectors can be
used) from the component architecture implementation (how they work).

Chapter 10 Components and Connectors 411
10.7.1.2 Example Connectors

Each project or component library can define its own connectors to suit itself. In the Motor
example in Section 10.6.2, Kit of Small Components, we can identify two principal kinds
of component connector:

• Events: Exchanges of information that happen when initiated by the sender to signal a

state change (shown with an open arrow:)

• Properties: Connectors in which an observer is continually updated about any change in a

named part of the state of the sender (shown with a solid arrow:)

The approach we discuss here also applies to other kinds of connectors such as the follow-
ing:

• Workflow transfers: In which information moves away from a sender and into a

receiver

• Transactions: In which an object is read and translated into an editable or processable

form, is processed, and then updates the original

These are examples; you can define your own kinds of connectors to meet the needs of
your enterprise. Being able to separately and explicitly define connector types lets us fur-
ther decouple intercomponent dependencies from the component implementations and
better abstract the structure of components when they are composed later.

10.7.2 Taxonomy of Component Architecture Types
There can be many different implementations of a given architecture model, and the same
architecture model can be applied to many different applications. A given component
architecture describes its type, or style, and its implementation.

© component architecture type, or style Which categories of connectors are permitted

between components, what each of them does, and the rules and constraints on their usage.
Some (unary) connector types can even be used to define standard infrastructure services

that are always provided by the environment.

© architecture implementation(s) How each category of connector works internally, including

the protocol of interactions between ports.

Each component architecture does this, whether it uses widespread standards or is
defined by the architect of a particular project. Although the use of the big standards is
important for intercoupling of large, widely marketed components, we believe that pur-
pose-designed architectures will continue to be important within particular corporations
and projects and also within application areas (such as computer aided drafting, geograph-
ical systems, and telecommunications) that have particular needs (such as image manipu-
lation, timing, and so on). Therefore, it is necessary to understand what an architecture
defines, how to define your own architecture (see Section 10.8, Defining Cat One—A
Component Architecture), and how various architectures are related.

Like everything else, architectures have types (requirements specifications) and imple-
mentations. A type defines what is expected of the implementation, and there may be

412 PART IV IMPLEMENTATION BY ASSEMBLY
many architecture implementations of a single architecture type. One architecture imple-
mentation may be clever enough to implement more than one architecture type if they do
not make conflicting demands. For example, most television broadcasts now carry both
pictures and pages of text, thereby accommodating separate architectural requirements
within a single design of signal. Similarly, some architectural implementations allow two
architectures, such as CORBA and COM, to interoperate.

Like object types, architecture types can be extended: Extra requirements can be added
(just as the transmission of color pictures was added to the original monochrome). A sim-
ple version of the architecture discussed earlier defines event and property connectors; an
extension might add transfers and transactions.

It’s important to remember that an architecture does not necessarily define any code.
The type lays down rules for what the connectors achieve, and the architecture implemen-
tation defines the collaborations to achieve that. The collaborations tell the designers of
the components which messages they must send and in what sequence.

An architecture gives a component writer a set of ground rules and facilities. It does not
necessarily limit the kinds of interactions a component can have with another component;
rather, it provides patterns for the most common kinds of interaction.

Suppose you are writing a component that accepts print jobs, queues them, and distrib-
utes them among printers. An empty architecture is one in which nothing is predefined and
every component and interface must be defined from scratch. Without a laid-down archi-
tecture, the documentation of your component must define

• Which operating system clients must use

• Which programming language (or set of calling conventions) must be used

• Which calls the client must make to inquire whether you can accept a job, to pass a job

to you, and confirm that you’ve received it

If you have a simple component architecture, it could minimally define operating sys-
tem and language or clarify how to couple components working in different contexts. If it
defines no notion such as our transfer connector, you must define all the messages you
expect to send and receive.

But if it is a more sophisticated architecture that defines transfers, your job is much
simpler: You only need to say exactly what type of object you’re transferring. The archi-
tecture defines what “transfer”means and what messages achieve that effect; wherever you
need to, you simply use the transfer connector (as in using a framework application, dis-
cussed in Chapter 15) and omit all the details.

So an architecture doesn’t limit the kinds of work that components can do together, but
it makes it easier to document certain categories of interaction and thereby encourages the
use of components.

Chapter 10 Components and Connectors 413
10.8 Defining Cat One—A Component Architecture

There are an infinite number of interesting architectures, and the principles of component-
based design we discuss apply regardless of specifics. Components can be connected in a
great variety of ways—using CORBA, COM, or even a daily manual FTP transfer—but
all of them can be seen as examples of the basic notion of self-contained components cou-
pled together using a set of connectors. The kinds of components and connectors and the
way they are implemented vary from one architecture to another; for example, JavaBeans
(see Section 10.3) offers a specific set.

In Catalysis, we view all component architectures as follows.

• Component: Any active element that performs a useful task we call a component. Com-
ponents can be individual objects or large subsystems; they can even be the departments in
an organization. In general, components differ from plain objects in being packaged more
robustly.

• Connector: Any means of communication between components we call a connector. A
connector can be something as simple as a function call or a group of calls that provide for
a collaboration, or it can be something more complex such as a dialog across an API. Or it
might be a message sent via CORBA or COM or a file transfer, a pipe, or even the deliv-
ery of a deck of punched cards by courier. And of course, a GUI is a connector, just as a
user is a component.

• Port: In general, each component has several identifiable means of being connected to
others. We call these ports; connectors connect ports together. Each port can be given a
name (and, if there are a variable number of them, an index). For example, the operations
on a plain object have their message names; the ports to an Internet host have numbers; the
pins on a logic chip and the sockets on the back of your PC are tagged with specific func-
tions; and many large systems have interfaces directed at different user roles.

Some architectures allow for restrictions on fan-out: the number of inputs supplied by
each output. In general, connections can be made and unmade dynamically, although this
can be restricted in a particular architecture.

• Port category: In any architecture, there are different categories of ports characterized
by the style of information transfer: whether isolated events or streams of values, whether
buffered, whether interactive, and so on. They are also differentiated by implementation:
C++ function call, database transaction, FTP transfer, dictation over the phone, and so on.

• Component architecture: A component architecture is a choice of categories of connec-
tors. They are specified first by what they achieve (signaling an event, updating values,
transferring objects, and so on) and secondarily by how they are implemented (COM oper-
ation, e-mail, carrier pigeon, and so on).

Most categories of port have a gender (such as «input» and «output») and a type of
value that is transmitted, from simple numbers to complex objects such as reservations or
stock dealings. These elements also are defined by the specific component architecture,
which also must define the rules whereby the ports can be connected (for example, an
input always to an output).

414 PART IV IMPLEMENTATION BY ASSEMBLY
10.8.1 Cat One: An Example Component Architecture
For the sake of concreteness, we will introduce a specific hypothetical architecture called
Cat One. It provides a fairly typical basis, and its connectors are similar to those in COM
and JavaBeans. However, the component model is itself extensible.

Cat One has several port categories: «Event», «Property», «Transfer», and «Transaction
Server». All the port implementations are described in terms of function calls, but you
could easily extend Cat One to support more-complex implementations crossing applica-
tion and host boundaries.

The information carried by each port has a type. Each port can be coupled only to
another port that has a compatible type. Compatibility is defined separately for each port
category; for Event and Property couples, the sender’s output type must be a subtype of
the receiver’s input.

A connector is implemented as the registration of the receiver’s input with the sender’s
output. When a connection is to be made, the sender must be informed that the required
output is to be sent to the required input of the required receiver. This explains what an
output port is: It represents an object’s ability to accept registration requests and to main-
tain a list (a separate one for each of its output ports) of the interested parties. An input
port represents an object’s ability to accept the messages sent by the corresponding output
ports.

There are various ways of implementing the messages that occur in a connector. One
way is to use only one universal “event” message, with parameters that identify the sender,
the name of the output port (as a string), the name of the input port, and the information to
be conveyed. This approach is convenient in languages such as C++. In Smalltalk it is eas-
ier to use a different message name for each input port; the name corresponds to the port’s
label. (Only in reflexive languages can the sender be told at registration what message to
send.)

A connection can be implemented by an adapter object, whose job is to receive an out-
put message and translate it into the appropriate input, translating the parameters if neces-
sary at the same time.

Events are the most general category of port: An event is a message conveying infor-
mation about an occurrence. The only difference between an event and an ordinary object-
oriented message is that in an event the receiver is registered to receive it. More generally,
an event can be implemented as a dialog of messages initiated by the sender; in Catalysis
we know how to characterize that with a single action.

Properties convey the value of some attribute of the source component. A property out-
put sends a message (or initiates a dialog) each time the attribute changes. (The attribute
may be the identity of a simple object such as a number or of a complex object such as an
airplane.) A variation on this theme calls for updates at regular intervals rather than imme-
diate notification of every change. A further variant provides for the source to ask the per-
mission of the receivers each time a change is about to happen. Obviously, this approach
calls for more messages at the implementation level; but in a component design, we con-
sider all that to be part of one port.

Chapter 10 Components and Connectors 415
A Transfer port passes objects from the source to the sink. Once accepted by the sink, a
sent object is no longer in the sender. Strings of components with Transfer ports can be
used to make pipelines and workflows. In an implementation, the source asks the sink to
accept an object; if and when the object is accepted, the source removes it from its own
space.

Each Transaction Server port provides access to a map from keys to values. Key-value
pairs can be created and deleted; the value associated with any key can be read and
updated. Many Transaction Client ports can be coupled to one Server; each one can seize a
particular key so that others cannot update it. On release, the client can choose to confirm
or abort all the updates since seizing.

10.8.2 Defining the Architecture Type
An architecture is a set of definitions that you can take for granted once you know you’re
working within that context. Defining an architecture is therefore about writing down the
things that are common to every component and its connectors. In other words, it’s about
defining a design package that can then be imported wherever that architecture is used and
gives a meaning to the shorthand port and connector symbols.

An architecture package generally specifies a number of connectors. In addition, it may
define collaborations that implement the connectors. Third, it may define generic program
code that a designer can use to encode one end of each connector.

10.8.3 Connector Specification
Each component can have several named ports; each port can take part in a connection
with several others (see Figure 10.11). The connect action between two ports links them
together with a connector. One of the ports must be unlinked; if the other one is already
linked, the existing connector is used. Other connectability criteria, not yet defined, must
be satisfied as a precondition.

action connect (a : Port, b : Port)
pre: (a.connector = null or b.connector=null)

and connectable(a,b) -- to be defined for each category
post: a.connector = b.connector and

Figure 10.11 Basic port and connector model.

1

owner

Component::

-- Unique port names
ports.name->size = ports.size

Component Connector

connect

Port

name
* 2+ 0,1

416 PART IV IMPLEMENTATION BY ASSEMBLY
a.connector.ports =

a.connector@pre.ports + b.connector@pre.ports + a + b

action disconnect (a : Port)
pre: a.connector <> null
post: a.connector = null

A port may have a gender. No more than one source port may be coupled to the same con-
nector.

10.8.4 Connector Design
Figure 10.12 shows a design (one among many possible) of gendered ports, in which a
connection is established by registration. To distinguish the types of this implementation
from the types they represent in the model in Figure 10.11, we alter the names slightly.

The connect action is realized as a collaboration between the owners of the ports.9 The
owner of the sink port is sent a registration message:

action Component1::couple(sink: SinkPort, source:SourcePort)
pre: sink.source = null and connectable(sink, source)
post: sink.source = source and

source.owner–>register(source, sink)

Registration does two things: It records the source and port to which this sink is connected
and results in a message to the source owner:

action Component1::register (source: SourcePort, sink: SinkPort)
pre: sink.owner = self
post: source.sinks += sink

9. If the connect takes place in a component assembly tool, the registration may be hidden within
initialization code generated by the tool.

Figure 10.12 A design for establishing connections.

Component1

Connector

SourcePort

Port1

name
1

owner

port

*

sinks

*source

0,1

SinkPort

Chapter 10 Components and Connectors 417
This code adds the sender to the registry of sinks for this source.

The abstract model’s Connector is realized as the pair of links sinks and source. A Con-
nector exists for each non-empty set of sinks; its ports are the linked SourcePort and Sink-
Port.

10.8.5 Interpretation of Connector Diagrams
Now we must define how the notation we’ve been using for components should be inter-
preted in terms of our component model. We define each box on a component diagram as
a Component1 instance; each emerging arrow is a SourcePort, and each ingoing arrow is a
SinkPort. A connection between components is a Connector in the sense of our abstract
model, which we’ve realized as a complementary pair of links between the ports.

We can translate a typical fragment of componentry10 (see Figure 10.13). This illustra-
tion shows that an architecture gives a meaning to a component diagram by making it an
abbreviation for an object diagram.

10.8.6 Property Connector
Having given a meaning to the basic idea of a connector, we can go on to define the vari-
ous categories we are interested in for Cat One.

A property connector has a value in the source port that is maintained by its owner.
Whenever the value changes, all currently connected sink ports are updated (see Figure

10. We could use explicit stereotypes to indicate the component frameworks being applied; instead,
we assume that a distinguished connector and arrow notation has the same semantics within a partic-
ular component architecture. Also, the semantics work equally for types and instances.

Figure 10.13 Unfolding of a component diagram based on framework.

Our architecture translation

:SinkPort

name=‘start’

:Engine

start stop

speed

value

:Engine
sinks

source
:Meter:Meter

:SinkPort

name=‘stop’

:SinkPort

name=‘value’

:SourcePort

name=‘speed’

418 PART IV IMPLEMENTATION BY ASSEMBLY
10.14). The PropertyConnector framework is applied for each connector marked «prop-
erty» (for which an abbreviation is the filled arrow). The ports are labeled with the appro-
priate substitutions for SourceType and SinkType; the type names should also be used to
generate separate types for the ports.

Suppose that we want to see how our architecture interprets the example shown in Fig-
ure 10.15. The intent of this figure is that the aircraft shown in the aircraft display always
tracks the current plane from the runway control; the ready status of the approach control
tracks the clear status of the runway control.

We can translate first to a framework application: In the context of our composed compo-
nent type, the framework relationships shown in Figure 10.16 on the next page hold between

the parts. The unfolded framework definitions are shown in Figure 10.17.

The complexity of this result is persuasive of the utility of the component notation. The
same technique can be used to give meaning to any additional layer of notation and not
only to components. All this could be defined in a syntax section of the architecture pack-

Figure 10.14 Template for a property connector.

Figure 10.15 Component diagram to interpret.

PropertyConnector

PropertySourcePort :: -- Any value change must update all sinks
inv effect value <> value@pre ==> sinks->forAll (sink | update(self, sink))

PropertySinkPort:: action update (source:Port, sink:Port)

post: sink.value.equals(source.value)

PropertySourcePort

SourcePort SinkPort

value

SourceType

PropertySinkPort

SinkType

value

update

Connector

Runway Control
current

:Plane

show

:Aircraft

AirCraftDisplay

ApproachControl
ready : boolean

clear : boolean

Chapter 10 Components and Connectors 419
age itself along with a suitable mechanism for defining a visual grammar (see Chapter 9,
Model Frameworks and Template Packages).

A straightforward generalization uses a recursive definition of port and connector,
allowing us to make connections either at the level of individual events and properties or
at higher-level bundles of them.

10.9 Specifying Cat One Components

When we specify a component, we take for granted the underlying architecture—mecha-
nisms for registration to receive an output and the like—and focus on a higher-level speci-
fication. Including outputs in a specification (marked «output property», «output event»,
and so on or the equivalent solid arrow notation) implies that all this is assumed. A com-
ponent specification takes the form of a single type description; but as always in Catalysis,
it can be refined and implemented as a collection of objects.

Let’s now look at the main categories of ports in our Cat One architecture one by one
and see how to use specification techniques to define them.

Figure 10.16 Equivalent template applications.

Runway Control

PropertyConnector

PropertyConnector

PlaneSourcePort

Plane

SourceType

PropertySourcePort

BooleanSourcePort

boolean

PropertySourcePort

BooleanSinkPort

PropertySinkPort

SinkTypeSourceType

AirCraftSinkPort

PropertySinkPort
Component1

[port\current]

Component1

[port\clear]

Approach Control

Component1

[port\ready]

Aircraft

SinkType

AirCraftDisplay

Component1

[port\show]

420 PART IV IMPLEMENTATION BY ASSEMBLY
10.9.1 Specifying Input and Output Events
We already know how to specify input events: this category corresponds to the actions or
operations that in previous chapters have been used to specify objects. The only difference
comes in the implementation and runtime effect. An object designed as a component
accepts events according to the protocol defined in a chosen component architecture so
that it can be coupled to other components’ outputs, including any registration required for
those output events. Mechanics for mapping from the output event to the corresponding
input events—including string-based mapping, reflective techniques, or an adapter
object—are defined by the implementation of the architecture.

An output event occurs when a given change of state occurs.
We can specify the change that stimulates the output, using the
“old and new state” notation of postconditions within an effect
invariant (see Section 3.5.4, Effect Invariants). Notice the caret
mark denoting that this message is scheduled to be sent. Here,
we’ve declared the output event superfluously both in text and
pictorially. («output event» pressed could have been omitted.)
Output events can have arguments, which deliver information to
the receiving input events. The usual type matching rules apply.

Certain details of an output event are not specified in this style. For example, how soon
after a qualifying transition takes place must the output be made?11 Nor have we said who

Figure 10.17 Unfolded version of component diagram.

Plane

value value

show

ready

source

sinks

*

sinks

*

source

clear

Aircraft

AircraftDisplay

ApproachControl

BooleanSourcePort

value

boolean

value

boolean

BooleanSinkPort

current

PlaneSourcePort

Runway Control

AircraftSinkPort

Button

down : boolean

«output event» pressed

	 down and not down@pre

		 ==> ^pressed

pressed

11. We can easily add performance specifications either informally or formally.

Chapter 10 Components and Connectors 421
will receive the output, because this will differ for each design in which the component is
used; the architecture guarantees that all connected ports are notified.

Output events aren’t always coupled purely to a state change: an output may happen
only when the change is caused by a given input action. For example, our Button is a
graphical user interface widget that responds to various mouse messages from the win-
dowing system: let’s assume mouseUp, mouseDown, mouseEnter, and mouseLeave. The
latter two happen if the user drags the mouse in or out of the Button’s screen area; the Up
and Down messages are sent only when the mouse is within that area.

Let’s suppose that we want the operation stimulated by the
button to take place when the user has pressed and released
the mouse. As the user presses, the Button changes color,
and it changes back to normal as the release occurs. But
after pressing, the user can make a last-moment decision
not to do the action, signaling the change of mind by drag-
ging the mouse away from the Button before releasing the
mouse key. In this case, the Button returns to the normal
state but does not send the output event.

The required behavior can be readily illustrated with a
state chart. Alternatively, we can show the ^pressed
requirement as part of the postcondition of each action
that causes it:

action mouseUp
post: up and (down@pre ==> ^pressed)

Here are some useful abbreviations for events:

«input event» action (params) action(params)
«output event» operation(params) ^ operation(params)

At a business level, a Warehouse component might publish an event outOf-
Stock(Product) specified as

«output event» outOfStock (p: Product)
inv effect p.stock@pre >= p.minumum & p.stock < minimum ==> ^outOfStock(p)

10.9.2 Specifying Properties
Input and output properties provide a simple way to connect state variables across compo-
nents.

Button

pressed

mouseUp

mouseDown

mouseEnter

mouseLeave

up

mouseLeave

mouseUp

^pressed

mouseDown

down

422 PART IV IMPLEMENTATION BY ASSEMBLY
10.9.2.1 Specifying Output Properties

An output property is an attribute that the component archi-
tecture specifically allows to be visible to other compo-
nents. A chosen component architecture provides a pattern
for implementing attributes tagged with the «output prop-
erty» stereotype.12

Like any other attribute, a property can be used in and
affected by postconditions of events.

In the component’s type definition, properties are
shown textually below the line that separates model from
behavior; the implementor is obliged to make

the property externally visible. But, as usual, the attribute need not be implemented
directly as a stored variable but can instead be computed when required.

10.9.2.2 Specifying Input Properties

An input property is an attribute exposed according to a component architecture so that it
can be controlled by the output of another component. It can be linked with invariants to
other attributes. There is an implied invariant: that an input property will be equal to what-
ever output (of some other component) it may be coupled to. Therefore, although an input
property can be used in a postcondition, it doesn’t make sense to imply that it is changed
by the action:

wrongOp (x : int) post:stepSize = stepSize@pre + x

An input property must always be coupled to exactly one
output property, although it can be coupled to different out-
puts at different times. (The next section deals with creating
and connecting components.)

Pictorially, input and output properties can be shown
with solid arrows, as distinguished from the open arrows
of events. (The shadow emphasizes that this is a compo-
nent—that is, something intended to be implemented
according to a component architecture. But it’s only for
dramatic effect and can be omitted.)

A property value may be an object (and may itself be a component). Updates should be
notified whenever a change in a property would significantly change the sending compo-
nent. A “significant” change is one that would alter the result of an equals comparison
between this component and another component.

If the property changes to point to another object, that would normally be a significant
change. If there is a change of state of the object pointed at, then the significance of the
change depends on whether the property object’s state is considered part of the state of the

12. An example is the get/set method pattern used in JavaBeans for component properties.

Counter

count : int

«input property» stepSize : int

«input event» step()

post:count = count@pre + stepSize

«input property» scale : int

«output property» current: int

inv current = count * scale

Counter

count : int

inv current = count * scale

«input event» step()

post:count = count@pre + stepSize

stepSize : int

current : intscale : int

step : int

Chapter 10 Components and Connectors 423
component. This is the same issue as the definition of equals in Section 9.7, Templates for
Equality and Copying.

10.9.2.3 Require Condition

A require condition is an invariant that it is the responsibility of the component’s user to
maintain. By contrast, a regular invariant is one that, given that the require condition is
true, is maintained by the component. A require condition governs the relationship
between properties. A typical one might be

require scale * stepSize < 1000

As with a precondition, it is a matter of design policy whether the implementor assumes
that the require condition will always be observed by a careful client or whether the imple-
mentation performs checks to see that it is true.

10.9.2.4 Constrained Connectors

A constraint can be imposed on an input and written either against the port in a diagram or
in the type description:

Different component architectures treat constraints differently. The simplest approach is to
treat the constraint as a form of require condition: the user must ensure that it is not vio-
lated.

Alternatively, the architecture can support constraints with a protocol whereby an out-
put requests permission before each change. One such architecture gives the implemen-
tation of every port a method with a signature such as change_request_port_x
(new_value). By default, this returns true. Before altering an output, a component should
send a change request to all the inputs currently registered with that output. If any of them
returns false, this change at this output must not happen, and the component must think of
something else to do.

Another alternative is for the architecture to support an exception/transaction abort
scheme. This approach could be described using the techniques for describing exceptions
in Chapter 8.

Using such a mechanism, constraints can also be applied to outputs and more generally
to combinations of inputs and so on.

10.9.2.5 Bidirectional Properties

An «in out property» can be altered from either end: changes propagate both ways.

10.9.2.6 Port Attributes

In our approach, every port has several attributes; as before, attributes and specification
types need not be directly implemented.

scale : int

[scale>0]

«input property» scale : int

constraint scale > 0

424 PART IV IMPLEMENTATION BY ASSEMBLY
• port.component: The component to which this port belongs.

• inputPort.source: The output port to which an input port is currently coupled.

• outputPort.sinks: The input ports to which an output port is currently coupled.

• propertyPort.value: The object or primitive that is output or input by this property port.
Generally, when there’s no ambiguity it’s convenient to use the name of the property

port by itself, omitting the .value.

• propertyPort.constraint(value): A Boolean function returning, for an input property

port, whether the associated constraint is true for the given value—that is, whether it is

permissible to send this value to this port. For an output port, it is true if true for all the

currently coupled inputs.

Port attributes can be used in specifications. For example, suppose we want to insist that
the Counter always be wired so that the component that sets its scale is the same one that
sets its stepSize:

requires

stepSize.source.component = scale.source.component

10.9.3 Specifying Transfers
A transfer connector sends an object from the source component to the sink. In contrast
with events and properties, each «output transfer» port can be connected to only one «input
transfer»; but the basic library of components includes a Duplicator component that
accepts one input and provides several outputs.

Like properties, transfers are characterized by the type of object transferred.

10.9.4 Specifying Transactions
A transaction connector provides for a property of the component to be locked against
alteration or reading by others; altered; and then either released in its new state or rolled
back to its original state.

10.10 Connecting Cat One Components

Big components are made by connecting smaller ones. In this section we explain how the
connector types in our example architecture support composition.

10.10.1 Connector Properties
An input property can be driven by an output property, and each output can generally drive
any number of inputs. A connection must match types: The output type must be the same
as, or a subtype of, the input type. The input and output can have different labels.

Chapter 10 Components and Connectors 425
It is sometimes useful to make simple transformations
between output and input—for example, multiplying a value
by a fixed constant or translating an object from one type to
another. In the implementation, such things can be done
either by an appropriate small component or by some flexi-
bility in the architecture that permit inputs to accommodate
straightforward translations on-the-fly. For example, in
C++, it is easy to define a translation from one type to
another (with a constructor or user-defined cast), which is
automatically applied by the compiler where necessary.

In our notation, a transformation can either be shown as an explicit annotation to the
connector or, where the output and input types differ, can be left implicit, as the default
translation between those types.

10.10.2 Connecting Events
Unless a particular restriction is specified, an output event can be connected to any num-
ber of inputs, and an input can be connected to any number of outputs.

An output event has a name and a set of arguments; an input event has a name and a set
of parameters. In the simplest connector, only the names differ; then the occurrence of the
output event causes the input to be invoked on all currently registered targets. The argu-
ments must match the parameters in the usual way.

If the parameter lists of the output event differ from those of the input to which it is
coupled, a mapping must be defined at the connector. If the transformation is too complex,
an intermediate component should be defined for the purpose.

An output event can transfer information in two directions: via parameters and via the
return value normally associated with function calls. For that reason, an output event can
have a postcondition at the sending end.13

10.10.3 A Basic Kit of Components for Cat One
A basic kit of components can be defined to which you can add components that are
more domain-oriented. The following is a selection of basic pieces that can be used in
many ways. It’s intended to provide a general flavor of what can be achieved.

speed: int

inv display = speed/10

display: int

voltage: float display: int

picture:List<Shape> image : Bitmap

13. In contrast, in JavaBeans an output event cannot expect any postconditions; this means that it
cannot be used to describe actual services expected from another component.

426 PART IV IMPLEMENTATION BY ASSEMBLY
Standard Boolean processing of Boolean
properties: outputs are true when their inputs
have the relationship marked. (The symbols
come from the tradition of electronic logic.)

In general, properties and events cannot be
coupled. Change Detect generates events on
transition of a Boolean property.

The output of the S gate can be turned on,
turned off, or inverted from its current value.

The Counter tracks inc and dec events.

The D gate freezes a copy of the variable input
at the moment the clock event occurs.

Transfer components:

• Buffer: a FIFO list; it accepts, or emits, any object
(property) on request.

• Split: duplicates each input to all its outputs, where

each output meets the equal criteria on the input.

10.10.4 Dynamically Creating and Connecting Components
Components can be instantiated and connected dynamically.

10.10.4.1 Connecting Components

The port attributes allow us to specify a connection in a postcondition, as in the following
example:

Desk :: login(userName:String)
post:directory.userWithName(userName).gui.source = self

and
:boolean

:boolean

:boolean

:boolean

or
:boolean
:boolean

:booleannot:boolean

gone_true
gone_falseChange Detect:boolean

:booleanS

on

flip

off

:intCounter

inc

zero

dec

frozenD
varying

clock

Buffer
in

«transfer»

out

«transfer»

Split

out1

out2

out3

in

«transfer»

«transfer»

Chapter 10 Components and Connectors 427
10.10.4.2 Instantiating Components

Components are instantiated in the same way as types are instantiated in a postcondition:
by using ComponentType.new. Consider an operation that causes a component to perma-
nently invert the value of a Boolean output property.

action Comp::invert (out: Port)
post: -- a new Not is created

let (n : Not.new) in (
-- whose output connects to the original sink ports
n.sinks = out.sinks@pre
-- and it is attached to the port
out.sinks = n.input

)

A particular component architecture (such as COM+) might intercept the instantiation
and connection operations. (Remember, many of them need to be a part of the standard
infrastructure services; see Section 10.2.2, Components and Standardization.) That com-
ponent infrastructure can monitor the known components and their connections to provide
richer extensions of behavior.

10.10.4.3 Visual Notations

All the standard notations for dynamic creation of objects, links between objects, and car-
dinality constraints on the connections extend also to components. In addition, visual
builder tools may provide alternative visualizations for instantiating components and con-
necting their ports.

10.11 Heterogenous Components

A kit of components is designed to a common architecture and can readily be plugged
together in many ways. But more often, we must use components that were not designed
to work together and may not have been designed specifically to work with any other soft-
ware.

An assembly of disparate components is prone to inconsistencies and gaps in its facili-
ties. And as components are rewritten or substituted, it is easy for its specification to drift.

When you’re building with a heterogenous collection of components, you think less
about making a beautiful architecture into which all the pieces fit. You don’t have the
opportunity of designing them. Instead, you worry about how you can nail together the
pieces you are given to achieve your goals.

You can considerably alleviate these problems by building a requirements model and
then using retrievals to relate the assembly of components back to the requirements. Used

428 PART IV IMPLEMENTATION BY ASSEMBLY
systematically (see Section 13.2.1, Multiple Routes through the Method), this approach
helps keep a consistent vision of the system’s objectives. The work required to construct a
requirements spec and models of the components is repaid by the savings from greater
coherence of the result and the rapidity of assembly that is inherent in component-based
design.

10.11.1 A Requirements Spec
Let’s suppose we are starting a company that sells office equipment. There will be no
showroom—only a catalog mailed to customers—and we’ll have a warehouse and a tele-
phone sales organization. We want to put together a system to assist its operations.

10.11.1.1 Requirements Model

Figure 10.18 shows a quick and rough model of what we’ll deal with.

Most of the types and attributes shown here have an obvious meaning. The primary use
cases in this business include makeOrder, makeCustomer, recordContact, and dispatchS-

hipment; others, such as findOrderDispatches, are more like queries and look up informa-
tion. Let’s elaborate a bit on one sample:

use case dispatchShipment
participants dispatch clerk, shipping vendor
parameters list of <sales items, quantities>
pre sales items not yet fulfilled, all items for same customer

Figure 10.18 Business model for sales company.

Customer

name

address

phone

AccountItem

date

amount : Money

SalesItem

ordered : int

price : Money

note : String

dispatched : int

Product

available : int

stock : int

depletionRate : int

price, identifier

name, description

leadTime : int

Account

balance : Money
Dispatch

date

Catalog

Payment Sale

DispatchItem

quantity : int

SalesOrder

made : Date

fulfilled : [Date]

value : Money

note : String

0,1

1

items

*

*

*

*

sales *

* *

*

*

1

Chapter 10 Components and Connectors 429
post a new Dispatch created, with dispatch items for each
sales orders that have no more pending items marked fulfilled

10.11.1.2 Business Rules

When a sale is made, the sales staff creates an appropriate Customer object (unless one
already exists) and a SalesOrder. The SalesOrder may have several SalesItems, each of
which defines how many of a cataloged Product are required. Products are chosen from a
Catalog. To avoid confusion, there can’t be two SalesItems in a SalesOrder for the same
Product:

inv SalesOrder::
item1 : SalesItem, item2 : SalesItem :: item1 <> item2

implies item1.product <> item2.product

An availability level is recorded for each Product: this is the number of items available in
stock that have not been earmarked for a SalesOrder. Any operation that adds a new
SalesItem also reduces the availability of the relevant Product:

inv effect Product:: newItem: SalesItem ::
sales = sales@pre + newItem
implies availability = availability@pre – newItem.ordered

By contrast, the stock level is the number of items actually in the warehouse; they may
have been ordered but not yet dispatched. Availability can fall below zero (if we’ve taken
orders for products we haven’t got yet), but stock can’t be negative. It is reduced by any
operation that adds a new dispatch:

inv Product :: stock >= 0
inv effect Product :: newDispatch : DispatchItem ::

dispatches = dispatches@pre + newDispatch
implies stock = stock@pre – newDispatch.quantity

(When availability gets low, we start purchasing more stock; but let’s not go into all that in
this example.)

When items are sent to a Customer, a Dispatch object is created. One Dispatch may sat-
isfy several SalesOrders (to the same Customer); and one SalesOrder may be dealt with
over several Dispatches as stocks become available. The total number of items dispatched
must be no more than the number ordered:

inv SalesItem :: dispatched = dispatchItems.quantity->sum

and dispatched <= ordered

We must also send the right things to the right Customer:

inv DispatchItem ::
dispatch.customer = salesItem.salesOrder.customer

and product = salesItem.product

A fulfilled SalesOrder is one all of whose SalesItems have the same dispatched and
ordered counts. The fulfilled attribute is an optional Date:

inv SalesOrder :: (fulfilled <> null) =

(item : salesItems ::item.dispatched = item.ordered)

430 PART IV IMPLEMENTATION BY ASSEMBLY
Any operation that changes the order or dispatches must observe this invariant and set
fulfilled to something other than null after the order is fully satisfied. But we should also
say that the “something” should be the date on which this happened:

inv effect SalesOrder :: (fulfilled@pre = null and fulfilled <> null) ==>
fulfilled = Date.today

Every SalesOrder is recorded as an item in the Customer’s account:

inv SalesOrder:: sale.amount = value
and value = items.price->sum

A further feature is that the sales staff keeps a note of contacts with potential Customers
to remember when and why to pester them next and how much chance there is of getting
some business (see Figure 10.19). Some people do this with sticky notes; others use elec-
tronic organizers. A Contact here is an occasion on which a Customer was spoken to or
sent mail; Customer includes prospects who have not yet made an order.

10.11.1.3 Target Operations and System Context

The new system should support sales, dispatching, and accounts staff (see Figure 10.20 on
the previous page). Here’s a rough list of the actions we’d like the system to perform for
the Sales staff:

(Sales, Support System)::

nextProspect Display a Customer due to be contacted today.

addContact Add details of call and date for next try.

Figure 10.19 Contact-tracking model in sales business.

Figure 10.20 Target context diagram.

Customer

prospect : 0..9

Contact

date : Date

purpose : String

outcome : [String]

history

{seq} *

nextCall

inquiry, order

pay

Sales

Customer Accounts

Dispatch

Support

System

Chapter 10 Components and Connectors 431
makeCustomer Create details of a new Customer.

findCustomer Find a Customer from a name or order reference.

makeOrder Make a SalesOrder for the currently displayed Customer.

findProduct Display a product from the catalog.

addOrderItem Add the currently displayed product to the currently

displayed SalesOrder.

confirmOrder Enter payment details such as card payment or payment on

account; complete order creation.

The Accounts staff should be able to check on the state of a Customer’s account and
enter payments. The Dispatch staff should be able to see the orders and create Dispatches.

10.11.2 A Component-Based Solution
In ancient history (earlier than, say, five or six years ago), we might have set to and
launched a two-year project to write from scratch a mainframe-based system that inte-
grates all these facilities. But that seems very unlikely these days.

Our chief designer immediately recognizes that the contact-tracking requirement corre-
sponds closely to a single-user PC-based application she has seen in use elsewhere. This
will suffice; customers are assigned to sales staff by region, so each salesperson can keep
his or her own contact database. There are several mainframe-based general accounts sys-
tems; and the designer knows of an ordering system that can be brought in and adapted
quickly.

In the interest of meeting rapidly approaching deadlines, therefore, separate systems
are set up to accommodate the preceding requirements (see Figure 10.21). Each salesper-
son works at a PC running four applications: his or her own contacts database that tracks
customers in the assigned region; a products catalog browser (hastily constructed as a
local Web site); and two virtual terminals, each to the Orders and the Accounts systems.
The staff in the warehouse and the Accounts department have their own user interfaces on
these terminals.

Does this design fit the bill? That depends on what each of the chosen components
actually does.

10.11.2.1 Model of the Whole

Let us first build a model of the components in the complete solution as envisioned (see
Figure 10.22). We have annotated it with the types from the requirements model, with a
first guess of where these types will “primarily” be maintained. Life will not be so simple,
of course.

10.11.2.2 Models of Constituent Components

Before we can plan any meaningful interaction between the existing components or start
to develop glue code, we need a model of what they do. Of course, none of them comes
with such a model handy!

432 PART IV IMPLEMENTATION BY ASSEMBLY
By a mixture of experiment and reading the manuals, we build a behavioral model for
each component (their designers have omitted to provide one for us). This procedure is
highly recommended when you’re adopting a component made elsewhere; the same
applies when you’re reviewing an aging component built locally. The exercise clarifies

your understanding of the component, reveals useful questions about its behavior that you
can research further, and also tends to make it clear where its shortcomings lie.

The Contacts system has the type model shown in Figure 10.23. Each known person
has a history of past contacts and a scheduled next contact. There is a set of due contacts:
those that should be worked on. In the reference fields you can put a unique reference
number that can be used externally to identify objects.

Like many simple data storage applications, its operations don’t seem very interesting:
they are different ways of entering, searching, and updating the attributes. There is a current

Figure 10.21 Heterogenous component architecture.

Figure 10.22 Large-grained components modeled.

Orders

Terminal

Accounts

Terminal

Orders

Terminal

Accounts

Terminal

Order

Support

System

Accounts

System

Dispatch

and Stock

Terminals

Accounts

Terminals

Products

Browser

Contacts

DB

Contacts

Support

Products

Catalog

Orders

Terminal

Accounts

Terminal

Sales PCs

Product Catalog Product

Contact, customer

Account, payment

Sale, sale order
Dispatch, dispatch item

1

1

1

*

Company Sales System Design

Ordering System

Accounts System

ContactsDB

regions

Chapter 10 Components and Connectors 433
Contact and, by implication, a current Person and Company: these are displayed on the
screen. createPerson makes a new one; nextDue selects a Person who is due for pestering
again; and there are various find operations that can select a person by name, reference, com-
pany, postal code, and so on.

When a contact is made (a call, e-mail exchange, and so on) the outcome of the current
contact is filled in, and a new Contact attached to the same Person, with suggested date
and purpose of call. There is no way of deciding never to call this Person again or of leav-
ing it to the Person to call when interested. Sales staffers insist that such a course of action
is unthinkable.

The Ordering system attaches Orders to Customers and provides information about the
demand for Products, although not the actual stock (see Figure 10.24). There are opera-
tions for creating new Customers, Orders, and Items. On a longer-term basis, new Products
can be created. When an Order is fulfilled, it is removed from the outstanding list and
linked to a new OrderFulfillment on the completed list.

The Accounts system keeps a record of payments against accounts (see Figure 10.25).
The reference attribute of an account enables it to be cross-referenced to external records.

10.11.2.3 Cross-Component Links

The system is now made up of a disparate set of components; each one keeps a part of the
information needed by the whole system. The Accounts in the Accounts system refer to
the People in the Contacts database. How do we represent these cross-references?

Figure 10.23 The Contacts system.

* known

Company

name

phone

address

website

product

remarks

ContactsDB

current: Contact

past

*

next

0,1

Person

reference

name

phone

address

email

position

remarks

Contact

reference

date

purpose

outcome

remarks

priority: 0..9

* due

action createPerson (personal & company details)

	 post: current.person: Person.new

action nextDue() post: current : due

action find(name) post: current.person.name = name

action contact(current outcome, next purpose & date)

	 post: fills in current contact and makes next

*

434 PART IV IMPLEMENTATION BY ASSEMBLY
Links between types represent any association of the members of one type with the
members of the other type no matter how the association is implemented. Within a single
component, associations typically may be implemented with memory address pointers;
within a single database, associations may be implemented as pairs of keys in a table.
Between components, an association represents a form of identification that each one rec-
ognizes as referring to a single object within itself. For example, we could draw an associ-
ation between Person (real ones) and the Personal_Records in a national Social Security
database: the Social Security number identifies members of one type with those of the
other.

Figure 10.26 Mapping component models and new business process to requirements.

In the company Sales system (see Figure 10.26), the link from Customer to Account is
not held in one component. The Accounts system doesn’t have a notion of Customer. But
we can decide to use reference fields to cross-link them as foreign keys. Within each com-
ponent, the CID (customer identifier) attributes uniquely identify one Person, Customer,
and Account. The CID type itself is understood by all the components (and may be just a

Figure 10.24 The Ordering system.

Figure 10.25 The Accounts system.

* outstanding* completed

OrderFulfillment

date done

Ordering System

0,1

1..*

*
*

Customer

reference

name

address

phone

Order

id: Old

price

date made

Item

quantity

price

Product

catalog ref

name

demand

* catalog

inv Product :: demand = items.quantity->sum

Account

reference

Accounts System

Item

amount

reason: Old

date

*

*

Chapter 10 Components and Connectors 435
number or a string). So the Person::Account link, which tells us where to find accounting
information for a Person, is implemented as the Account in the Accounting System that
has the same reference as the Person’s ref. We have chosen to show both the link and the
CID attributes; the link is a derived one, so we should write an invariant that relates them.

Notice that this is an invariant of the company Sales system design. There is nothing
that constrains a Contacts database in general to have cross-references to Accounts data-
bases; after all, it’s a third-party component. Therefore:

Company Sales System Design :: -- within any instance of this design,
inv

Person :: ref = account.reference
-- each Person’s ref is the same as his or her account reference
-- (We already know from the type diagram that the account is within the
-- Accounting System that belongs to the same Company Sales System Design)

We can do similar things with the other cross-component links. The oscustomer link is
optional, and that makes it more convenient to state more directly how it is represented:

Company Sales System Design :: -- within any instance of this design,
inv

Person :: -- for any Person,
oscustomer = orderSys.customerDB [c | c.ref = ref]
-- my oscustomer is the only member of the (Company Sales System’s)
-- order system’s customer database whose ref attribute is the same as
-- my ref attribute. (So if there is no such customer, oscustomer = null.)

In effect, reference numbers, identifiers, and keys of all kinds are implementations of
links that cross system and subsystem boundaries (see Figure 10.27).

10.11.2.4 Retrievals

Now we must show how all the information mentioned in the business model is actually
represented somewhere in the system design. (See Section 6.4, Spreadsheet: Model

Figure 10.27 Cross-component links.

:Ordering system

:Customer

reference=482 284 567 185

name = “Fred”

.

:actual Customer

Acme Customer Card

432 234 567 135

:Accounts system

:Account

reference=482 284 567 185

436 PART IV IMPLEMENTATION BY ASSEMBLY
For example, our business model mentions a customerBase, a set of Customers. Where
and how are they represented in the system? There is something called Customer in the
design, but that is a Company Sales System Design::Ordering System::Customer, which is
not the same as a Company Sales Business Model :: Customer. Where do we look to find
the complete set of Customers?

For every Customer we know about businesswise, there is a Person in the System
Design. We’ve shown the relationship as the association abs. There are similar direct cor-
respondences for several other types. In fact, the whole business model is implemented by
the whole system design, so we’ve shown that association, too. (The outer type boxes are
shown in gray to reduce clutter in Figure 10.26. In real documentation, you’d show them
separately.) So we can say that

Company Sales System Design :: -- for any member of this particular design,
abs.customerBase -- the customer base of the business model
= contactsDB.known.abs -- is represented by all the Persons in all

-- the contacts databases

(In another implementation, there might not be any one place where all the customers are
stored. For example, there might be Customers in the Ordering system that are not in the
Contacts database. In this case, we’d say

abs.customerBase = contactsDB.known.abs + orderSys.customerDB.abs.)

The abs at the end says that it’s not the Person that is the Customer but rather the
abstraction represented by that part of the implementation. So we should now define what
abs means for a Person:

Company Sales System Design ::
Person :: -- and for each Person, the corresponding Customer’s

abs.info = info -- attributes are got by following various links and then
and abs.account = account.abs -- finding what they represent
and abs.orders = oscustomer.orders.abs
and abs.dispatch = oscustomer.orders.label.abs

Notice the style here: starting with a type in the implementation, we say that it represents
something in the more abstract model—a Customer in this case—which we call abs. Then
we go around all the attributes of that abstraction, saying how each attribute is represented
within the implementation: abs.info = ..., abs.orders = ..., and so on.

Each of these pieces of information can be retrieved from the implementation by fol-
lowing some links. Sometimes, that is enough: the info is a String, which is what we mod-
eled. But often, we navigate to an implementation type, such as Order; so we end up by
saying that it’s not actually the implementation’s Orders, but rather the abstractions they
represent. So we say oscustomers.orders.abs. Then in a separate retrieval, we can define
how Orders are represented, in the same way.

Company Sales System Design ::
Order ::

Refinement

Cross-component links

Customer

info: String

AccountItem

date
amount : Money

Person

uniq ref: CID
info: String

ContactsDB

Contact

reference

SalesItem

ordered : int
price : Money
note : String
dispatched : int

Account

balance : Money
Dispatch

date

Payment

Contact

C o m p a n y S a l e s B u s i n e s s M o d e l

Sale

DispatchItem

quantity : int
dispatched : int

SalesOrder

made : Date
fulfilled : [Date]
value : Money
note : String0,1

* customerBase

1

1

items

*

items

*

orders

*

*

*

*

*

*

1

abs

abs

1

abs

1

C o m p a n y S a l e s S y s t e m D e s i g n

* known

0,1

0,1

1

1

* due

* contactsDB 1 orderSys

1 abs

1 abs

past

*

next

* outstanding* completed

OrderFulfillment

done : Date

«replicate<info>» oscustomer

«foreign_key<ref,ref>»

«printed<id, notes>»

Ordering System

0,1

orderscustomerDB

1..* 1 1 ** Customer

uniq ref: CID
info

Label

notes
id : Old

Order

id : Old

Item

Account

uniq reference:CID

Accounts System
Shipping Label Folder

cdispatch

Item

amount
reason : Old
date

1 account 1 accountItems

accountsSys

1

*

* *
label 0,1

dispatch
Refinement.) This is essential for review and testing, and generating these relationships tends to
expose mistakes.
437

438 PART IV IMPLEMENTATION BY ASSEMBLY
abs.fulfilled = orderFulfillment.date
and abs.value = accountItem.amount
and abs.items = items.abs ... etc

In this way, we can gather together, or retrieve, the attributes of the business model’s
types that are scattered about in the implementation.14, 15

10.11.2.5 Implementing Actions and Business Rules

Now that we know how the requirement’s model is represented in the components stuck
together for the design, we can work out whether and how the required actions are prop-
erly catered to. We need to coordinate the business transactions across our ad hoc compo-
nents. Let’s look at makeOrder, addOrderItem, and confirmOrder.

The requirement for makeOrder is to “create a new Order for the currently displayed
Customer.” In our hastily contrived system, there can be two Customers displayed on a
sales PC screen: one in the Contacts database and another one in the Ordering system.
Because the components are entirely separate, the system provides no guarantee that they
are consistent.

But makeOrder is an action: a specification of something that must be achievable with
the system, although not necessarily something it must take the entire responsibility for.
Remember that we have modeled it as a joint action (see Section 4.2.3, Joint Actions), and
the responsibility partition has not been decided. Our implementation of makeOrder is
shown on the next page.

• The salesperson gets the same Customer dis-
played in the Ordering system window as in

the Contacts database. This may involve creat-
ing a new Customer in the Ordering system,
using the PC’s cut-and-paste facilities to trans-
fer name, reference number, and address from

one window to the other.

• The salesperson uses the Ordering system’s

Order creation operation.

14. You might like to try completing the retrieval. In doing so, you may find that some business
attributes are missing from the implementation.

15. The technique illustrated here is very general. For example, in the highly regulated business of
financial services (banking, insurance), there are many rules about the permitted and prohibited flow
of information in different business areas. At the technology level, the CORBA security service pro-
vides some machinery to implement this. Explicit as-is and essential business models were con-
structed, as was a separate technology model. The formal retrievals highlighted many holes that
needed addressing and established confidence that the solution met the complex requirements.

selectCustomer

createCustomer

createOrder

:Sales staff :Contacts DB :Ordering

Chapter 10 Components and Connectors 439
The Ordering system provides this action directly, although you must first look up the
Product in its list, which carries less information than the separate Web-browsable product
catalog.

The spec says, “Enters payment details, such as a credit card or payment on account.”
According to one of the business rules (see Section 10.11.1.2), the order must be entered
as a sale in an Account associated with this Customer.

The Accounts system is entirely separate from the Ordering system, so it is up to the
sales staff to copy the right numbers into the right accounts.

Again, we’re using the idea of action as specifying the outcome of a dialog between
actors (people and components in this case). When people are involved, this generally
means relying on them to do the right thing.

How would we describe the use case findOrderDispatches in our new business process?
Let’s first look at the original requirements model; this use case is a query, and it is best to
make the specifications of queries trivial by adding convenience attributes to the model.
So we add an attribute on SalesOrder:

SalesOrder::dispatches

-- it is all dispatches for any of my SalesItems
items.dispatchItems.dispatch

action Agent::findOrderDispatches (order, out dispatches)
post: result = order.dispatches

This requirements specification applies whether the underlying process is manual or auto-
mated. The new version refines the required one:

action Agent::findOrderDispatcher (order#)
-- the dispatches with labels whose orders include the target order#

post: result = shippingLabelFolder.labels[order.id->includes(order#)].dispatch

Similarly, the abstract dispatch use case is refined to cdispatch, which now involves the
agent, the ordering system, and the shipping labels folder.

10.11.3 Glue Components
Once the dust of setting up shop has settled a bit, we can make some improvements to the
first support environment. We will move some work from the staff into the machine.

Sales staffers will now work through a Sales Client component (see Figure 10.28). This
is an evolutionary change: the other components will stay exactly as they are. The Sales
Client provides a single user interface to all the components used by the sales staff. It
implements some of the cross-component business rules such as the Account-Order tie-up,
eliminating that area of human error.

In this design, the Sales Client (which runs in each sales PC) integrates the third-party
components; but notice that they still do not talk directly to each other. Often, there is no
facility for this in older components. In a similar way, a Dispatch Client (used by the ware-

440 PART IV IMPLEMENTATION BY ASSEMBLY
house staff) can integrate the Ordering system with a dispatch-tracking system and stock
control.

Now that the Sales Client has become the sales operator’s sole interface with the sys-
tem, it should take complete responsibility for implementing the actions and business rules
associated with sales. Its spec is the sales part of the requirements. It should therefore pro-
vide complete operations for making an order, adding the currently displayed product to
the order, and creating and adding the proper amounts to the Customer’s account.

It is characteristic of third-party components that there is little that is coherent about
their interfaces: they all talk in integers, floats, and characters, and that’s as far as it goes.
There are few standard protocols between components, and locally built glue such as Sales
Client tends to be written to couple to specific components. Nevertheless, if the glue can
be kept minimal, adaptations are not difficult.

Glue components are not always user-interface or client components. Components can
be “wrapped” in locally built code to work to a standard set of connectors, making them
look more like members of a coherent kit.

10.11.4 Federated Architecture
A federated system is one in which the division between components more nearly matches
the division between business roles.

Figure 10.28 First revision: adding glue components.

Sales screen

make order

Customer: Fred

512 666 7272

last call: 2/3/99

Lampshade free

Prospect: 8

Acc. balance: 35

confirm

Order for Fred

Lamp $23

Boring shade $5

Total $28

Payment:

	 card

Product

Boring lampshade

Cat 0566348

Availability: 23

ContactDB

Product

Catalog

Ordering

System

Accounts

System

Sales

Client

Chapter 10 Components and Connectors 441
Improving our system still further, we write our own components. We divide the func-
tions of the Ordering system (see Figure 10.29). One part runs on the salespeople’s PCs,
and the other part runs on the dispatching department’s machine.

Each sales support component has a list of Products and Customers and can generate
Orders. Orders are sent (either immediately or in batches) to Dispatch Support, and corre-
sponding debits are posted to the appropriate accounts. The lists of products and custom-
ers are shared between all sales staff by intermittent replication to a Sales Master
component.

(The pattern of replication is the same for all objects, involving comparison of modifi-
cation dates followed by transmission one way or the other. This suggests «replication» as

a connector category. The same principle applies to «posting», which is about appending
an item to a list that cannot otherwise be altered.)

Each component has a version of the types that support its function. Taken together,
these types retrieve to the requirements types.

Federation brings a number of benefits, including decoupling of outage: Each staff
member can keep working even if other machines are down. It also supports scalability—
the number of sales and dispatching staff is not limited by the power of one machine—and
geographical decoupling: a high-bandwidth connection is not necessary between a sales-
person and other parts of the system, so salespeople could work from home.

On the downside, some replication is necessary of the product catalog and the customer
database. (Replication means ensuring consistency between datasets using intermittent

Figure 10.29 Eventual version: federated architecture.

Sales support

SCustomer

name

phone

address

next call

Order

Product

Contact
*

*

Dispatch support

DCustomer

name

address

Order

Product

*

Sales Static Master

customers, product updates

«replication»

account additions

 «posting»

orders

«posting»

completion

and payment

confirmation

SCustomer

name

phone

address

next call

Product

Contact
*

Accounts support

ACustomer

name

address

phone Account
*

442 PART IV IMPLEMENTATION BY ASSEMBLY
updates, such as when a user logs in occasionally.) However, disk space isn’t very expen-
sive, and the technology of replication has been much developed in recent years, particu-
larly since its popularization by Lotus.

10.11.5 Summary: Heterogenous Components
A designer using a set of components that were not designed as a kit is faced with two
problems:

• Matching their different and redundant views of similar concepts (such as Customer)

• Making their different connectors work together

Glue components can be built to translate the concepts and adapt the connectors; in the
simplest case, the users can perform those functions.

We have seen how a clear, high-level requirements specification, and the retrieval rela-
tionship, helps clarify the relationship between the disparate designs of the components.
We have also seen what needs to be done to unify them.

Chapter 10 Components and Connectors 443
Pattern 10.1 Extracting Generic Code Components

Reuse code by generalizing from existing work to make pluggable components.

Intent
Make an existing component reusable in a broader context. Resources have been assigned
for work outside the immediate project need (see Pattern 10.2, Componentware Manage-
ment).

Considerations
It is often better to make a generic framework model, which requires less investment in the
plug technology needed to make code components plug together. A framework model pro-
vides only the specs for each class that fits into a framework and is typically specialized at
design time. This arrangement is better for performance and requires less runtime plugga-
bility.

It takes hard work to find the most useful generalization that fits many cases—and to
get it right. This effort is worthwhile only for components that will be reused at least four
or five times; the investment doesn’t pay off for some time.

Strategy

Components Cross Projects. It is unusual for someone without much experience to
design a good generic component in advance; such components become apparent only
after you find yourself repeating similar design decisions. It is also not very helpful to find
components in isolation: They work best as part of a coherent kit. Within a small project,
there is not much payoff in developing components: It’s easy to spend too much time hon-
ing beautifully engineered components that aren’t used anywhere else. It’s therefore a far-
sighted architectural job to decide which components are worth working on and integrat-
ing into the local kit.

Identify Common Frameworks. Separate objects and collaborations that have common
features into framework packages and reimport them to apply.

Don’t Overgeneralize. If you simply dream up generalizations, they will not work.

Identify Variable Functionality and Delegate to Separate Plug Objects. Any time
you can encapsulate such variability into a separate object, do so.

Specify Plug Interfaces. Define what you need from anything that plugs into your com-
ponent as well as what you provide to it. Provide the simplest model that makes sense.
“Lower” interfaces generally need to know less than “upper” ones.

444 PART IV IMPLEMENTATION BY ASSEMBLY
Package Your Component. It should be delivered with the following.

• Its plug specifications.

• Its test harness for clients’ plugs—based on the plug spec. This takes one of two forms:

– A stand-alone harness that drives the plug-in and pronounces judgement

– A switchable monitor that checks pre- and postconditions during operation

• A selection of demo or default plug-ins.

The component may be part of a suite of components that can plug together in different
ways.

Chapter 10 Components and Connectors 445
Pattern 10.2 Componentware Management

In this pattern, you devote resources to build, maintain, and promote use of a component
library. There is no free lunch.

Intent
Reuse Motivates the Adoption of
OT. Surveys show that of the main
three motivations managers quote for
taking up object technology, reuse is
the leader. But objects do not automati-
cally promote reuse; rather, they are an
enabling technology that will reduce
costs if well applied. If OT is badly
applied, it

increases costs. These costs always increase in the short term: Investment is required to
move to a reuse culture. The good news is that there are a growing number of success sto-
ries when objects are done right.

Considerations

Maturity. You need a well-defined process already followed by your developers.

What Is Reuse? Cut and paste, also known as “Adopt, adapt, and improve,” is cheap and
easy but provides limited benefits; enhancements to the original do not benefit the reusers
at all.

Programming by adaptation means that if something looks similar, you inherit and
override methods as required. It takes more effort and gives limited benefits. Unless you
adhere to strict rules, superclass enhancements need review of overrides in subclasses.

Relative Number of Managers

R e u s e

Maintainability

Extensibility

Application 1

copy

copy

Application 2

Application 1

subclass

subclass

Application 2

446 PART IV IMPLEMENTATION BY ASSEMBLY
The third approach is to build generic components and import them to reuse. You must
devote substantial resources to a library, but this approach yields the best benefits. It
requires the most investment.

Caveats. Expect limited success initially. For example, payback should not be expected
until after a year or two; pilots will show some success in the short term. It also takes time
for management and technical staff to consistently support the idea long-term, and the
skills required—for generic component design and interface specification—are more
demanding.

Strategy
• Apply the spiral model, with deliberate activities for abstraction and re-refinement.

• Develop a reuse team whose members know and develop the library. Use people with a

perfectionist turn of mind and the right skill set.

• To encourage reuse, offer the services of some reuse team people to development
projects.

• Do not underresource; it is your design capital.

• Apply models, patterns, frameworks, and designs to all stages of the process.

Application 1 Application 2

Generic
Component

Library

Chapter 10 Components and Connectors 447
Pattern 10.3 Build Models from Frameworks

Do not build models from scratch but instead build them by composing frameworks.

Intent
The idea is to generalize modeling work so that you focus on reuse and componentware as
early as possible (see Pattern 10.2, Componentware Management).

Considerations
Large models can be repetitive within similar business environments just as program
designs are. And models also have variability that can be captured by different forms of
factoring and parameterization.

A framework can be only a specification or can also include code implementation (see
Chapter 11, Reuse and Pluggable Designs: Frameworks in Code). The latter requires more
investment in its design and may run slower. Pure specification frameworks help you build
a spec, and then you must implement the result; it does not have the same runtime over-
head of pluggability.

Strategy

Model-only Strategy. In this strategy, you build and use model frameworks.

• Look out for similar patterns within business models, type specifications, and high-
level designs. Also, make frameworks for common design and analysis patterns.

• Extract common models and use placeholders, effects, invariant effects, and abstract
actions to allow you to separate the parts of the models.

• Compose your framework with others. When one type has definitions from more than

one framework, use join composition (see Section 8.3.4, Joining Action Specifica-
tions).

• Implement the composed framework. Each type in the composition will have a spec,
which can be implemented as for the basic design.

• Use a tool that will help you compose model frameworks.

448 PART IV IMPLEMENTATION BY ASSEMBLY
Pattern 10.4 Plug Conformance

Two components fit together if their plug-points conform. Document them with refine-
ments.

Intent
Ensure that two components you’ve acquired (or built) will work with each other.

There are two specifications at a plug-point: the “services offered” advertisement of
one component and the “required” of the other. We must ensure that one matches the other.

How hard this is depends on whether the two components use similar terms. If one hap-
pens to be designed specifically for the other, it’s easy. If that’s not the case but they are
based on the same business model, it’s not very difficult. If the models are entirely differ-
ent, there’s more work to do (for example, see Section 10.11, Heterogenous Components).

Every model is based on imported others; with luck, components concerned with the
same business will import the same packages. Indeed, for this reason it is important to
base your specifications on imported models as much as possible.

Strategy
Document a refinement that shows how one component meets the other. See Chapter 6,
Abstraction, Refinement, and Testing.

Chapter 10 Components and Connectors 449
Pattern 10.5 Using Legacy or Third-Party Components

Make a model of an existing component before using it. Create proxies to act as local rep-
resentatives of the objects accessed through the component.

Intent
This pattern produces a uniform strategy across component boundaries, including legacy
components.

Some of your software may be in the form of a third-party or legacy component. It may
be an infrastructure that you use to serve your middleware or may be part of the core of the
system that implements part of the main business model.

For example, a library management system deals with loans, reservations, and stock
control. A third-party component is bought to deal with membership. This is a convention-
ally written component (probably built atop a standard database) with an API that allows
members to be added, looked up, updated, and deleted.

Considerations

Model Translation. The component may (if you’re lucky!) come with a clearly defined
model. If it doesn’t, it may be useful to build your own type model. The model will show
the component’s view of the information it deals with, together with the operations at the
API. The model will not correspond precisely to your system model.

• It will not contain all the information. For example, the library manager knows each

member’s address, which books the member is currently holding, and what fines are

owed. Only part of this data will be stored in the membership manager.

• The component may be capable of storing other things we aren’t interested in for this

application, such as credit history.

• If the component’s model was written by someone else, its attributes and associations

may be radically different from those of your system model. For example, it may be

designed to associate “reference numbers” with several “short strings,” which you

intend to use for the member name and address.

Associations across Component Boundaries. Any kind of association crossing a compo-
nent boundary—for example, between members and loaned books—must be represented in
some way, typically by a handle that both components map internally to their own ends of
the links. So there may be a reference number used to identify members at the API of the
membership manager; this reference number would be stored wherever we need to associate
our other objects with members.

450 PART IV IMPLEMENTATION BY ASSEMBLY
Strategy
Use proxies outside the component to represent objects stored more completely within it.
Create proxies only when they’re needed. For example, the library looks up a member by
name and gets back a reference handle from the membership manager, which you wrap in
a Member object created for the purpose. Further operations on the Member are dealt with
by that object, which sends changes of address through the API; it can be garbage-col-
lected when we process another member.

To check that the component as described does what you require, make a partial
retrieval between its model and the system’s. Check for conformance of the API specs to
your requirements.

Chapter 10 Components and Connectors 451
10.12 Summary

The Catalysis approach to design is about standing back from the detail so that you can
discuss the most important parts without the clutter of fine detail. You prolong the life of a
design by making your overall vision clear to maintainers, enhancers, and extenders. Ear-
lier in this book we saw how to use models to abstract away implementation details. Pre/
post specifications abstracted what was required of an object rather than how it achieved
it. Joint actions represent, as one thing, an interaction that may be implemented by a series
of messages.

This chapter takes the abstraction one level higher (see Figure 10.30). We have defined
a notation in which components—separately deliverable chunks of software—can be
specified and designed and then plugged together to make bigger components and com-
plete systems. We have also defined a variety of ways in which components can be inter-
connected, abstracting away details of the connectors, and outlined a framework for the
definition of more categories of connectors.

We have applied the Catalysis ideas of modeling and behavioral abstraction to enable
us to specify components aside from their implementations. We have also shown how to
check that plugging a set of heterogenous components together meets a given set of
requirements.

Figure 10.30 Notation for the products of component modeling.

Available connectors are defined in framework packages
for the component architecture.

Interface: abbreviated
Interface: expanded spec

Client

Notation for Basic Components and Interfaces

Runway Control AirCraftDisplay

ApproachControl

Componentl1
l1 «type»

op1
op2

Component (type or instance)

Name of port being connected

Connector: Type implied by arrow,
or by explicit stereotype

General Notation for Components and Connectors

current
:Plane

show
:Aircraft

ready : boolean
clear : boolean

452 PART IV IMPLEMENTATION BY ASSEMBLY

	Part IV Implementation by Assembly
	Chapter 10 Components and Connectors
	10.1 Overview of Component-Based Development
	10.1.1 � General Components
	10.1.2 � Implementation Components
	10.1.2.1 � A Unit of Packaging
	10.1.2.2 � A Unit of Independent Delivery
	10.1.2.3 � Explicit Provided and Required Interfaces
	10.1.2.4 � Complete Separation of Interfaces from Implementation
	10.1.2.5 � Component Composition

	10.1.3 � Components and Binding Times
	10.1.4 � Objects Versus Components
	10.1.4.1 � Is an Object a Component?
	10.1.4.2 � Is a Class a Component?
	10.1.4.3 � Component-Based Design versus OO Design

	10.1.5 � Components and Persistence

	10.2 The Evolution of Components
	10.2.1 � Components and Pluggable Reuse
	10.2.2 � Components and Standardization
	10.2.2.1 � Horizontal (Infrastructure) Standards
	10.2.2.2 � Vertical Standards
	10.2.2.3 � Connector Standards

	10.2.3 � Why the Move to Components?

	10.3 Building Components with Java
	10.3.1 � Reflection
	10.3.2 � Basic JavaBeans
	10.3.3 � Improved Components with JavaBeans
	10.3.4 � Persistence
	10.3.5 � Packaging Using JAR Files
	10.3.6 � Enterprise JavaBeans

	10.4 Components with COM+
	10.5 Components with CORBA
	10.6 Component Kit: Pluggable Components Library
	10.6.1 � Graphical User Interface Kit of Components
	10.6.2 � Kit of Small Components
	10.6.3 � Large Components
	10.6.4 � Component Building Tools

	10.7 Component Architecture
	10.7.1 � The Component-Port-Connector Model
	10.7.1.1 � Component Connector
	10.7.1.2 � Example Connectors

	10.7.2 � Taxonomy of Component Architecture Types

	10.8 Defining Cat One—A Component Architecture
	10.8.1 � Cat One: An Example Component Architecture
	10.8.2 � Defining the Architecture Type
	10.8.3 � Connector Specification
	10.8.4 � Connector Design
	10.8.5 � Interpretation of Connector Diagrams
	10.8.6 � Property Connector

	10.9 Specifying Cat One Components
	10.9.1 � Specifying Input and Output Events
	10.9.2 � Specifying Properties
	10.9.2.1 � Specifying Output Properties
	10.9.2.2 � Specifying Input Properties
	10.9.2.3 � Require Condition
	10.9.2.4 � Constrained Connectors
	10.9.2.5 � Bidirectional Properties
	10.9.2.6 � Port Attributes

	10.9.3 � Specifying Transfers
	10.9.4 � Specifying Transactions

	10.10 Connecting Cat One Components
	10.10.1 � Connector Properties
	10.10.2 � Connecting Events
	10.10.3 � A Basic Kit of Components for Cat One
	10.10.4 � Dynamically Creating and Connecting Components
	10.10.4.1 � Connecting Components
	10.10.4.2 � Instantiating Components
	10.10.4.3 � Visual Notations

	10.11 Heterogenous Components
	10.11.1 � A Requirements Spec
	10.11.1.1 � Requirements Model
	10.11.1.2 � Business Rules
	10.11.1.3 � Target Operations and System Context

	10.11.2 � A Component-Based Solution
	10.11.2.1 � Model of the Whole
	10.11.2.2 � Models of Constituent Components
	10.11.2.3 � Cross-Component Links
	10.11.2.4 � Retrievals
	10.11.2.5 � Implementing Actions and Business Rules

	10.11.3 � Glue Components
	10.11.4 � Federated Architecture
	10.11.5 � Summary: Heterogenous Components
	Pattern 10.1 Extracting Generic Code Components
	Intent
	Considerations
	Strategy
	Components Cross Projects
	Identify Common Frameworks.
	Don’t Overgeneralize.
	Identify Variable Functionality and Delegate to Separate Plug Objects
	Specify Plug Interfaces
	Package Your Component

	Pattern 10.2 Componentware Management
	Intent
	Reuse Motivates the Adoption of OT

	Considerations
	Maturity
	What Is Reuse?
	Caveats

	Strategy

	Pattern 10.3 Build Models from Frameworks
	Intent
	Considerations
	Strategy
	Model-only Strategy

	Pattern 10.4 Plug Conformance
	Intent
	Strategy

	Pattern 10.5 Using Legacy or Third-Party Components
	Intent
	Considerations
	Model Translation
	Associations across Component Boundaries

	Strategy

	10.12 Summary

