
 Chapter 8 Composing Models 

and Specifications

When you’re building models and specifications, it is important to be able to compose
them with a clearly defined and intuitive meaning. This clarity makes reuse and learning
easier, because you can understand the whole by understanding the parts and then recom-
bine them in a predictable way. All descriptions in Catalysis can be composed—from
attributes and actions on a type to entire packages.

A package is always built upon others that it imports. They provide the definitions of
more basic concepts that it uses, all the way down to utter primitives such as numbers and
Booleans.

A package augments and extends the material it imports. It can import several packages
so that their different definitions are combined. In many cases, the different sources of
material will deal with some of the same things.  There must therefore be clear rules
whereby the definitions that are found within a package are joined with others. 

This chapter deals primarily with how to use packages in the building of other packages
and how to interpret the resulting compositions. It also discusses some nuances of specify-
ing and composing specifications of operations in the presence of exceptions.

8.1 Sticking Pieces Together

Every method of development must be good at building its artifacts—models, designs,
plans, and so on—from smaller pieces. We can get our heads around only a small chunk at
a time and can build big things only by sticking small ones together. Moreover, parts are
more likely to be reusable if they can be put together in various ways with predictable
results.

Note: Yes! Entire chapter is an advanced topic.
321



322 PART III FACTORING MODELS AND DESIGNS
Much of this book is about building from parts. We’ll discuss building models from
frameworks and building software from components. The software has its own intricate
plugging mechanisms; this chapter is about the much simpler matter of combining models,
as used in type specifications and collaborations. Here, we are putting together specifica-
tions and high-level designs, so this is a design activity rather than one of integrating code.

There are three specific situations that call for composing models.

• The documentation chapter (Chapter 5) says that we can present a large model as a series 

of smaller diagrams. That’s great for a guided tour through the model, but an implemen-
tor must see everything relevant to each action or type. So we need exact rules by which 

the diagrams recombine to make the big picture. 

• The packages chapter (Chapter 7) talks about one package importing others. We need 

rules governing how to combine the definitions from the different sources. (The frame-
works chapter, Chapter 9 takes this idea even further and combines generic models.)

• Our components (Chapter 10) can have multiple interfaces; that is, they must satisfy 

the expectations of several different clients, who might or might not know about one 

another. Each interface is defined by a type, so we need a way of working out what it 
means to satisfy two or more types at the same time.

This chapter deals with the basic combining mechanisms that are used in different ways
in all these situations.

8.2 Joining and Subtyping

In Catalysis, we use two different ways of composing types: a type join and a type inter-
section.

© Type join A way of composing types that combines two views of the same type; each view 

can  impose its own restrictions on what the designer of the type must achieve (conjoining 

postconditions) or what a client must ensure (conjoining preconditions). Joining happens 

when two views of the same type are presented in different places; they might be in the same 

package or imported from different ones. Joining is about building the text and drawings of a 

specification from various partial descriptions.

© Type intersection A way of composing types that combines two specifications, each of 
which must be fully observed (without restricting the other) by an object that belongs to the 

resulting type. The designer must guarantee each postcondition whenever its precondition is 

met regardless of the other’s pre/post. Type intersection, or subtyping, happens when a com-
ponent or object must satisfy different clients. Each specification must be satisfied indepen-
dently of the other. A type specification defines a set of instances: the objects that satisfy that 
spec. Subtyping is about forming the intersection of two sets: those objects that happen to 

satisfy both specifications.

The behavior of anything from a simple object to a large, complex system can be spec-
ified with a type specification, which has actions specified in terms of a model. The rules
for joining and subtyping can be described as operations that you perform on the specifi-



Chapter 8 Composing Models and Specifications 323
cations. After a quick recap of type intersection, the rest of this chapter will focus on the
joining operation.

8.2.1 Type Intersection: Combining Views
Type intersection means conforming to the expectations of more than one client, each of
whom has a self-contained type specification you must conform to (see Figure 8.1). In any
system that has more than one class of user, each of them has his or her (or its) own view.
In software, the pluggable components that we want to build need the same capability.
From user A’s point of view, no matter what else Our Component does, it must always
conform to the expectations set by Type specification A; the same thing is true of user B.
In the most basic form of OO design, we use our type specifications as the basis for the
design. But here there are two sets of models and actions. How do we go about designing
it? Following are the basic steps for combining two types.

1. Combine the two lists of attributes. If any attributes from the two types have the same
name, determine whether it’s accidental or because the name is inherited from a com-
mon supertype. If it’s the former, rename one of them; it won’t make any difference to
the meaning of the type. But if the duplicate names are inherited, they really do mean
the same thing.

2. Merge the two lists of operations. If each action has a unique name, that’s easy. For
any operation that has specifications from both types, follow these steps.

– and the precondition from each type with the invariant from that type.

– and the postcondition from each type with the invariant from that type.

– Write the new operation specification using the anded expressions as
pre pre1 or pre2
post (pre1==>post1) and (pre2==>post2)

Figure 8.1 Component must satisfy multiple views.

User A




Software or
liveware or
hardware ...

Type A

action - - -

action - - -

Our Component

Contract

User B




Software or
liveware or
hardware ...

Type B

action - - -

action - - -

Contract



324 PART III FACTORING MODELS AND DESIGNS
Why must the invariants be absorbed into the action specs? They must be absorbed
because it’s the pre- and postconditions that are the real behavioral spec: An invariant is
only a way of factoring out common assumptions made by all those within its own con-
text. Outside that context, the same common assumptions might not apply (see Section
3.5.5), so we must make them specific in any pre- and postcondition we want to move out
of the context. After all the actions have been combined, you can probably factor out a
common invariant that occurs in all the combined operation specs.

If we are talking about two 300-page type specifications, this process may take a little
longer. This task is covered properly in the components chapter (Chapter 10), but the
essence is the same on a larger scale.

• Build a new model sufficient to include the state information from both types; verify 

this (and assist the testing team) by writing two sets of abstraction functions ( see Sec-
tion 6.4) that will retrieve any piece of information from your component back into the 

language of each type. 

• Then build your component using façades, each of which is dedicated to dealing with 

only one of these clients (see Section 6.7) and supplies the actions it expects, translated 

from your component’s internal model. 

8.3 Combining Packages and Their Definitions

So far, we’ve rather glibly talked about the way definitions are augmented and combined
when packages are imported. This section looks in more detail at how the materials from
imported packages are combined with each other and with the additional material already
in the importer.

8.3.1 Definitions and Joins
What exactly does a type box in a diagram mean? What does it mean if boxes claiming to
represent the same type appear in different diagrams in a package? Or are imported from
different packages into one? Within one package, boxes headed with the same type name
may appear in different parts of the same diagram,  in different diagrams in the package,
and in textual statements in the dictionary or the documentary narrative. Some of the dia-
grams in the (unfolded) package may have been imported from other packages, but that
makes no difference. Whatever the source of the multiple appearances, it is always possi-
ble to join all of them into a single type definition.

The rules are the same for all kinds of multiple appearances, whether they are multiple
diagrams in one package or definitions from multiple packages. The operation of combin-
ing them is called joining. Frequently, the individual splinters, taken on their own, don’t
denote any type; it’s only when you put them together that they define a set of objects
characterized by a particular behavior. 



Chapter 8 Composing Models and Specifications 325
Each kind of definition that you can find in a package has its own joining rules. This
section describes the rules for each kind.

8.3.2 Joining Packages
You form the join of two packages by forming a bag of all the statements and definitions
from both packages and then joining those definitions with the same names (after any
renaming, as discussed in Section 7.7.1, Name Mapping on Import). This join is applied to
any nested packages along with everything else.

You obtain a package’s full unfolded meaning by joining its imports to its own con-
tents. There are specific rules for joining different kinds of definitions. 

Type specifications are joined by joining their static models and their action specs.

8.3.3 Joining Static Models
To join multiple appearances of a type into a single type definition, follow these rules.

• and all invariants. The type has an effective invariant that is the conjunction of all the 

separate ones.

• Put into a set all the attribute names from the appearances; the completed definition 

should have the same set of attribute names. Include association names and parameter-
ized attributes in the same way.

• For each attribute (or association) name in an appearance, consider any type constraint 
to be an invariant. So count:Integer  means, “For any object x of this type, x.count 
always belongs to the type Integer.” The completed type should contain an invariant 
that ands these together. So

count : Integer and count : Number ==> count : Integer
-- all Integers are Numbers anyway

thing : Boolean and thing : Elephant
-- contradiction – can’t join these definitions, 

unsatisfiable spec
connection : Trasmitter and connection : Receiver
==> connection:Transceiver -- which is a subtype of both of these types

• If the attribute has parameters (similarly, if the association has qualifiers), you can 

write the attributes as overloaded functions, provided that the parameter types don’t 
overlap. So price(CandyBar):¢ and price(FreeFlight):FlyerMiles can remain as two 

attributes, because there is no CandyBar that is also a FreeFlight (yet). The general rule 

is that you first convert the attribute types into invariants of the form

(param1 : Type1 and param2 : Type2) ==> attribute : ResultType

anding such expressions together gives a result that says, “If you start with parameters 

such as these, you get this kind of result; if you start with parameters such as those, you 

get that kind.” If an argument ever belongs to both parameter types, then the result 
should belong to both result types.1



326 PART III FACTORING MODELS AND DESIGNS
8.3.4 Joining Action Specifications
Action specifications are joined according to a covariant rule that permits any appearance
of a type to reinforce preconditions and invariants. The rules apply to operations or actions
localized to particular types and apply to joint actions. 

Treat actions having different signatures (names and parameter lists) separately. For
each action signature, take the individual pre- and postconditions and do the following:

• and the preconditions

• and the postconditions

• and the rely conditions

• and the guarantee conditions

anding preconditions means that in different packages or diagrams (or in different parts of
your narrative) you can use preconditions to deal with different restrictions, confident that
these restrictions will apply regardless of what is analyzed in other packages. Under Fault
Management, we can say that a call can be made only if the Line is not under maintenance;
under Billing, we can say that a call can be made only if the Account associated with the
Line is not in default. Each package has no comprehension of the other’s constraints; yet the
net result is that a call cannot be made unless the line is free from maintenance and not in
default.

anding postconditions means that, in different packages, you can use postconditions to
deal with different consequences of an action: Under Billing, you can say that a charge is
added to the associated Account; under Fault Management, we can say that the count of
successful calls is incremented.

anding rely conditions means that in different packages, you can define different
invariants the designer should be able to rely on while the action is in progress; anding
guarantee conditions allows you do separate invariants your action will preserve.

Thus, the two separate specs could be

action Agent::sell_life_insurance (c: Customer)
pre: c.isAcceptableRisk -- provided the risk factor is OK
post: c.isInsured -- issue insurance when I “sell life insurance”

action Agent::sell_life_insurance (c: Customer)
pre:  c.home : self.territory -- if the customer is a part of my territory
post: territory statistics updated -- update statistics when I “sell life insurance”

The combined spec as the result of joining the two would be

1. All this conforms to the usual contravariant rules.



Chapter 8 Composing Models and Specifications 327
action Agent::sell_life_insurance (c: Customer)
pre: c.isAcceptableRisk and c.home : self.territory -- combine restrictions
post: c.isInsured and territory statistics updated -- combine outcomes

The reason for using these join rules for actions is that each action specification could
have been written without knowledge of the other specification or of its attributes. When I
write my preconditions I do not know what other preconditions you may want to impose
on that action; we both should be confident that, when our separate specifications are
joined together, each can rely on its restrictions still being in force. The same principle
applied to postconditions.

Sometimes, however, you want to write a specification that makes guarantees for cer-
tain cases when these cases may overlap with others. In this case you can use an alterna-
tive style for writing the spec: do not use an explicit precondition but instead describe the
case within the postcondition itself. Here we use the same composition rules:

action Stack::push (in x, out error: Boolean)
post: self.notFull@pre ==> self.top = x and error = false

-- provided I was not full beforehand, x will now be my top element

This spec tells us what happens in the successful case and might be, on its own, all we
need. But perhaps in another part of your spec you want to write down what would happen
in the other case:

action Stack::push (in x, out error: Boolean)
post: self.full@pre ==> error = true

-- provided I was full beforehand, you will get an error flag.
-- I’m not telling you what might happen to my contents!

The joined spec would make one guarantee for one case and another guarantee for the
second case (the two cases happen to be disjoint in this example).

action Stack::push (in x, out error: Boolean)
post: (self.notFull@pre ==> self.top = x and error = false) 

and (self.full@pre ==> error = true)

It is possible to compute a resultant precondition from this specification:

action Stack::push (in x, out error: Boolean)
pre: self.notFull or self.full
post: self.notFull@pre ==> self.top = x and error = false 

and self.full@pre ==> error = true

Hence, these two different styles of writing specs can be used to accomplish these two
different goals of composing separate specifications. More details on dealing with excep-
tion conditions in specifications appear in Section 8.4, Action Exceptions and Composing
Specs.

8.3.5 Joining Type Specifications Is Not Subtyping
A type specification denotes a set of objects: All objects that meet that specification are
members of that type. Some ways of combining type specifications correspond directly to
operating on the corresponding sets of objects; join does not.



328 PART III FACTORING MODELS AND DESIGNS
When you join type specifications, you are combining the descriptions themselves and
not directly the types (sets of objects) they specify. In the usual case, two type specifica-
tions are joined when a package, P1, imports two other packages—P2 and P3—each of
which provides separate specifications (Ts1 and Ts2) for the same type, T. Within package
P1, the resulting specification of type T is the specification that results from a join:

Ts1 join Ts2

In contrast, when you define a subtype, you are defining
a subset of objects; when you combine multiple supertypes,
you are intersecting the corresponding sets. The rule for
intersecting action specs is quite different from the rules for
join. You can write a different expression—T1 * T2—which
represents the type of objects that conform both to T1 and
also to T2—that is, the intersection of the two sets. Type
intersection or 
subtyping is a “no surprises” combination. Anything you’re guaranteed by one spec can’t
possibly be taken away by the other. It is what happens when you have multiple super-
types, each of which provides specs for the same action; or when you combine a supertype
action spec with a corresponding spec in the subtype. 

Suppose we had the following explicitly declared specs:

T1::m pre: A post: X
T2::m pre: B post: Y
T3::m pre: C post: Z

The resulting equivalent spec, after combining with the supertype specs, on the type T3 is
obtained by anding all three pre/post pairs:2

T3::m ( pre: A post: X) and ( pre: B post: Y) and ( pre: C post: Z)

That is equivalent to

T3::m pre: (A or B or C) post: (A @pre ==> X and B @pre ==> Y and C @pre ==> Z)

An implementation of the resulting operation spec is guaranteed to meet the expectation
of anyone who expected either T1 or T2. An invocation of m is valid whenever A is true
(because that would make (A or B or C) true) and is guaranteed to result in X (and perhaps
also Y, Z depending on whether B or C was also true).

When you join two type definitions, you are not usually intersecting the types, depend-
ing on how the action specs were written. For example, if I ask you for an object that con-
forms to Billing’s idea of a Line, I would expect to be able to make calls whenever the
Account is in order. If you give me something that conforms to Billing::Line join
Fault_Management::Line, then I will find to my dismay that sometimes my Account is OK
but I still can’t make calls.

In fact, many partial specifications that you find in models don’t constitute a complete
type specification at all—they have attributes but no actions. Strictly speaking, any object

T3
This type is T1 intersect

T2 intersect (its own properties)

T1 T2

2. In a join, you separately and the precondition and then the postcondition.



Chapter 8 Composing Models and Specifications 329
would satisfy such a type spec, because it states no behavioral requirements. Types that are
only attributes (and associations) are meaningful only as part of the models of larger types.

8.3.6 Joining Action Implementations
You can implement an action’s specification by designing a refinement into a smaller set
of actions—ultimately, in software, messages. Program code is the most detailed kind of
action implementation. Implementations cannot be joined in the same way that specifica-
tions can be joined (see Figure 8.2). First, it isn’t clear what anding two programs together
would mean. The machine must follow one list of instructions or the other; which one
should it execute? Both? In what order? Therefore, your support tool should complain if
you try to provide code for two operations with the same name in the same class or for two
refinements of the same action into different sets of smaller steps.

A second complication is that any implementation of the Call action provided by, say,
the Billing package isn’t likely to satisfy the requirements specified by Fault Management,
because neither world understands the concepts of the other. So we cannot always accept
an imported implementation even if there is no competing implementation from the other
packages.

The only circumstance under which an implementation can be imported is when there
is no difference between the pre/post specification in the imported package and the corre-
sponding specification in the unfolded importer—that is, when there is no extra material
about this action from the other imports, and no extra material is specified here. In that
case, we know that the designer was working to the same spec. 

Does this mean that we cannot bring together code written in different packages? Of
course we can, but the code must be routines that can be referred to separately; and as
designer of the importing package, we must design the implementation that invokes each
of them in the right way. Some languages allow you to invoke super.method(); others per-
mit Super1::method() and Super2::method().

Each of the packages for the telecoms network is a view of the whole system; it is con-
structed from the point of view of one department or business function. Knowing this, the
package designers should not presume to provide their own implementations of overall
actions. Instead, they should provide auxiliary routines that help implement their con-
cerns. So Faults could provide successfulCallLog and Finance could provide callCharge.
The designers of Telecoms Network Implementation can then choose to invoke these rou-
tines where appropriate in their own implementation of Call.

8.3.7 Joining Classes
A class defines an implementation or partial implementation of an object, with program
code for localized actions and variables for storage of its state. A class can also be docu-
mented with invariants over its variables and pre/post specifications for each operation
signature. Some programming languages support these features—notably Eiffel, which
provides a testing facility that uses them.



330 PART III FACTORING MODELS AND DESIGNS
The idea of joining class definitions isn’t something you find in a programming language.
By the time you get to compilation, it’s assumed you’ve chosen your program code and there
is no need to automatically compose it with any other code.

But some programming environments, such as Envy, allow a class to be synthesized from
partial definitions imported from different packages (“applications” in Envy). There are
restrictions that help prevent ad hoc modification of the behavior of the instances. Among
other things, this arrangement permits a useful form of structuring development work.
Because an object typically plays multiple roles and each role is meaningful in the context of
interactions with objects playing other roles, the class is not the best unit of development
work to assign to a person or team; instead, the collaboration between roles should be an
implementation unit.

Other interesting work has been done in the area of subject-oriented programming,
which strives to compose implementation classes that define different views, or roles, of
some objects.

The rules in Catalysis are as follows.

• The joined class has all the variables in the partial definitions. Types must be the same. 
(If they were widened, the preconditions of some methods might fail, finding values in 

the variables they couldn’t cope with; if they were narrowed, some methods might find 

they could not store the values they needed to.)

Figure 8.2 Importing and joining specs versus code.

Spec is only partial

Implementation
parochial

Finance

Account Call
pre ... post ...account...

code account...

Faults

Counter Call
pre ... post ...counter...

code counter++...

Telecoms Network Implementation

Account Call
pre ... post ...counter...

and ... account ...
Counter

But implementation must
be a new one

Synthesized spec
comprehensive



Chapter 8 Composing Models and Specifications 331
• The joined class has all the methods from the partial definitions. Methods are joined 

according to the rules for actions: Only one method for each signature is allowed 

(within this class) and not even that if there is a pre/post spec attached to that signature 

in one of the other joinees. Pre/post specs can be inherited from superclasses.

• Invariants over class variables, and pre- and postconditions attached to message signa-
tures, are treated as for joining types: They are anded.

8.3.8 Joining Narrative
How shall we combine the narrative documentation of a package with those of the pack-
ages being imported? Perhaps the best that can be done automatically is to stick them end
to end. 

But decent support tools provide for a hypertext structure. Importing means that the
points of reference in the original text can be referred to from the importer’s text; and, in
the context of renaming (see Section 7.7.1), the resultant imported text can actually be
customized based on the importer’s text and names.

8.4 Action Exceptions and Composing Specs

Exception handling adds complexity to any application. Even if the normal behavior of a
component would be easily understood, the presence of exceptions often complicates things
dramatically. We want to be able to separate exception specification to simplify the normal
behavior specs, but we also want to address the specific characteristics of exceptions, and
compose specs containing exceptions.

8.4.1 Required Exceptions versus Undefined Behavior
The outcome of invoking an operation with some inputs and initial state will be either
defined—the operation is required to complete and the outcome must satisfy some specifi-
cation—or undefined—the specification does not constrain the outcome for those cases.

Figure 8.3 The spaces of normal and exception behavior.

Normal input

Undefined

e1
e2

What outcome here?Defined

Space of inputs plus
initial states

Exception
input

Normal outcome

Undefined outcome

Space of outcomes: outputs
plus result states

Exception
outcome



332 PART III FACTORING MODELS AND DESIGNS
Any defined behavior could, in turn, be considered as (1) normal—the operation per-
formed the required task—or (2) an exception—the operation did not perform the required
task because of an anomaly and signaled the failure as required. Figure 8.3 illustrates this
behavior. 

It is important to distinguish the exception case, in which the operation has met its
specification with an exceptional outcome, from the undefined case, in which the opera-
tion has no specified behavior. Figure 8.3 shows that normal and exception outcomes are
disjoint, because there should be unambiguous checks to distinguish required success
from required failures; the caller should not be guessing: “Hmm... I wonder whether that
last call succeeded.”

Figure 8.3 also shows that the same input can give rise to different exception outputs
(e1, e2); some inputs may cause more than one exception condition to be true.

8.4.2 Design by Contract versus Defensive Programming
Over the years, there has evolved an approach to programming called defensive program-
ming. In essence, when you implement any operation you do the following.

• Consider the normal invocation of your code; implement it.

• Consider the countless abnormal invocations of your code; implement checks for those 

conditions and take defensive actions such as returning a null or raising an exception.

This approach can be quite damaging. Each implementor provides identified defensive
checks in the code, but none of the interfaces documents what is guaranteed to be checked
and by whom or what outcome is guaranteed in the event of those errors. Responsibilities
become blurred, and the code becomes littered with disorganized, redundant, and inade-
quate checking and handling of exception cases.

Instead, you should be clear about the separation of responsibilities in the design itself.
The specification of each operation should clearly state what assumptions the implementor
makes about the invocations—the caller must ensure that those are met—and what corre-
sponding guarantees the implementor will provide. This includes a specification of which
failure conditions or paths the implementor guarantees to check and the corresponding out-
comes. Then implement to that contract; allow for the defensive programming mode when
you’re debugging the code and when running tests (see Section 6.1.3, Operation Abstrac-
tion).

By all means, employ “defensive specification” at appropriate interfaces in your sys-
tem; but make sure that the checking and exception handling are specified and docu-
mented as part of the interfaces and not just in the code.

8.4.3 Specifying Exceptions
We want to separate normal and exception conditions, both within one spec and across
multiple specs. However, we still want our descriptions to compose with predictable and
intuitive results.



Chapter 8 Composing Models and Specifications 333
In Catalysis, the approach of specifying using pre- and postconditions simplifies mat-
ters, because you can have multiple specifications for an action that compose following
clear rules. However, exceptions pose unique requirements. 

We introduce two special names: normal and exception. These names can be used in
two ways.

1. As Boolean variable names that can be bound before the pre/post specification sec-
tion; define normal and exception in terms of the success and failure indicators that the
operation will use. They are treated as special names, as opposed to names introduced
locally within a let..., because their binding must be shared across all specifications of that
action.

action Shop::order (c: Card, p: Product, a: Address, out success: Integer )
normal = ( success=0 ) ... -- success indication to the caller
exception = ( success < 0) ... -- failure indication to the caller

post: ...

2. As Boolean variables that can be used within a postcondition. For example:

action Shop::order (c: Card, p: Product, a: Address, out success: Integer )
post: c.OK ==> normal -- success indication if card is OK

if (....) then (exception and ....) -- failure indication must be raised if ....
if ( exception ) then ( ..... ) -- any failure must guarantee ....

We can now require the operation never to have an undefined outcome:

post: ( normal or exception ) = true
-- must indicate success or failure; returning +2 would be an implementation bug

Or we require it never to raise any exception outside a particular set:

post: exception ==> ( success = -1 or success = -2 )

We can now write the successful outcome, assuming that the success indicator will be
defined somewhere. Effects are guaranteed with the success indicator:

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: normal ==> ( -- if success is returned, then caller is assured the following

Order*new->notEmpty and -- new order
c.charged (...) and -- customer card charged
( p.noInventory ==> RestockOrder*new [...] notEmpty)

-- restocking order if out of stock

Or we can write conditions under which success must be indicated:

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: c.OK ==> normal -- if the card is OK, definite success indicator

We could write the exception outcomes in the same manner (but see the later discussion
of why this would be inflexible with multiple possible exceptions). 

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: not c.OK ==> ( success = -1 ) -- specific indicator for bad card

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)



334 PART III FACTORING MODELS AND DESIGNS
post: not a.OK ==> ( success = -2 ) -- specific indicator for bad address

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: exception ==> ( Order*new–>isEmpty ) 

-- if failure is signaled, guaranteed that no new order was created

Typically, however, you want to deal with multiple possible exception outcomes in a
more flexible manner. If you place an on-line order, given the preceding spec, what should
happen if the credit card number and address are both invalid? Which exception should be
raised? It is best to leave to the implementor the choice of which exception to signal as
long as failure indication is guaranteed. This technique helps with composition of specifi-
cations, each with its own exception conditions, as is the case of failures in distributed sys-
tems. Hence:

action Shop::order (c: Card, p: Product, a: Address, out success: Integer)
post: -- bad card means some failure indication

not c.OK ==> exception
-- a failure indication, with code -1, will happen only if the card was bad
(exception and success = -1) ==>  not c.OK

This is a common form of specification for exceptions, so we introduce a convenient
query isException on the predefined type Boolean and rewrite it as

post: (not c.OK) . isException (exception, success = -1)

This is exactly equivalent to the longer form. Our definition of isException is as follows:

-- a given trigger condition is Exception means...
Boolean::isException ( generalFailure: Boolean, specificIndication: Boolean ) =

-- if the trigger condition was true, then some failure has been signaled, and
( (self = true) ==> generalFailure ) and

-- the specific Indication will not be raised unless the trigger was true
( generalFailure & specificIndication ==> (self = true ) ) )

One final point: Suppose you write a specification that says simply

Success indicator = a; Failure indicator = b;

If a, then x is guaranteed to have happened; 

If b, then y is guaranteed to have happened.

You would, strictly speaking, have to admit an implementation that simply failed every
time, as long as it met the failure indication. Either you should be more strict about the
kinds of exceptions that can be raised and when, or you should assume a reasonable con-
vention in which the implementor is obliged to try to meet the success goals and should
raise an exception only if that turns out to be impossible.

8.4.3.1 Other Exception Indication Mechanisms

Different languages have different mechanisms to indicate exceptions: return values,
exception objects thrown, signals raised, and so on. For specification purposes, you can
work with any of these, including some language-neutral mechanisms (such as return val-



Chapter 8 Composing Models and Specifications 335
ues; remember that the signature of an abstract action specification is itself always subject
to refinements (see Chapter 6, Abstraction, Refinement, and Testing).

action T::m (....., out success: Boolean)
post: not success ==>  (...guarantees about every indicated failure...)

action T::n (....) throws (Object) -- Java-like exception spec
exception = thrown (Object) -- no using throw except to indicate failure

action T::n (.....) -- WrongState exception spec
post: (self.wrongState) . isException ( thrown (Object), thrown (WrongState) )

Or to make a guarantee on any exception thrown

action T::n (....)
post: thrown ( Object ) ==> (...e.g., all state cleaned up ...)

The meaning of the language-specific mechanisms, such as throw, is provided by work-
ing in a context where the appropriate packages have been imported (see Chapter 9, Model
Frameworks and Template Packages).

8.4.3.2 Exceptions with General Actions

This approach extends to general actions. An exception in an abstract action can be traced
across action refinements. You can specify traces or sequences of detailed actions as rais-
ing an exception on the abstract action (rather than having to invent a new abstract action

for it or having to ignore it at the abstract level). The exception can be traced through
action refinements down to the level of exceptions in program code. 

Of course, when specifying an abstract action you should describe only those excep-
tions that have meaning at that level of abstraction, not every disk or networking failure!

Let us revisit the example in Section 4.2.2, Preview: Documenting a Refinement, on
restocking of a vending machine (see Figure 8.4). Suppose that the warehouse inlet door
for a product can jam when closed. If this outcome is an interesting exception at the
abstract level, it could have been specified as such on the joint action. In the refinement,
the appropriate sequence can be mapped to this abstract exception action.

Figure 8.4 Mapping to an abstract exception action.

close (“jam”)

^ re_stock (..“jam”)

open_door (p)

/ n = 0

insert ()


/ n += 1

WHA

WHB



336 PART III FACTORING MODELS AND DESIGNS
This provides a precise basis for exceptions in traditional use case approaches.

8.4.3.3 Exceptions and Use Case Templates

Just as we introduced a narrative-style template for defining use cases, it is also useful to
incorporate exceptions into use case narratives. 

use case sale
participants retailer, wholesaler
parameters set of items
pre the items must be in stock, retailer must be registered, 

retailer must have cash to pay 

post (normal) retailer has received items and paid cash
wholesaler has received cash and given items

normal indicator confirmation to retailer
exception indicator no sale confirmation to retailer from wholesaler
on exception neither cash nor items transferred

Similarly, as part of the use case documentation it is useful to document those
sequences that might give rise to an exception. The mapping from the formal refinement
description (such as a state chart) to this narrative is straightforward:

use case telephone sale by distributor
refines use case sale
refinement 1. retailer calls wholesaler and is connected to rep

2. rep gets distributor membership information from retailer
3. rep collects order information from retailer, totaling the cost
4. rep confirms items, total, and shipping date with wholesaler
5. both parties hang up
6. shipment arrives at retailer
7. wholesaler invoices retailer
8. retailer pays invoice

abstract result sale was effectively conducted
with amount of the order total, and items as ordered

exception retailer canceled order before it was shipped (step 6, use case sale)
exception outcome confirmed cancellation

-- implicit: non sales confirmation; no cash or items transfer

8.5 Summary

All modeling elements should be composable so that specifications and designs can be
factored into smaller parts and recombined in predictable and intuitive ways. 

Packages usually import other packages, those on which the importers’ definitions are
based. We have looked at the rules whereby imported definitions are combined with new
material and with material from other imports.

Each package has a notional unfolded form, in which all the definitions from the
imports and their imports are visible. New facts and definitions in a package can constrain
its own declared names and those that are imported.



Chapter 8 Composing Models and Specifications 337
You need to take special care when you specify exceptions so that they can be com-
posed and so that abstract actions with exceptions can still be refined. We outlined how to
specify exceptions to meet both these needs, and we linked them to exception paths in use
cases.




	Chapter 8 Composing Models and Specifications
	8.1� Sticking Pieces Together
	8.2� Joining and Subtyping
	8.2.1 � Type Intersection: Combining Views

	8.3� Combining Packages and Their Definitions
	8.3.1 � Definitions and Joins
	8.3.2 � Joining Packages
	8.3.3 � Joining Static Models
	8.3.4 � Joining Action Specifications
	8.3.5 � Joining Type Specifications Is Not Subtyping
	8.3.6 � Joining Action Implementations
	8.3.7 � Joining Classes
	8.3.8 � Joining Narrative

	8.4� Action Exceptions and Composing Specs
	8.4.1 � Required Exceptions versus Undefined Behavior
	8.4.2 � Design by Contract versus Defensive Programming
	8.4.3 � Specifying Exceptions
	8.4.3.1 � Other Exception Indication Mechanisms
	8.4.3.2 � Exceptions with General Actions
	8.4.3.3 � Exceptions and Use Case Templates


	8.5� Summary


