
 Chapter 12 Architecture

Architecture is a word used loosely to mean many different things; yet it is one of the most
important aspects of the design of a system and has far-reaching effects on its success.

An architecture is, first, an abstraction of a system’s implementation. There are many dif-
ferent architectural models that help you understand the system: process, module, usage
dependencies, and so on. These models help you analyze certain qualities of the system:
runtime qualities, such as performance, security, or reliability; and development-time quali-
ties, such as modifiability and portability. These qualities are important to different system
stakeholders: not only the end user but also the system administrator, developer, customer,
maintainer, and so on. Different kinds of usage scenarios, including system modifications
and deployment scenarios, can help you to evaluate architectures against such qualities.

You should clearly define the vocabulary of element types that can be used to describe
an architecture: processes, replicators, buffers, caches, and events. The same is true of the
roles played by the different components: controllers, mediators, routers, and so on. A
good architecture exhibits a coherence and simplicity by being based on a small number of
such elements and patterns that are used consistently throughout the design.

In practice, it is useful to distinguish the application architecture—how the business
logic is split across components and how they interact—from the technical architecture:
all the infrastructure and other domain-independent pieces that support that collaboration.
The four-tier Web-enabled architecture presents a typical case for making this distinction.

12.1 What Is Architecture?

Because the term architecture is often used quite loosely, let us start
with what it is not.

A neat-looking drawing of boxes, circles, and lines, laid out
nicely in Powerpoint or Word, does not constitute an architec-
ture.

Such a drawing leaves many critical questions unanswered. What is the nature of the
blocks A–E: Are they objects, modules, libraries, or processes? Based on the shapes
drawn, are A–D of a similar kind, and is E somehow different? Does the layout imply that

A

B

C

D
E

481

482 PART IV IMPLEMENTATION BY ASSEMBLY
A plays a special role relative to B–D (for example, it is created before them)? What do
the lines between these blocks mean: interprocess communication, compile-time depen-
dencies, data flow?

In short, if given a complete implemented system—source, design documents, devel-
opment structure of the project, and running installation—how would you determine
whether it conformed to this architectural drawing?

© architecture The architecture of a system consists of the structure(s) of its parts (including

design-time, test-time, and runtime hardware and software parts), the nature and relevant
externally visible properties of those parts (modules with interfaces, hardware units,
objects), and the relationships and constraints between them (there are a great many possibly

interesting such relationships).

An architecture must define the parts, the essential external characteristics of each part,
and the relationships between the parts.

12.1.1 Architecture Imposes Decisions and Constraints
In our view, architecture is not only about Gothic-scale structures but is also about all
structures and relationships used down to the level of code.1 The decision to use a four-tier
structure, with a thin client, a Web server, a business application server, and a database, is
architectural. But, in the extreme, we consider a consistent use of getX() and setX(x) meth-
ods also to be part of the (detailed) architecture. This view leads to a somewhat less formal
definition of architecture.

© architecture The set of design decisions about any system (or smaller component) that
keeps its implementors and maintainers from exercising needless creativity.

Here is a sampling of such decisions across a range of granularity:

1. Use a three-tier client-server architecture. All business logic must be in the middle
tier, presentation and dialog on the client, and data services on the server. In this way
you can scale the application server processing independently of persistent storage.

2. Use CORBA for all distribution, using CORBA event channels for notification and
the CORBA relationship service.

3. Use Collection Galore’s collections for representing any collections; by default, use
its List class or else document your reason for not using it.

4. Use Model-View-Controller with an explicit ApplicationModel object to connect any
UI to the business logic and objects.

5. Start every access method with get_ and set_.

6. Every computation component must have update_data and re_compute operations, to
be invoked by the scheduler.

1. Provided that it influences the externally visible properties of the parts.

Chapter 12 Architecture 483
This does not mean that there is no creativity in implementation. Rather, it means that
any level of refinement involves a set of constraining design decisions that define a lim-
ited and consistent toolbox of techniques for downstream work. To continue our lower-
level example, use your creativity to address the problems that matter rather than come up
with your own convention for dealing with get and set methods.

We use the same philosophy in type modeling: When stating behavior requirements,
you have a limited set of terms and their definitions, defined by the type model, that you
can refer to. When implementing a system at any level, your design vocabulary is defined
by a limited set of well-defined constructs.2

12.1.2 Architectural Models
The architecture of a system frequently remains undocumented. If documentation exists, it
may be hopelessly out of date with the implementation; or it may be so fuzzy and ambigu-
ous that there is no way to tell whether it is accurate. To be useful, architecture must be
described in a clear, explicit way to serve as the basis for understanding, implementation,
reuse, and evolution of the system.

Unfortunately, in some contexts, the word architecture is dropped into a discussion to
lend instant credibility to someone’s position: If it is about architecture, it must be
abstract, and surely it cannot be bothered with the difficult questions about what it all
means to an implementation. This leaves us with ill-defined terms and diagrams of boxes
and lines. As with any model, their value is severely degraded if the underlying terms and
notations do not have a clearly defined meaning or if the number and complexity of design
elements render them incomprehensible.

12.1.3 Many Architectural Views
An architectural description is an abstraction; there are many such abstractions that con-
tribute to understanding a system, each one focused on one aspect and omitting other
details. As with any model, there is some definition of conformance—that is, does a given
implementation conform to that architecture? Some views are more focused on the design
and development-time activities; others are relevant when you’re testing or running the
system; still others focus on deployment and upgrade activities. Table 12.1 shows some
useful architectural views and the system parts each one focuses on.

Table 12.1 Various Architectural Views

View Parts Properties and Relations

Domain Types, actions, Attributes, associations, refinements,
subject areas import relations between subject areas

2. Down to the primitive constructs of your programming language; you could almost certainly be
more creative in assembler.

484 PART IV IMPLEMENTATION BY ASSEMBLY
Logical Components, How business logic is logically parti-
connectors tioned in software; how parts colla-

borate
Process Process, thread, Synchronization relations: precedes,

component excludes, controls; assignment of soft-
ware components to processes and
threads

Physical Hardware units, Processing and communication capabilities
networks (speed, latency, resources), communica-

tion relations, topology, physical contain-
ment

Distribution Software components, Deployed on or runs on CPU, can
processes, hardware dynamically move to, network protocols

Calls Methods, classes, Call invocations, parameters, returns,
objects, programs, synchronous versus asynchronous,
procedures data volumes, processing time

Uses Packages Imports, uses, needs the presence of
(more general than “calls”)

Data flow Actions Provides or sets up data for (independ-
ent of call-specific protocols)

Modules Design-time units of Design decisions hidden in work units
development work (packages); refinements used for

submodule decompositions; justifica-
tions, including rationale for choices
made and choices rejected

A small project may need only one of these views. The domain view can map directly
into classes, which also constitutes the units of work without any higher-level component
structuring; and the domain view can run in a single process on a single machine. A large
project can use all these views and can even introduce new ones. These views are not inde-
pendent and it is critical to know how they relate to each other.

In Catalysis, we can use refinement to model abstract objects that do not necessarily
correspond to an instance of an OOP class and abstract actions that may not correspond to
a single OOP message send. Based on this, we can use all the modeling techniques—
including attributes, types, collaborations, refinement, justifications, interactions, snap-
shots, and states—to describe architectural models and their rationale.

Chapter 12 Architecture 485
12.1.3.1 Physical Architecture

The processors in a physical model can be modeled as
objects, their states modeled as attributes, their capabil-
ities modeled as attributes, and communication links
shown as explicit objects. It is useful to make visual
distinctions between categories using stereotypes or a
distinguished notation such as the one UML provides;
or, you can use traditional network diagram symbols
for the different hardware objects. Base operating sys-
tems can be shown as part of this hardware architec-
ture (see Figure 12.1).

12.1.3.2 Software Distribution

Deployment of software is shown here against this physical
model, with different software components shown on different
hardware nodes; for example, the software components in the
four-tier system are shown in Figure 12.5. Note that software
component requirements, such as memory and storage space,
can be modeled as attributes and matched against the corre-
sponding attributes of the hardware. If needed, you can also
explicitly specify the effect of actions, such as node failures
(failover requirements) or network load, against such a model.

Figure 12.1 Networking symbols.

Web client

Web client

Web server + firewall
10/100 Hub

NT server B

NT server A

10

100

IBM AS/400
10

| = Net

Hardware “instances”

cpu-A: CA
speed = 350

cpu-B: CB
speed = 120

link-2:
bandwdith=5
latency=0.2

A

B

UML “node”
notation

A c2

B

c1

486 PART IV IMPLEMENTATION BY ASSEMBLY
12.1.3.3 Process Architecture

Processes and threads can be introduced into a design to deal with essential concurrency in
the problem itself or to handle performance requirements. Both can be modeled as objects
with suitable stereotypes «process» and «thread», and all the tools of object modeling
applied. Processes are mapped to CPUs.

Abstract actions can proceed concurrently with others provided they satisfy concur-
rency constraints. When specifying essential concurrency, we use rely and guarantee
clauses on actions to implicitly constrain what can happen concurrently, or we can explic-
itly define concurrent actions by multiplicities and other explicit constraints.

12.2 Why Architect?

Assuming that to architect means to go through the analyses and reasoning required to
come up with an architecture, why bother?

12.2.1 Multiple Stakeholders and Their Requirements
The architecture largely determines how well the system will meet its requirements. Much
of our earlier focus in this book has been on describing the functional behavior that an end
user would perceive; however, the overall requirements and conflicting objectives are fre-
quently much broader and vary among the different stakeholders—roles of people who
will be involved in the construction of the system (see Table 12.2).

Table 12.2 Concerns and Requirements of Various Stakeholders

Stakeholder Concerns and Requirements

End user Intuitive and correct behavior, helps do tasks, performance,
reliability

System administrator Intuitive behavior, tools to aid monitoring and administration

Marketer Competitive features, time to market, fits into larger market
positioning with other products

Customer On time, low cost, stable

Developer Clear requirements, simple and consistent design approach

Architect Familiar domain, infrastructure, architecture; buildable; meet
others’ requirements

Development manager Predictability and tracking of project, schedule, productive use
of resources including existing or familiar code, cost

Maintainer Understandable, consistent and documented design approach,
easy to make commonly required modifications

A clearly defined architecture defines constraints on the implementation: The compo-
nents must have the required external characteristics, and their interactions and relation-
ships must conform to the prescribed constraints. Architecture describes some of the most

Chapter 12 Architecture 487
far-reaching design decisions about a system, having the greatest impact on how well the
system meets its diverse requirements.

The architectural models are the primary vehicle for communication among all these
stakeholders and for formal review of the models against the system requirements. They
form the basis for an early prototype, against which many qualities can be evaluated even
though there is minimal end-user functionality implemented.

The architecture directly influences the work-breakdown structure of the system and
influences the package structure for the project, project planning and scheduling, team
structure and communication needs, configuration management, testing, and deploy-
ment—in other words, all organizational aspects of the project. On a larger scale, a shared
architecture for a family of products strongly influences the business that owns it.

12.2.2 Many Qualities Are Affected by Architecture
The quality of a system is a measure of how closely it meets all its requirements; it is an
attribute of the design itself. Some qualities can be observed only during runtime because
they relate to the dynamic behavior of the deployed system; others must be observed dur-
ing development or maintenance activities because they relate to the design structure itself
and how it can be manipulated.

Achieving system qualities is an engineering task: Frequently they conflict with one
another. Some of the main qualities—often traditionally partitioned into functional and
nonfunctional requirements—are briefly discussed next:

12.2.2.1 Development-Time Qualities

The following qualities most directly concern the development and maintenance teams;
certain aspects of the architecture can make their life easier.

Modifiability: Is the system design structure amenable to effective modification? Are
frequently requested changes achieved by changes that are fully localized within a single
module or few modules without affecting public interfaces? Modifiability has become the
single most important quality in most systems. Careful separation of concerns, grouping
and hiding of design decisions that are likely to change together, separation of business
functions from infrastructure technology, isolating computation from data and control
transfer strategies, and interface-based specification are all important techniques to sup-
port modifiability.

Reusability: Are there implementation or design units in the system that are good candi-
dates for reuse in another system? Does the system make good use of existing standard
designs, interfaces, or implementations? Interestingly, systems that are designed to be eas-
ily modifiable for expected changes are also those that are the most reusable and the most
maintainable.

Portability: Does the system design permit easy porting to other platforms? Are hard-
ware and infrastructure dependencies localized in the implementation? Portability is gov-

488 PART IV IMPLEMENTATION BY ASSEMBLY
erned almost completely by how well any idiosyncrasies of its computing environment
have been encapsulated.

Buildability: Will the system as designed be easy to implement and build? What third-
party components or libraries does it take advantage of? What tools will be used to assist
in the construction process? Do these tools adequately support working with the compo-
nents or libraries that will be used? Although this is rarely a stated requirement for the end
user or customer, it is an important factor for the development team. Buildability is
affected by the complexity of the design; whether it is counting on new, unproven technol-
ogies and tools; the appropriateness of the tools for the components being used; and the
experience of the development team

Testability: How easy is it to demonstrate defects in the system by stimulating it with test
data? Is it clear how to systematically define the test data based on the documented system
architecture? At a technical level, testability is determined by how easy it is to access the
internal state and inputs of the component so that they can be stimulated and observed.
What’s more, testing is an effort to show conformance (or, more properly, lack of con-
formance) of an implementation to a specification; so testability is determined to a great
extent by clear specifications and rules about how to map from an implementation to the
specification (see Chapter 6). Tests are an important part of any refinement relation in
Catalysis. At least as much attention should be paid to specification and testing as to actual
implementing. For large systems, it is worth explicitly documenting a test architecture,
which can include hardware and software configurations, test tools used, and packages
containing the test cases and results.

System qualities that do not correspond to runtime behaviors—modifiability, portabil-
ity, buildability, and testability—must also be captured as part of requirements-gathering
activities, although evaluating them can be more difficult (see Section 12.3, Architecture
Evaluation with Scenarios).

12.2.2.2 Runtime Qualities

Many requirements can be measured only against a running system. The following most
obvious ones—the requirements of the end user—fall into this category.

Functionality: Does the system, when deployed and running, assist its users in their
tasks? Our previous discussion of business models and system type specification
addresses this quality.

Usability: Does the system at runtime provide an intuitive interface and easily sup-
port the users’ tasks? Does this apply to all categories of users? Building good business
models so that system operations are designed as refinements of business tasks, and get-
ting early user input on user-interfaces, are both important aspects of usability. There are
also other, deeper issues of designing human-computer interactions that are outside our
scope.

Performance: Does the system perform adequately when running—response time, num-
ber of events processed per second, number of concurrent users, and so on? In most large

Chapter 12 Architecture 489
systems, communication and synchronization costs between components, particularly
across a network, dominate performance bottlenecks. Perceived response time can often
be addressed by using multiple threads of control for asynchronous processing of a
request. Performance can be modeled using the arrival rates of different stimuli to the sys-
tem, the latency for different kinds of requests (processing time), and an approximation of
delay caused by interference due to resource contention. The model can be checked as a
back-of-the-envelope calculation, fed into a stochastic queueing model or simulation, or
used to build a load driver for an architectural prototype. For many systems, raw perfor-
mance is no longer the single most dominant quality.

Security: Does the system at runtime prevent unauthorized access or (mis)use? Security
concerns typically include at least authentication—ensuring that the apparent source of a
request is, in fact, who it claims to be—and authorization: ensuring that the authenticated
user is permitted to access the needed set of resources. Security should be modeled as any
other behavioral requirement is modeled. If an existing security mechanism or product is
being used (for example, Kerberos), use a model of that mechanism as a part of your
design models.

Reliability and availability: Does the running system reliably continue to perform cor-
rectly over extended periods of time? What proportion of time is the system up and run-
ning? In the presence of failure, does it degrade gracefully rather than shut down
completely? Reliability is measured as the mean time to system failure; availability is the
proportion of time the system is functioning. Both qualities are typically dealt with by
making the architecture fault-tolerant: using duplicated hardware and software resources.

Scalability: Can the system as designed and deployed be scaled up to handle greater
usage demands (volume of data, numbers of users, rate of requests)? Scalability is
achieved primarily by replicating resources—processors, memory, storage media—and
their software processing counterparts. Component-based designs in which the compo-
nents can be deployed on separate processors, and where the overhead of cross-component
coordination is proportionately small, enhances scalability.

Upgradability: Can the system at runtime be upgraded with new features or versions of
software without bringing operations to a halt? Some systems must be operational continu-
ously, and shutting them down for maintenance or upgrades is a serious matter. Systems that
have a reflective core—the runtime keeps an explicit representation of the software struc-
ture, classes, interfaces, and so on and permits operations on that structure itself—can be the
easiest to upgrade in this manner.

All the qualities that relate to runtime behavior should be captured as part of the behav-
ioral specification of the system,3 including requirements about security, availability, and
performance, because they contribute to the definition of acceptable behavior. For example,
the need to authenticate users before permitting them to access certain operations should be

3. They can often be in a separate section of the documents; our facility of joining combines all
specifications of the same actions.

490 PART IV IMPLEMENTATION BY ASSEMBLY
captured as part of the state transition model of the system. Similarly, the system may need
to complete processing of certain requests in a timely manner for the components around it
to function correctly.

12.2.2.3 A Single Key Quality

Other qualities also influence the design and development of a system. They include time
to market, customizability to different products in a product family, development organi-
zation structure, distributed teams and their areas of expertise, and so on.

But despite this large number of different aspects of the “goodness” of an architecture,
there is one single quality that dominates all others: the conceptual integrity of an archi-
tecture. This ephemeral quality summarizes an architecture’s balance, simplicity, ele-
gance, and practicality. A clean unifying architectural vision, and a consistency of design
structures, can never be achieved by accident or by committee.

12.3 Architecture Evaluation with Scenarios

Although we can broadly state that an architecture that is simple is preferred to one that is
not, we may want a more systematic way to evaluate architectural alternatives.

In Section 12.2.2, Many Qualities Are Affected by Architecture, we explained that
there are many different qualities, both runtime and design-time qualities, that are affected
by the architecture. Quantifying these qualities can be extremely difficult; for example, a
design may easily permit one kind of modification but be resistant to another modifica-
tion.

Hence, we must recognize that most “qualities” of a system are not absolutes but rather
are meaningful only in specific contexts. A system is efficient only with respect to partic-
ular resources being consumed under particular usage profiles; it is modifiable under cer-
tain classes of requested changes.

Because each quality attribute corresponds to a stakeholder performing an action on the
system either at design time or at runtime, we can use scenarios of such interactions to
explore and evaluate an architecture. The main difference here from our original use of the
word scenario (see Section 4.7.4, Scenarios) is that now we are not restricted to only runt-
ime behaviors but include scenarios of system modifications, reuse, and so on.

The scenarios are used to rank the architecture qualitatively based on how well it han-
dles the requirement, such as the number of components changed. Also, if scenarios that
are largely independent affect common components, the responsibilities of those compo-
nents may need reconsideration. Scenario-based evaluation is a relatively new technique,
and we merely mention it here.

Here are some sample scenarios for the less obvious quality attributes.

• Make a batch program operate in an interactive mode and vice versa.

• Change an internal representation.

• Change an external interface that is known to be unstable.

Chapter 12 Architecture 491
• Add a new user function.

• Reuse a component in another system.

• Encrypt data being transmitted across a communication link.

• Integrate with a variety of e-mail systems.

12.4 Architecture Builds on Defined Elements

Simple digital systems are assembled from well-known libraries of parts: combinational
logic gates (and, or, inverters, tri-state buffers); storage elements (flip-flops, registers,
RAM); synchronization parts (clocks, dividers). From these parts are assembled a huge
variety of systems, but all of them can be understood in terms of these basic parts.

Similarly, an architectural model is built from some number of elements: processors,
modules, components, objects, class libraries, threads, and so on. A good architecture is
based on a small set of design elements and uses them in a regular and consistent manner
so that the system substructures are simple and similar.

The starting point for describing an architecture is to define the kinds of elements that
constitute it. At the simplest level, interfaces and implementations are the elements of
architecture. Beyond that, concrete implemented elements—specific kinds of buffers, syn-
chronization primitives, coordinators, kits of parts to be assembled—can be specified as
types or interfaces; more-abstract ones—design patterns, patterns of connectors and com-
ponents—can be described using model frameworks. It is even possible for certain archi-
tectural qualities to be quantified, in a parameterized form, on the framework level. After
these elements have been defined, the architecture itself can be described using these as
“primitives.”

12.4.1 Components and Connectors
As explained in Chapter 10, Components and Connectors, a component kit defines a set of
components that are designed to work naturally together. The underlying idea is quite gen-
eral, and frameworks let us define our own new kinds of components, ports, and connec-
tors.

A sample architecture might be based on Cat One (see Section 10.8.1, Cat One: An
Example Component Architecture. Its categories of ports include <<Event>>, an outgoing
notification from a component to all other registered components; <<Property>>, a value
that can be kept constantly in sync with another; and <<Transfer>>, wherein an object is
moved from an output port to an input port. Using these ports, we can build a general-pur-
pose set of components, such as those shown in Figure 12.2. An architecture can now be
described as a configuration of such elements and their interconnections using the defined
connectors.

492 PART IV IMPLEMENTATION BY ASSEMBLY
12.4.2 Concurrency and Threads
A thread is a totally ordered set of events, or a sequential trace of execution, that can run
concurrently with other threads. A thread is conceptually orthogonal to an object,4 and its
trace can involve the methods of many objects. Programming multithreaded systems is a
tricky business, because you constantly must worry about the effects of concurrent activi-
ties; specifically

• Interference, in which one thread inadvertently interferes with state information that is

being used by another

• Cooperation, in which two threads that are progressing concurrently at their own pace

need to coordinate their activities at specific points in their execution

Just as programming language constructs relieve you of the tedium of assembler, multi-
threaded systems benefit from a library of concurrency and synchronization primitives.

• Bounded buffer, a thread-safe buffer with bounded capacity.

• Future, a “promise” of a return value that can be returned eagerly and passed around.
When its value is finally accessed, it may block the accessor if the value is not yet
available.

• Semaphore, an integer variable with an associated queue of waiting processes.

• Condition variables, state variables that a thread can synchronize on. A waiting thread

is notified precisely when those variables change.

• Timers, which wake up at programmable times, take an action, and then go back to

sleep.

12.4.3 Pipes and Filters
The well-known pipe-and-filter architecture can be described as another set of compo-
nents and connectors. The components are filters: stateless components that transform
their inputs into outputs; they have input and output ports corresponding to each input and
output. The connectors are the pipes the interconnect filter outputs to inputs.

Figure 12.2 Sample low-level component kit.

4. Except in the “active object model,” which associates a thread with each active object.

and

S

:boolean
:boolean

:boolean

on

flip

off

:boolean

:boolean
:intCounter

dec
zero

inc

Change Detect
gone_true
gone_false

Chapter 12 Architecture 493
12.4.4 Third-Party Libraries and Tools
Packages and their import structure define a development-time architectural model. In
Catalysis, the imports define definitional and usage dependencies.

One architectural view includes all third-party libraries that will be used and import
relations from packages that make use of these libraries. This view also explicitly
describes the packages for tools (compilers, UI builders, and so on) that are used to popu-
late other packages (containing object code, UI screens, and so on), documenting all
project and module usage dependencies.

12.5 Architecture Uses Consistent Patterns

Having a set of design elements—components, connectors, object types—provides a
higher-level language for describing an architecture. The use of these elements should also
follow consistent patterns, and many of these patterns can themselves be formalized using
frameworks. This section outlines a few such patterns; the details of formalizing them as
frameworks is omitted. These examples are only illustrative not intended to serve as gen-
eral prescriptions for architecture.

12.5.1 Event Notification Design Pattern
An event is an interesting change in state. There are many ways to design with events; this
pattern defines one consistent style. To publish an event, E, from a component to inter-
ested subscribers, follow these steps.

1. Define the signature of E on an interface named E_Listener.

2. Add a pair of methods add_E_Listener and remove_E_Listener to manage the set of
registered listeners on the component.

3. Document the event information in the parameters passed with E.

12.5.2 Subsystem Controller Pattern
Subsystems can interact with each other in many ways. This pattern defines a consistent
scheme governing those interactions. For every subsystem, you may choose to uniformly
have a distinguished head object that controls the connections between its children’s ports
and those in other subsystems based on a naming scheme. The head object also mediates
all control and asynchronous communication between the subsystem and its parent system
and coordinates the activities of its child components (see Figure 12.3). This arrangement
gives a consistent structure for every subsystem: a head object, a defined role relative to its
children, and a consistent protocol regardless of actual subsystem function.

494 PART IV IMPLEMENTATION BY ASSEMBLY
12.5.3 Interface Packages Pattern
Packages can be structured in many different ways. The separation of an interface from
classes in separate packages provides a pattern for setting up the project package structure.
Combined with consistent naming conventions, it makes certain aspects of the architecture
very visible in the project development structure (see Section 7.4.1, Role-based Decou-
pling of Classes).

12.5.4 Enterprise JavaBeans Pattern
The 1.0 specs of Enterprise JavaBeans are a good example of standard architectural pat-
terns and how they can be used to define a simple and consistent architecture even for
large-scale business systems.

12.5.5 Architectural Rules and Styles
In addition to the patterns themselves—event notification, subsystem controller—the
architecture often dictates the rules that govern when these patterns must be applied and

when they should not be used. Thus, we may decide that every single subsystem must fol-
low the subsystem controller pattern (CP). We can document this in an architectural pack-
age (see Figure 12.4).

Architectural rules can be documented using frameworks and other modeling con-
structs, including the ability to “say more” about a modeling element in another package.
You can introduce shortcut notations to tag design elements as belonging to certain archi-
tectural categories, using stereotypes or customized notations. If formalizing the rules
seems too heavyweight for some rules, describe them in concise prose or use whatever
mechanism is appropriate. Regardless of how they are documented, all such rules should
be explicitly placed into an architecture package that is imported by all relevant detailed
design packages.

Figure 12.3 Consistent structure on subsystems.

controller

Virtual connection (actually goes through controllers
and child-naming scheme)

controller

Chapter 12 Architecture 495
© architectural style An architectural style (or type) is defined by a package (with nested

packages) that has a consistent set of architectural elements, patterns, rules for using them,
and stereotype or other notational shorthands for expressing their usage.

For example, layered architectures frequently use a special notation. A catalog of such
architectural styles can be built in a way that’s much like the use of frameworks in
Section 9.8.2, Stereotypes and Dialects.

12.6 Application versus Technical Architecture

It is useful to separate the application architecture from the infrastructure parts (which we
will call the technical architecture).

12.6.1 Application Architecture Partitions Business Logic
Application architecture is the partitioning of business logic across components and the
design of their collaborations to meet the specified behavioral requirements. Application
architecture is high-level logical design. In one sense it is entirely technology-indepen-
dent, or at least the models are. However, how well a design fulfills other quality

Figure 12.4 Defining the architectural rule for subsystem controllers.

Every subsystem has
a CP pattern between
its controller and its
components

Any package that
imports Arch will see this
definition of subsystem

Generic definition of CP, its
roles, constraints, etc.

Arch

Controller

Subsystem

CP

Component

CP

*

Example of layered
architecture notation

496 PART IV IMPLEMENTATION BY ASSEMBLY
attributes, most notably performance, depends quite dramatically on the underlying tech-
nology: machines, networking, middleware, and so on.

Hence, even though logical application architecture can be started early, it should piggy-
back on the physical and technical architecture to determine feasibility.

12.6.2 Technical Architecture Is Domain-Independent
The technical architecture includes all domain-independent design decisions, including
the communication middleware that is used to enable communication between application
architectural components; the patterns and rules that are followed in using the middle-
ware; all domain-independent libraries that may be needed to build the system; and the
rules for using them. The domain-independent facilities include the following:

• Communication middleware, the infrastructure that mediates between distributed com-
ponents

• Command-line parser, a component to read commands and parse them against a com-
mand grammar

• State-machine interpreter, a means to interpret a reified representation of a state

machine regardless of what the machine does

• Event logging, a facility to record all notable events, including communication, excep-
tions, and alarms

• Data access services, a layer that centralizes services to access the databases

• Exception signaling, the mechanism to signal, handle, and recover from various kinds

of exceptions

• Start-up, monitor, shutdown, and failover, the mechanisms to start up the system, mon-
itor its operations for things such as time-outs, shut the system down gracefully, and

deal with failures

• Query processor, a means to deal with general ad hoc queries against any data model

12.6.3 Implement the Technical Architecture Early
Most project risk comes from two sources: business requirements and technology infra-
structure. It is common for a project team to evaluate complexity based mostly on the
business requirements—the problem domain itself—and vastly underestimate the effort it
will take to implement all the plumbing and supporting pieces that are not domain-spe-
cific.

Unfortunately, until component-based development becomes the norm and until project
managers understand the economics of buying the kinds of domain-independent compo-
nents described earlier, we will still be building many of them. If most of the elements of
the technical architecture are already implemented, then estimating the development time
for business functions becomes much less like a black art.

Hence, you should implement the technical architecture as early as possible. Have all
communication paths working—from user input and command-line parsing to the data

Chapter 12 Architecture 497
access services—even with the minimum of end-user functionality; and test that architec-
ture for performance.

12.7 Typical Four-Tier Business Architecture

A typical Web-enabled business system might adopt an architecture with four physical
tiers, as shown informally in Figure 12.5. The four tiers are as follows.

• Clients: Browsers and traditional GUIs can connect using HTTP to a Web server.

• Web server: This tier forwards appropriate requests to a servelet, a request handler that
uses a standard API to plug in to the Web server. It translates CGI-encoded requests into
proper method calls using distributed object invocations on an enterprise component.
Then it formats and returns the results to the client.

• Enterprise JavaBean: This business component provides a meaningful business service
using an uncluttered business type model via method invocation protocols such as Java
RMI, or CORBA IIOP, or COM+ and communicating via a proprietary protocol to a leg-
acy system and database. This component is also plugged in to an EJB container supplied
by the legacy system vendor to provide security, transaction, threading, and other infra-
structure services. This tier adds load balancing and failover behaviors, mostly provided
by the container.

• Legacy adapter: This thin layer shields business objects from idiosyncrasies of the leg-
acy system and its representations.

Figure 12.5 A Web-enabled business system with four physical tiers.

Clients

Web server

Business objects and
components server

Mainframe

Web Server
EJB Container

Servelet

Browser

«https»

«https»
«RMI»

«SNA»
Non-browser

GUI

Legacy Adapter

Enterprise
JavaBean

Legacy System

498 PART IV IMPLEMENTATION BY ASSEMBLY
We can describe this architecture with a combination of a physical model, a component
deployment model, and frameworks for the protocols used between these components.
Moreover, the four-tier structure itself can be described as a framework.

12.8 User Interfaces

The Model-View-Controller (MVC) architecture (or some variant) is commonly used in
the design of user interfaces. A user-interface element is associated with a single
model—the object that acts as the source of the information presented, and the recipient
of user requests. Each element is designed as a pair of a view, which deals with the pre-
sentation aspects of information from the model; and a controller, which is responsible
for interpreting user inputs and gestures for the view and the model. The view and con-
troller roles are combined into a single object in some variants.

When initially describing the system context, we avoid describing UI specifics,
because these can vary. Detailed interactions via the user interface are better treated as a
refinement of the abstract use cases that are being carried out. The basic MVC architecture
applies to many forms of user interfaces, including graphical, character-based, touch
screen, and voice-response.

At a higher level, it is useful to document the dialog flow of the UI, shown as a state
transition diagram, where each state corresponds to a particular window that is active at
that point in the interaction. At a more detailed level, we need uniform mechanisms to
assemble the user interfaces and respond to their events.

There are various ways to build and connect user interfaces to business objects. The
scheme you use depends largely on your user-interface frameworks. Following is a simple
scheme broken into two main phases: configuration (creates and connects the appropriate
objects) and run (user interacts with the widgets).

12.8.1 Configuration
For each window (or major panel within a window), follow these steps to configure the
UI.

1. Create one application object. This object coordinates and mediates among the UI
widgets and between the widgets and the business objects. The application object is
created at the appropriate point in the dialog flow; in contrast, the business objects are
created from persistent storage.

2. The application object creates its corresponding UI panel and populates it with its
widgets.

3. The application object registers the widgets as its observer; later, a single changed
method will inform all these widgets to update themselves.

4. The application object registers itself as the listener for events from each relevant
widget; if necessary, it creates intermediate adapter objects to listen directly for these

Chapter 12 Architecture 499
events and to translate them into callbacks to the application object (for example, if
you have two buttons, both of which generate a pressed event).

5. The application object registers itself as an observer for the relevant business objects.
When they change they update the application object, which updates the widgets if
necessary (see Figure 12.6).

12.8.2 Run
During the run phase, the following actions occur.

1. The user manipulates a widget.

2. The widget generates the appropriate event to the application object (possibly through
an intermediate adapter object).

3. The application object makes necessary changes to its state to reflect the progress of
the interaction dialog; then it generates a command to the business object; then it
propagates updates to the widgets.

4. The widgets update themselves by calling back to the application object for the state
information they need (again, possibly translated by the intermediate adapter).

Figure 12.6 A typical UI interaction.

Configure

Run

UI widgets (w) Application object (a)

create()

register_event_listener(a)

state_change_event ()

update()

register_observer(a)

register_observer(w)

update()

translated_command(a)

get_view_info ()

Business objects (b)

update dialog state()
notification()

get_view_info ()

manipulate()

500 PART IV IMPLEMENTATION BY ASSEMBLY
12.8.3 Reuse and the UI
You can sometimes make the user interface elements and the application object reusable
so that you can create larger panels and application objects such as the following:

• video_title_selector: application object plus panel to help select a video title

• video_copy_scanner: application object plus panel to scan in a video copy

• member_selector: application object plus panel to select a member

Follow these steps.

1. Devise an event protocol to make these elements composable. For example, each
application object checks with its container before it sends commands to its business
objects.

2. If the application object represents an action in progress, name it as such.
– check_out_video_application_object
– return_video_application_object

3. Use typed event channels instead of generic subject-observer where necessary (see
Section 12.5.1).

4. Use a scheme to batch the updates as needed.

12.8.4 Patterns in the UI
Define standard patterns to be followed in constructing the user interfaces. Many of these
patterns can be formalized as frameworks. Examples are a master-slave listbox for navi-
gating any 1-N association and a drill-down into data details using a tree panel.

12.9 Objects and Databases

In most applications the state of the business objects must persist even when the process or
application that created them exits. There are three main approaches to providing this per-
sistence.

12.9.1 Flat Files
Each object has the ability to serialize itself and also to initialize itself from a serialized
representation. If the programming language has a reflective facility, you can write a sin-
gle piece of code to determine the structure of the object and perform serialization and ini-
tialization. Java serialization works this way. Of course, flat files do not provide any of the
multi-user, concurrency, meta-data, schema evolution, transaction, and recovery facilities
that a database provides.

Chapter 12 Architecture 501
12.9.2 Relational Databases
In using a relational database, the interlinked object structure is translated into a represen-
tation based on tables and rows. Each object typically is a row in a table; one table is
defined for each class (sans inheritance).

• The object identity is a primary key, usually generated by the database.

• Simple attributes are stored directly (if they correspond to built-in database types).

• Single-valued “object” attributes are stored as a foreign key referring to another table.

• Multivalued associations cannot be stored directly. Instead, they are stored as an

inverse foreign key, and a join is performed to traverse the association.

• Inheritance cannot be mapped directly. There are several alternative schemes, well doc-
umented elsewhere, that are systematic and make different trade-offs.

The overall disadvantages of relational databases are as follows.

• Because of the different models of programming and persistence, impedence mismatch

becomes a major development cost. It is alleviated by products that help automate the

mapping.

• The cost of multiple joins can become prohibitive for a highly structured data model.
However, some relational databases have recently shown tremendous improvements in

this area.

• The data access is usually not integrated with the programming language.

Conversely, relational databases have a number of advantages.

• Relational technology has been around for a while. It is mature and well understood at
both a formal and a practical level.

• Query languages include declarative access and querying using SQL.

• Relational technology permits the use of multiple views: virtual “schema” that can be

treated like the real schema, at least for query purposes.

• Relational databases are scalable and easily handle the terabyte range and hundreds of
users.

12.9.3 Object-Oriented Databases
With object-oriented databases, the interlinked object model is transparently carried over
to persistence, and the developer is concerned with logical things—transaction bound-
aries, concurrency, how far to propagate locks—rather than mapping between two dissim-
ilar models.

The disadvantages of this approach include the following.

• Object-oriented databases scale to very large datasets but they do not have the maturity

of relational products.

• OODBs traditionally have not supported declarative query access, choosing explicit
navigation instead. This situation is starting to change, with standards such as the

ODMG.

502 PART IV IMPLEMENTATION BY ASSEMBLY
• Commercial OODBs do not provide a flexible mechanism for multiple views of a com-
mon underlying schema.

• The simplicity of the mapping can be deceptive. You still have to carefully design the

volume of persistent data, granularity of objects that are made persistent, and transac-
tion boundaries.

The advantages are as follows.

• OODBs present no major conceptual barrier for persistence.

• Within their scaling limits, OODBs traditionally have vastly outperformed relational
databases.

12.9.4 Hybrid Object-Relational Databases
These purport to provide the best of both worlds. They are a relatively new technology and
are worth watching as they mature. The growth of the World Wide Web has spurred on
this segment significantly, because WWW demands better support for complex structured
documents and other data.

12.10 Summary

The architecture of a system is the set of design decisions that constrain its implementors
and maintainers. A good architecture is one that defines a small set of elements to be used
in a consistent and regular way, and one in which conformance to the architecture can be
clearly defined.

The architecture of a system has a direct impact on its qualities—performance, funtion-
ality, understandability, maintainability, portability, testability, functionality, scalability,
and so on. Scenarios are a promising way to evaluate an architecture against these quali-
ties.

There are many different architectural views of a system, calling for different kinds
of elements. These elements include hardware and networks, packages and their struc-
tures, object types and relationships, concurrent processes and threads, tables and col-
umns, and the patterns that dictate how they are to be used. An architectural style, or
type, defines a consistent set of elements and rules for their use.

Chapter 12 Architecture 503

	Chapter 12 Architecture
	12.1 What Is Architecture?
	12.1.1 � Architecture Imposes Decisions and Constraints
	12.1.2 � Architectural Models
	12.1.3 � Many Architectural Views
	12.1.3.1 � Physical Architecture
	12.1.3.2 � Software Distribution
	12.1.3.3 � Process Architecture

	12.2 Why Architect?
	12.2.1 � Multiple Stakeholders and Their Requirements
	12.2.2 � Many Qualities Are Affected by Architecture
	12.2.2.1 � Development-Time Qualities
	Modifiability:
	Reusability:
	Portability:
	Buildability
	Testability

	12.2.2.2 � Runtime Qualities
	Functionality
	Usability:
	Performance
	Security
	Reliability and availability
	Scalability:
	Upgradability

	12.2.2.3 � A Single Key Quality

	12.3 Architecture Evaluation with Scenarios
	12.4 Architecture Builds on Defined Elements
	12.4.1 � Components and Connectors
	12.4.2 � Concurrency and Threads
	12.4.3 � Pipes and Filters
	12.4.4 � Third-Party Libraries and Tools

	12.5 Architecture Uses Consistent Patterns
	12.5.1 � Event Notification Design Pattern
	12.5.2 � Subsystem Controller Pattern
	12.5.3 � Interface Packages Pattern
	12.5.4 � Enterprise JavaBeans Pattern
	12.5.5 � Architectural Rules and Styles

	12.6 Application versus Technical Architecture
	12.6.1 � Application Architecture Partitions Business Logic
	12.6.2 � Technical Architecture Is Domain-Independent
	12.6.3 � Implement the Technical Architecture Early

	12.7 Typical Four-Tier Business Architecture
	12.8 User Interfaces
	12.8.1 � Configuration
	12.8.2 � Run
	12.8.3 � Reuse and the UI
	12.8.4 � Patterns in the UI

	12.9 Objects and Databases
	12.9.1 � Flat Files
	12.9.2 � Relational Databases
	12.9.3 � Object-Oriented Databases
	12.9.4 � Hybrid Object-Relational Databases

	12.10 Summary

