
 Chapter 13 Process Overview

This chapter provides an overview of the Catalysis development process, describing how
development artifacts can be structured, developed, and evolved on a typical project. The
case study used in the next four chapters illustrates specific application of this process to a
sample problem but does not illustrate all nuances of a complete development.

Section 13.1 provides a short recap of modeling, designing, and implementing with
objects, from business to code and specification to deployment.

Section 13.2 is a general introduction to the process. It covers various routes through
the method, its parallel and iterative nature, the continuous attention to QA and testing,
and its early emphasis on architecture (both static dependencies and dynamic aspects).

Section 13.3 outlines how a typical project might evolve over time and explains how
the development of various artifacts may overlap.

Section 13.4 describes a typical structure of packages for a project. This structure
shows up in project planning, certain elements of system architecture, and the structure of
documentation.

Section 13.5 introduces a set of process patterns that are elaborated on throughout the
case study. These patterns describe some of the broad contexts for development and a rea-
sonable strategy for each one. Pattern 13.1, Object Development from Scratch, outlines an
approach for developing a system from scratch. Pattern 13.2, Reengineering, addresses
the case when an existing design is being reworked. Pattern 13.3, Short-Cycle Develop-
ment, motivates development in short incremental cycles as a useful basis for many
projects.

13.1 Model, Design, Implement, and Test—Recursively

The process of modeling and designing is recursive throughout business, component spec-
ification, and internal design. Similarly, specification and implementation activities are
also recursive across the business or domain model, component spec, and internal design.
507

508 PART V HOW TO APPLY CATALYSIS
13.1.1 Models and Designs: Business to Code
A model of real-world objects and their interac-
tions—or rather, some users’ understanding of
them—is called a business model. The outcome of
each interaction depends on (1) the types to which
its participant objects belong and (2) the states
they are in at the time. For any participant types,
you can describe the effects of an action by relat-
ing the values of the attributes before and after any
occurrence of that action.

Components of a designed system can be described in the same
way: as interacting objects. The same notation can be used for
designing interacting software objects as is used for analyzing things
and concepts in the users’ world.

Each component is then designed as a collaboration of interacting
objects in the same way, and so on recursively until we get to pro-
gramming-language primitives or (preferably) an existing compo-
nent. The same techniques are used to design the internal structure of
a piece of software as are used to describe or design an organization
or machine, which may or may not use software. Although it is not
necessary or practical to produce the layers in top-down order, there
is a notional hierarchy of designs. In the topmost layer, the complete
system consists of a few interacting objects.

A useful principle of object-oriented specification (and design)
is that the structure of a software system should be based on a well-
chosen model of the world with which it deals; that approach makes
the design easier to update with business changes. Each real-world
object (whether physical or more abstract: orders, meetings, menus)
has its counterpart inside the system. A first step in building an
object-oriented program from scratch is therefore to make a business
model and then declare it to be the first draft of a type model of the
software. The objects and their relationships are used as the type
model of the system.

The attributes of a complex object are usually expressed in terms of types, which them-
selves are modeled with other attributes and so on. Drawing them pictorially shows the rela-
tionships more clearly. When an object is specified, the types of attributes are chosen for
their expressiveness rather than for execution efficiency. Some of these “specification” types
invented to help model a set of actions may never be implemented directly; however, the
type model must constitute a valid abstraction of the implementation, as documented in a
refinement and its justification. The types that are implemented are those generated by
decomposition: they must exist because the design calls for them to interact with one
another.

My world

Customer

bag : Things
pocket: Money

buy(thing)
post bag+=thing

Shop

till, stock

buy(thing)
post till+=thing.price

buy

My world

Eventual design

my system: design

my system

My world

Bank

my system: spec

action specs

Bank

Shop

Shop

Customer

Customer

Chapter 13 Process Overview 509
The behavior that each object provides to the others is specified,
and the specification is kept separate from its internal collaboration
design and code. Thus, each internal designed component has its
own type model, with some refinement that maps it to the type
model of the containing component. This arrangement allows us to
define a more general architecture, with a variety of different com-
ponents able to plug in to the basic design. Some components may
be bought, and others may be purpose-built. The idea of specifying
the interfaces well is crucial for component-based development.

The design of any system embodies several partial designs
of how the pieces collaborate. These designs constitute some
of the key architectural elements used in the system design.
The resulting design is a composition of these partial collabo-
rations, unified via objects that participate in more than one
collaboration. The architecture is often best described and
understood in terms of recurring patterns of such collabora-
tions.

An important principle of this recursive decomposition is
that, at each level, the components can be designed indepen-
dently if the specifications are accurate enough.

Accurate specification of the actions depends on careful
models. When all the components are designed by the same
team, we can afford to be relaxed about this: If the spec of a
component you use is unclear, you can walk down the hall to
whoever is designing it. But in a world that takes component-
based design seriously, you won’t know the designers of many
of the parts you use, nor many of your own clients. More effort
must be put into specification, with the understanding that the
economies of CBD will pay it back.

The extent to which the code reflects the business model is
related to the architecture. If the code must be changed every
few days to keep competitive with others (for example, financial
dealing systems), the requirements of users should translate
directly to code changes, which must closely reflect a suitably
flexible business model. If high performance is needed and
changes are rare (as in an

undersea multiplexor), optimizations must be done. The analysis and design models are
kept separate. If the refinements are localized and well documented, the benefits of trace-
ability are preserved. Refinements fall into a small number of categories and useful pat-
terns that are documented in standard ways (see Chapter 6, Abstraction, Refinement, and
Testing).

Intermediate step

my system

Component

model , with

action specs

Collaboration
patterns
used

Refinement + retrieval

Design model

Specification model

510 PART V HOW TO APPLY CATALYSIS
13.1.2 Specify, Document, Implement, and Test:
Business to Code

For every specification activity there is a corresponding activity that deals with implementa-
tion and testing; every refinement claim has a corresponding justification and test (see Fig-
ure 13.1). At the level of a single interface, the implementation may be a single class that is
tested against operation specs. For a collaboration, several classes or components are imple-
mented and integrated, and then their interactions are tested against the collaboration specifi-
cation. At the level of the system specification, all external operation and abstract action
specifications are tested. At the level of the business or domain model, to implement means
to deploy the “to-be” model, conducting training and other more conventional forms of
upgrades, and acceptance testing.

Documentation is structured around specifications and implementation and their refine-
ment and import relationships. A user manual—a description of how a user accomplishes
tasks by using the system(s)—is a particular form of documentation associated with a
refinement: how the abstract business model and actions are realized by more-detailed
actions performed by the users and systems. Test specifications are also associated with
refinement relationships. The rules for system architecture are documented in a package
that specifies the patterns and frameworks that will be used in other packages that import
it.

13.2 General Notes on the Process

Before we jump into specifics of the case study, let’s review some general notes on how
the method is applied.

13.2.1 Multiple Routes through the Method
There are many possible routes through the method, each with a different prototypical
sequence of tasks and deliverables that is better suited to certain project characteristics;
one route may omit activities and deliverables that another one includes. Different routes
can be used or combined for any project or subproject. A lightweight route would be a
good way to get started with Catalysis.

For example, for a project in which requirements should be specified early and accu-
rately, we might follow the “Build” route in Figure 13.2; the case study in this section of
the book roughly follows this route.

1. Build1. Build a domain model to capture terms, domain rules, business tasks.

2. Build2–3. Refine it to specify the system by building its local type model of the
domain; the retrieval mapping is defined top-down.

3. Build4–5. Partition and refine it to build the internal design model; again, the retrieval
mapping is defined by forward-engineering the system type model and distributing it
across the design components.

Chapter 13 Process Overview 511
In contrast, if the system must be built from many heterogenous components and if the
requirements can be shaped significantly by the ease of assembling those components, we
can follow an “Assemble” route like this:

1. Assy1. Start with a domain model—optionally, a rudimentary system spec.

2. Assy2. Build type models of each component, reverse-engineering if necessary.

3. Assy3. Define the retrieval mappings between type models of individual components
and the domain model or system type models.

4. Assy4. Define an achievable type model and behavior spec for the system.

5. Assy5. Refine the domain, defining how external components and users interact with
this achievable system to accomplish the original tasks.

See Section 10.11, Heterogenous Components, for a complete example of how this might
be done in practice.

Figure 13.1 Specify and implement: business to code.

System spec

Refinement

Domain model: “to-be”

Deploy system
User train, acceptance test
Test refinement

Specify Implement and Test

Refinement

Internal design
collaboration

Specification of one
component/class

Interface spec

Full build of system
Test against system specs
Test refinement

Integrate classes
Test against collaboration spec
Test refinement

Implement a class
Test against interface operation spec

512 PART V HOW TO APPLY CATALYSIS
The relationships between all the models and documents are clearly defined in Cataly-
sis and can be clearly documented regardless of the sequence in which they are built.
When one model or document is changed, those that are related to it may also have to
change and must be reviewed.

13.2.2 The Process Is Nonlinear, Iterative, and Parallel
Although they are shown in these chapters in a linear sequence, these documents are
almost never produced in sequential steps. There will be a gradual shift in focus from the
“earlier” aspects to the “later” ones, but the creative process and prior constraints may in
general develop the various parts in any order. Good management should impose disci-
pline, not by forcing a linear sequence but rather by seeing the process as one of succes-
sive enhancement. Appropriate milestones, corresponding to multiple iterations, are the
completion of vertical slices of functionality visible to the end user or horizontal services,

Figure 13.2 Many routes through a method.

System spec; system
behaviors and type model

System’s
model of domain

Refinement,
retrieve; mapping
from spec to domain

Implement
test . . .Internal design

Domain model; business
terms, rules, actions

Build
Route

Build1

Refinement, retrieve;
mapping from
models of internal
components to
system spec

Build5

Build2

Build3

Build4

Assemble
Route

Assy1

Assy2

Assy5

Assy4

Assy3

Chapter 13 Process Overview 513
components, and end-to-end implementations of the technical architecture that will be
used for end-user functions.

The spiral model works well in any context in which the current
plan must depend on the outcome of earlier work expenditure
increases along the spiral; each cycle includes a review of results
and risks, and it drives a refinement of the goals and plans of the
next cycle. An early spiral typically covers a much broader area in
requirements and a much narrower piece of design; the situation
reverses in later cycles. Lessons learned from any spiral feed back
into the most abstract level of models that are affected. There
are

many colorful names for variants of this basic idea, including fountain, tidepool, and tor-
nado.

The design of the spiral cycles is usually driven by an understanding of project risk,
with high-risk items being tackled early. Some of the highest risks in a project come from
unclear requirements,1 so they should be tackled early. For large projects, the technical
architecture—with all the infrastructure needed for communication, transactions, messag-
ing, and systems management—also poses a serious risk. To help reduce this risk, practice
explicit and early architectural modeling, evaluation, and implementation, and build on
standard infrastructures. Other risk factors include team communication and dynamics,
the age and maturity of technologies, management commitment, and project funding.

Cycles can be overlapped and carried on concurrently, because many activities can pro-
ceed in parallel with low risk of rework; these activities should not be needlessly serial-
ized. Catalysis provides the appropriate consistency rules between artifacts even if they
are developed in parallel. However, in some situations the best approach is for a small
group of people to resolve critical issues, often at the requirements or architecture level. It
is a mistake, simply to keep some developers from twiddling their thumbs, to force con-
current development if it is dependent on these issues being resolved.

Iterations and increments involve development cycles but play different roles. An iter-
ation aims to improve the design of existing work; iteration is fundamentally about
rework. In addition to dedicated iteration cycles, each development spiral might have a
consolidation stage at the end, for refactoring the design and making it more robust for
downstream work. In contrast, an incremental cycle adds new functionality to what
already exists: either a new end-user function or supporting functions that will be used
toward that end.

Iterations and increments must have clear objectives or else they can become a euphe-
mism for structured hacking. Increments should be planned at multiple levels, from end-
user increments to those that are internal to the development team or visible and demon-
strated up to the project manager. Packages and their import relations are used to plan iter-
ations and increments.

Specify Plan

Design Implement

Review

1. Many requirements “changes” are actually the result of initial lack of precision.

514 PART V HOW TO APPLY CATALYSIS
13.2.3 Rigor, QA, and Testing Are Continuous
Quality assurance is not an after-the-fact activity in Catalysis. From the onset of require-
ments, the method is focused on ensuring quality in intermediate deliverables and docu-
mentation and ensuring a quality final delivered product.

Pre- and postconditions, invariants, and refinements offer “on-demand” rigor. Experi-
ence shows that writing in a more precise notation flushes out ambiguities and questions
that would otherwise lie dormant until coding and testing. Even after there is code, an
abstract model can help make a clear picture, whereas design pragmatics might obscure
the big picture with complications. This kind of rigor saves time later, so the benefit is
long-term rather than short-term. Using the formalisms is a skill akin to programming;
some aspects may be a bit less familiar to some people, but no more difficult.

Adjust the degree of formalism to the life expectancy of your product. Components that
will be reused a lot justify (and need) more investment in getting things right up front.
“Quick and dirty” developments can be hacked to appear to work, but bear in mind that
these solutions tend to end up being the bedrock! Cool-headed management is required. In
general, you should adjust the degree of formalism within the development. Always use
informal descriptions, but use greater formalism for crucial issues. Interleave narrative
descriptions with formal diagrams and specifications.

For example, the GUI of a typical development might be documented only with story-
boards and GUI mock-ups that are annotated with explanatory notes, with an optional
mapping to the type model. Other design discussions, and specification of business behav-
ior, use proper action specifications. Exceptions may be done more or less formally,
depending on project needs.

All behavior specifications in Catalysis are precise enough to be used for testing, both at
the unit level (type specifications and class refinements) and at the level of integration (col-
laborations and action refinements). In particular, specifications written in terms of abstract
attributes become testable against the implementation by virtue of the abstraction functions
that are part of the refinement; user tasks are specified as abstract actions and are docu-
mented and tested as sequences of refined actions (yes, the user manual starts early!). Static
invariants can be tested at any time the system state is stable. More-general constructs, such
as effects and effect invariants, also map cleanly to test specifications. In general, any claim
of refinement between a concrete and an abstract model has a corresponding strategy for
testing (see Chapter 6, Abstraction, Refinement, and Testing).

Catalysis models have clear semantic relationships to one another. At any level of
abstraction, they form an important part of the inspection criteria for those models. Across
levels of refinement, these rules, together with the rules for refinement, provide a concrete
basis for design reviews.

The impact of change in Catalysis is clearly defined. A change at any level of descrip-
tion must be propagated up to the highest level at which the change has an impact. Specif-
ically, the change at a concrete level need not be propagated to an abstract level if the
refinement mapping can be updated so that the abstract specs are still valid.

Chapter 13 Process Overview 515
Packages provide the unit of configuration management and release control. Catalysis
packages are flexible, because one can model different aspects of the same type or action
in two different packages. A versioned package is frozen; every package it imports is also
versioned.

Safety-critical projects can further exploit the precision available with Catalysis, using
advanced facilities (see Section 3.5.2, Redundant Specifications Can Be Useful) to for-
mally check important properties that the design should exhibit.

13.2.4 Emphasis on Architecture
There are at least two interesting aspects to architecture: (1) static dependencies between
units of work and (2) the runtime patterns of component and object structure and interac-
tions.

The structure of packages defines one aspect of architecture: the static dependencies
between units of development work, whether business models, interfaces, or implementa-
tions. The documentation and code structure reflects the package structure. Documenta-
tion, always combining informal with rigorous descriptions, is part of a package; within a
document you can refer only to model elements visible to that package. Packages also pro-
vide the unit for change management and upgrades.

Using refinement, you can model objects and interactions at all levels of granularity.
This arrangement provides a “fractal” view of architecture, from the business roles and
processes to large-grained interacting architectural components including a “system” to
individual interfaces and classes. Any refinement has associated architectural decisions.

In addition, good use of packages facilitates full separation of interfaces from imple-
mentations. As an extreme example, a single class might be implemented in a package that
imports the packages with the type definitions of all types that class must implement; each
such package contains the minimal model of any other types that it must interact with.

Therefore, you should structure the macroscopic view of the development around type
models, frameworks, packages, and refinements.

Collaborations, as partial definitions of object roles and types and their interactions,
provide support for a “pattern” view of the dynamic aspects of an architecture. A design is
often best understood as a composition of such patterns onto the objects involved rather
than in terms of individual objects or interactions.

The basic constructs of type, collaboration, and refinement support all levels of specifi-
cation, architecture, and implementation. However, we also pay explicit attention to spe-
cific levels of architectural design: logical and physical database mapping, technical
architecture (including client-server and multitier peer-to-peer architectures), and user-
interface modeling. The case study touches only on some of these aspects.

516 PART V HOW TO APPLY CATALYSIS
13.2.5 Unambiguous Notation
The notation used is based on that of the Unified Modeling Language (UML 1.1). What
we add is a systematic way to use this language, a way to establish and maintain the rela-
tionships between the documents, and a clear semantics for abstract models.

Much of the notation is useful throughout different stages of the process. For example,
we use the same tools to describe the interactions between people and a machine we pro-
pose to build, to describe the interactions between objects collaborating inside the
machine once designed, and to describe business tasks and processes. For this reason,
many of the notational tools are introduced early in the case study and are then reapplied
in each phase.

The notation here is not limited to complete documents delivered within a standard
development process. Designers sketch these diagrams on whiteboards when they are dis-
cussing their designs with their colleagues. In short, this is a specialized language for com-
munication models and designs.

Some informal and ad hoc notations are always useful as long as you recognize that
they are informal; they should sometimes be cast into a more precise form as their purpose
becomes clear. Useful new formal notations also will no doubt be invented; their seman-
tics should be described clearly using frameworks, as illustrated in Section 9.8.3, Exam-
ples of Semantic Rules for a Dialect.

It is our experience that familiarity with the toolbag demonstrated here makes such dis-
cussions much less ambiguous and far more productive than they are when the only tools
for debate are ad hoc pictures and natural language. And a single designer’s own thoughts
are clarified when cast into the forms shown here. This is often the greatest benefit of tak-
ing up a more rigorous notation.

So although this study demonstrates (parts of) an analysis-to-code document structure,
there are other equally valuable ways to use the tools in the bag, including completely dif-
ferent routes (see Section 13.2.1, Multiple Routes through the Method).

13.2.6 Typical Process for Business Systems
A typical large business system has human users and a back-end database. The develop-
ment process for these systems still goes through the levels outlined earlier, with some
specialized activities required within the levels. Figure 13.3 outlines these activities and
shows how they map to the three essential levels we discussed; the corresponding imple-
mentation and test activities are not shown.

There are still three conceptual levels: the domain models (the outside, describing the
environment in which the software will reside), the component specifications (the bound-
ary, describing its externally desired behaviors), and the component implementation (the
inside, describing its internal design). These three levels continue recursively: Each sub-
component itself has a context (the collaboration with others that should realize the exter-
nal spec), a specification, and its own implementation.

Chapter 13 Process Overview 517
In traditional terms, requirements and analysis are mostly concerned with the outside and
boundary, from identifying and understanding the problem to specifying each externally vis-
ible component of an envisioned solution; design focuses on internal structure and architec-

ture. However, externally visible decisions often have some design flavor; think of these as
“external” design or “business” design.

13.2.6.1 Requirements: Spanning Outside, Boundary, and Inside

The requirements activity is aimed at understanding the problem and how the proposed
solution will address it. The primary deliverables are as follows:

• A business model: Collaborations, types, and glossary (possibly an as-is model and a

to-be version that includes the envisaged systems)

• Functional requirements on the system: Usually in the form of a system context dia-
gram with use cases and scenarios

• Nonfunctional requirements: Performance, reliability, scalability, and reuse goals

Figure 13.3 Main activities for a typical business system.

Outside, plus
project
constraints

Boundary

Inside

Requirements

Understand problem, system
context, architecture and
nonfunctional requirements

Domain Models

System Context

System Specification

Describe external behavior of
target system using problem
domain model

Scenarios

UI Design

Type Model and
Operation Specs

Architectural Design

Partition technical and application
architecture components and their
connectors to meet design goals

Platform, Physical
Architecture

Logical Application
Architecture

Component Internal
Design

Design interfaces and classes for
each component; build and test

Interface and
Class Specs

Dialog flow,
prototype,
usability

DB Design

Class
mapping,
transactions,
etc.

Implementation
and Test

D
ictionary

518 PART V HOW TO APPLY CATALYSIS
• Known platform or architectural constraints: Machines, operating systems, distribu-
tion, middleware, legacy systems, and interoperability requirements, all captured by a

package structure and collaborations

• Project and planning constraints: Budgets, schedules, staff, and user involvement

Specific techniques and constructs used to describe the business model and require-
ments include the following.

• Storyboards: Sketches of different situations and scenarios

in the problem domain, possibly using a domain-specific

notation.

• Concept maps: An informal but structured representation

of related terms in the domain. The notation, which is sim-
ilar to a mind map, is simply concepts or phrases with

labeled directed lines between them indicating a relation-
ship; it can include rich pictures or storyboards of the

domain.

• Business collaboration: Identifies the actors in the

domain and their interactions (the actions, or use cases,
and information exchanged). The actors typically repre-
sent the roles of people (such as buyer) or software sys-
tems (such as inventory system). The as-is and to-be

versions form the basis of deployment and transition

plans for the systems.

• System context: Acollaboration centered on the target
software system, intended to clearly define the boundary

of “the system.” The use cases in which the system is an

actor are those that must be developed as part of the sys-
tem.

• Scenarios: Aprototypical sequence of interac-
tions in a business collaboration or the system

context. These scenarios can be used to formal-
ize specifications of the actions, even at the

business level.

call phone

has

service

receiver

symptom

caller

Scenario

A does …

B inputs …

System …

Chapter 13 Process Overview 519
13.2.6.2 System Specification: The Boundary

System specification proceeds much as before but has an added
element of user-interface design. The normal artifacts of system
specification—a type model and operation specs—are now
accompanied by prototypes and UI specs describing the screens,
dialog flows across windows, information presented and
required, and reports. These user-interface elements are kept con-
sistent with the type model and are reviewed through scenarios.

The primary deliverable is a type specification: the system
being developed specified as a type, with a type model (attributes
and associations) and a set of operations specified against that
type model. Defining the type involves identifying each action in
which the system participates and specifying it as an operation on
the type. The behavior can be described with state charts in addi-
tion to operation specifications and can be exercised with scenar-
ios and snapshots.

The specification can be split across subject areas—broad areas of usage or function
that help partition the system behavior—so that one area can be analyzed somewhat sepa-
rately from the others. Packages can be used to structure all work on a large system across
multple vertical views or horizontal layers.

13.2.6.3 Architectural Design: The Inside

The internal implementation of the system is split into two related parts: the application
architecture and the technical architecture. The main deliverables are described on the
next page.

•The application architecture: A package

structure and collaborations. This implements

the business logic itself as a collection of col-
laborating components, with the original spec-
ification types now split across different
components. The components can range from

custom-built to common off-the shelf compo-
nents, such as spreadsheets, calendars, and

contact managers, to purchased domain-spe-
cific components such as factory-floor sche-
dulers. This application architecture

lives “atop,” and uses, the technical architec-
ture.

UI window

Dialog flow
of windows

Type

1 *

inv …

op post ….

Packages Collaborations

520 PART V HOW TO APPLY CATALYSIS
• The technical architecture: Apackage structure

(for static dependencies) and collaborations

(across technology components, such as UI, busi-
ness object servers, and databases). These cover
all domain-independent parts of the system: hard-
ware and software platforms; infrastructure com-
ponents such as middleware and databases;
utilities for logging, exceptions, start-up, and

shutdown; design standards and tools; and the

choice of
component architecture, such as JavaBeans or COM. It also includes the design rules

and patterns that will be used in the implementation. The technical architecture is

designed and implemented early and is evaluated against nonfunctional requirements

such as throughput and response time.

• Database architecture: The design of the database portion should start at this stage and

includes mapping of the design object model to the database, definition of transaction

boundaries, and so on. Depending on the choice of database and supporting tools, this

activity may or may not take significant effort. Database performance modeling and

tuning usually take some effort.

13.2.6.4 Component Implementation: The Inside

Individual application components are designed and built down to the level of program-
ming language interfaces and classes or preexisting components, or to a point where the
implementation can be mechanically generated from the detailed design.

The goal of component implementation is to define an internal structure and interac-
tions that satisfy the behavioral, technological, nonfunctional, and software engineering
requirements for a component. In Catalysis the component specification (type) mentioned
earlier identifies the behavioral requirements.

In simple cases, you can start with the assumption that every type identified in the spec-
ification model will be implemented directly as a separate class; for large components you
may go through a recursive step of subcomponent partition and specification. We deter-
mine intended responsibilities of each class and then build interaction diagrams to design
their interactions to realize the specified behaviors.

We can now define the design’s class model: the classes that
compose the system, the interfaces they implement and use, their
attributes and operations, and the references between them. The
initial class model is derived by reifying each model type to a
class, adding the operations that the class must implement from
the interaction diagram, and designing the attributes and directed
associations that the class needs to implement those operations.

This design can then be refactored. In this activity, you separate interfaces on a class for
different clients, migrate behaviors to abstract superclasses or collaborating classes, split

Hardware architectures and distribution

interface class1

attributes

operations

class2 * role

Chapter 13 Process Overview 521
data and behavior of one class into two, and refactor packages to separate architectural
layers.

13.2.7 Modeling the Catalysis Process
Many aspects of the Catalysis process can be modeled using the concepts of type, collabo-
ration, and refinement. When you’re modeling the development process itself, the interest-
ing development objects and actions include the following:

• Objects

– Packages: Get populated, documented, import other packages

– Model types, actions, refinements, etc.: Get specified, implemented, tested

– Other deliverable artifacts: Documents, source code, tests, executables

– Developers: Create and modify artifacts, get trained

– Development tools: Evaluate, purchase, install, use to create artifacts

– Project and iteration plans: Get reviewed, revised

– Deployment plan: From as-is to to-be via a transition plan, including installation

scripts, upgrade and migration tools, user documents, user training

– Paths and routes: Different sequences of activities for various project types

– Project, subproject, activity, task, cycle: Things to be done following some route

• Actions

– All development activities: Actions by developers using tools on artifacts

– All planning activities: Planning actions by developers

• Refinements

– Detailing of development activities, artifacts, plans, and schedules

Although the rigor supported by the method may not be fully utilized in this context, its
facilities for types, refinement, and frameworks become more interesting when the pro-
cess and project management needs are supported by tools. We will not expand further on
this point here but mention it for completeness.

13.3 Typical Project Evolution

A project produces a subset of models and diagrams that describe the design. For some
projects, the order in which these are produced will be mostly top-down; for others, more
bottom-up. In almost all cases there are multiple development tasks that can proceed in
parallel depending on project resources and constraints. In all cases, the relationships
among the artifacts are the same, and the most important initial methodology question for
any project to answer is

“Which of these decisions will I explicitly document? And when and how?”

522 PART V HOW TO APPLY CATALYSIS
Figure 13.4 illustrates a typical project evolution for a large business project; it shows
the activities that take place across time (horizontal, not to scale) and different levels of
development (vertical). Numbered items in the figure are discussed next. The circles indi-
cate interesting points in time, perhaps with an associated artifact. The partitioning of
work across packages, the degree of opportunistic development, and the specific path
through the method vary across projects. The figure does not show iterations or incre-
ments explicitly; all deliverables are subject to revision or refinement based on down-
stream work within the rules established for configuration management.

1. The business case: This provides initial requirements, defining the business problem
or opportunity that this project addresses. It typically includes a high-level list of num-
bered functional and nonfunctional requirements2 (1b), the business reasons and risks for
the project (1a), the scope of the project in terms of things definitely included or excluded,
linked clearly to a business model in terms of business objectives, actions or use cases,
and user roles that must be supported (1a), known requirements on the architecture,
design, and implementation (1c), and constraints on project budget and schedules (1d).

Figure 13.4 Typical project evaluation.

2. See Section 12.2.1, Multiple Stakeholders and Their Requirements.

D
om

ai
n

S
pe

c
D

es
ig

n
an

d
im

pl
em

en
ta

tio
n

P
la

n

1. Business case

Time

3. JAD session

5, 6. Type model, UI sketches

10. Find design rules for UI, database, communication…

14. Standards: deliverables, templates, process, QA (inspection, test, CM…), tools

1a

1b

1c

1d

4. Glossary

2. Domain or business models: reusable across projects

16. User docs, training, deployment, test

8. Frameworks in problem domain or system specification

9. Refactor for reuse: spans teams, specs, designs

11. Technical/Infrastructure Architecture Model

13. Application Architecture Model + builds

15. Package structure, vertical/horizontal slices, increments, tools, …

7. Subject area 1—specify

subject area 2—specify

12. Build horizontal slices: UI, middleware, database

Chapter 13 Process Overview 523
2. Domain or business models: These describe the domain or business at hand, often
independently of particular software solutions. It can include as-is and to-be models of the
business. It is sometimes useful to analyze the as-is model, decide which aspects of it rep-
resent essential requirements, and abstract out an essential domain model that can then be
refined to the envisaged to-be solution model. Domain models are reusable across multi-
ple projects.

3. Joint-Application Development (JAD) sessions: Many projects can benefit from
early structured sessions conducted by the development team and customers or users,
whose purpose is to build a joint understanding of the requirements of the system to be
built. They typically produce a running list of issues and the items listed under 4, 5, and 6.

4. Glossary: This is an initial set of definitions of terms used to define the problem or
requirements. The glossary is developed in parallel with a type model, either for the sys-
tem specification or of the domain itself. The glossary will be maintained through the iter-
ations of the system specifications.

5. Type model plus system specs: The system context is defined, and the primary
actions that the system participates in are first specified as abstract actions, and then
refined to a level of an approximately atomic interaction with the system. Atomic interac-
tions are those that, unless completed, would not constitute meaningful or useful opera-
tions on the system.

6. UI sketches: For systems that have user interfaces, initial sketches of the UIs are
produced to define how user tasks might translate into system interactions, what informa-
tion is exchanged in these interactions, and the dialog flow through these tasks. The user-
interface elements are tied to the underlying type model. The names and labels for UI ele-
ments must map directly to attributes and types; their visual relationship to one another
maps to relationships in the type model; the nature of the UI widgets used (lists, trees,
fields, and so on) maps to static type model constraints such as multiplicity; and visual
feedback, such as colors and highlights, maps to states. Do not get bogged down in UI
design at early stages. The underlying type model, information exchange, and action spec-
ifications are more important.

7. Subject areas: These are broad areas of usage or function that help partition the
description of the system behavior so that one area can be modeled and specified some-
what separately from the others. They need not correspond to separately implemented
components; that would be an internal view.

8. Frameworks: Across the business models and system specification, there often are
generic problem frameworks that appear in specific forms. For example, the business
description (and hence system spec) for a seminar company might have frameworks for
resource allocation (assign instructors and rooms), inventory and production (maintain
course notes inventory for deliveries), and customer loyalty (monitor product preferences

524 PART V HOW TO APPLY CATALYSIS
and usage levels of clients). Factoring the models to use generic frameworks (see Chapter
9, Model Frameworks and Template Packages) simplifies the descriptions and also gives
you a basis for downstream design partitioning of application components and code
frameworks (see Section 11.4, Frameworks: Specs to Code).

9. Refactor for reuse: This activity spans system specification and internal design. It
involves rearranging parts of the models, sometimes extracting them into newly created
packages and frameworks that are promptly reimported. This is an ongoing activity.

A common version is type-centric refactoring. A package containing a type model,
either in specification or in design, shows a set of related types. However, to implement a
particular type we need not know all the context-specific properties of all other types, only
a subset. We could refactor the contents of this package into separate parts, each centered
on a single primary type of interest and including only those aspects of other types that it
must rely on to provide its services (see Section 7.4.1, Role-based Decoupling of Classes).
This form also often shows up when you’re designing class-based frameworks with plug-
points (see Section 11.3, The Framework Approach to Code Reuse).

10. Design rules for technical architecture: This defines the elements used and pat-
terns followed systemwide for dealing with the computing infrastructure aspects of the
design. It includes hardware and software platforms and tools, middleware and databases,
and the choice of API standards and component architecture, such as JavaBeans or COM.
These rules emerge in parallel with the activities in items 11 and 12: architecture models
and implementations.

Creating design guidelines against commercial or custom components and tools (some
such design patterns can be formalized as frameworks), it defines standard mechanisms
for mapping a type or class model to the chosen database, for presenting to and interacting
with the user, for system boot-up and graceful failure, error handling, and so on.

11. Technical architecture model: This describes the package structure of and collabo-
ration between infrastructure components at the technical architecture level, often treating
each component as a single large object. All the techniques and diagrams for describing
interactions apply, including collaboration, refinement, scenarios, and state models. The
import structure of packages defines the static usage dependencies between component
definitions and should be explicitly documented. The architecture should be explicitly
evaluated against the runtime quality objectives (behavior, performance, scalability, and
so on) and nonruntime quality objectives (modifiability and maintainability) for the sys-
tem and should be documented and enforced in the implementation.

The component descriptions here typically belong to different domains than the pri-
mary business problem at hand. Database components are described by generic models of
tables, columns, and keys (or types, classes, attributes, and IDs); transaction servers are
described by transactional object, recoverable object, and resources; communication com-
ponents could have sessions, channels, and messages; user-interface components have
buttons, lists, panels, and scrollbars.

12. Horizontal slices: The technical architecture model should not be just a paper exer-
cise. Instead, slices of the architecture model should be prototyped in a horizontal fashion:
where each slice helps complete the end-to-end communication paths but does not intro-
duce new end-user functionality. Nonfunctional requirements—throughput, scalability,

Chapter 13 Process Overview 525
data volumes, response time, and so on—should be tested carefully by using architectural
simulation tools or by writing drivers to load the prototype appropriately.

13. Application architecture: This is the design of application logic itself as a collec-
tion of collaborating components. The nature of the component connectors—events, prop-
erties, workflows, replication, and transactions—is dictated by the technical component
architecture selected. The specification types in the system spec are split across different
components, possibly with multiple threads or processes.3 These components can range
from custom-built to common off-the shelf components, such as spreadsheets, calendars,
and contact managers, to purchased domain-specific components such as factory-floor
schedulers. The development activities here may include reverse-engineering, for those
cases in which the application is being built from heterogenous off-the-shelf components
(see Section 10.11, Heterogenous Components).

14. Development standards for the project: This project planning activity, which starts
as early as possible, defines the deliverables, standard development tools, documentation
structure and templates when appropriate, process guidelines, team and stake-holder roles,
quality assurance standards including inspections and metrics, testing, change and config-
uration management, and so on. All these standards should themselves be documented in
some of the top-level packages for the project.

15. Project plan: This project planning activity also starts early but is subject to moni-
toring and refinement as the development progresses. It includes defining the high-level
structure of packages. These packages define the basic units of work and configuration
management and serve to separate different subject areas, separate interfaces from imple-
mentations, separate business logic from infrastructure components, and also enable paral-
lel development. Appropriate iterations and increments are defined, following a typically
spiral development model, and new tools may be introduced in the process.

A large part of project planning in Catalysis is centered on the structure and intended
content of packages, including documents, models, tests, and code. All other development
work is done within the context of a package; the project planning directly depends on the
architecture, because it is concerned with partitioning, relating, and scheduling of these
packages.

It is quite common for a Catalysis project leader to set up a structure of empty packages
and use them to enter “stub” specifications, designs, and relations (such as refinements)
between them that must be completed in downstream development. These packages also
need an appropriate build mechanism that traverses and evaluates the contents of each
package, generating results that will be checked, compiled, and linked.

16. Deployment: It is in this phase that the business or domain makes its transition to
the to-be model, adopting new processes, hardware, and software. It involves things such
as software and hardware installation, tools to upgrade or migrate to new releases, docu-
mentation, acceptance testing, and user and administrator training. Note that user docu-

3. Some of these choices will be influenced by the technical architecture. For example, Enterprise
JavaBeans does not like its components to implement multiple threads, because it tries to manage
that at the level of the vendor-provided containers.

526 PART V HOW TO APPLY CATALYSIS
mentation is not an after-the-fact activity. Because modeling starts with abstract user
actions, refined eventually to system operations, the refinement definitions form the basis
for many user documents: If you want to accomplish task X, then do operations a, b, and c.

13.4 Typical Package Structure

The separation of outside, boundary, and inside—covering business models, system or
component specification, architectural design, interfaces, and implementation—holds for
all projects (see Section 7.3, How to Use Packages and Imports). The package structure
reflects static definitional and usage dependencies, including third-party interface and
implementation units and even development and test tools. Packages reflect versioned
units, documentation structure, and even tools for builds (see Section 7.8, Publication,
Version Control, and Builds). A package can contain collaborations to define the dynamic
aspects of architecture. Figure 13.5 shows a typical package structure.

13.4.1 Levels of Description in the Case Study
In this case study we found it useful to distinguish six descriptions; a different project
might make a somewhat different separation. The primary separation of domain or busi-
ness (the outside), system specification (the boundary), and internal architectural and
detailed design (the inside) will always hold. The following two features are common to
each level.

• Progressive formalization: A progressive formalization turns natural-language state-
ments into a less-ambiguous specialized notation. Casting statements into this more pre-
cise form clarifies them, exposing gaps and inconsistencies. (Programming language has
comparable precision but is designed to deal with the solutions rather than the problems.)
Although this formalization lengthens the analysis phase (compared with more traditional
natural-language requirements), the design part of the process is clearer and shorter; and
although the overall process is longer, the resulting system is more flexible and less costly
to adapt and maintain.

• Refinement: Different levels of abstraction are supported by refinement. Giving an over-
all view helps everyone gain a better understanding of the problem. Sometimes the
abstraction is written before the detail. In other cases, an abstraction is made after an ini-
tially detailed view—for example, to clarify issues after interviewing end users or to
revise an external specification after a cycle of prototyping.

Following is a summary of the levels used in the case study; subsequent chapters treat
each level in more detail.

13.4.1.1 Business (Domain) Model

This model describes the processes going on in that part of the world in which we are
interested. These processes might be interactions between people or companies, physical
processes, or the design of an existing computer system. The idea is to get a clear and

Chapter 13 Process Overview 527
Figure 13.5 Typical package structure.

Component spec based
on business model

Existing products,
tools, standards

Detailed business tasks
using new software to
implement abstract
business model

Internal components and collaborations
to realize the component spec

(Next level of) implementation of each internal component
conforms to spec using technical architecture

Component internal design
refines its spec

May use published
standards and APIs

Technical architecture
may use published
standards or infra-
structure tools

This should
eventually be
shared across
projects

Build tool
dependencies

Implementation
dependencies

design rules,
patterns

Business

Component Spec

Abstract Business
Model, no software

Detailed to-be
Business Model V-0.9
Uses Variant-1 of system

Infrastructure Tool Specs

Infrastructure Tool
Implementations

<<build>>
<<use>>

Variant-1 Variant-2

Component Design

Technical Architecture
Application
Architecture T1

Component Implementation

Technical Architecture
Implementation

Detailed to-be
Business Model V-1.0
Uses Variant-2 of system

T2

T2 implementation

T1 implementation

528 PART V HOW TO APPLY CATALYSIS
agreed understanding of the concepts and rules important to all parties, especially the
users and the designers of any existing systems.

The lightest-weight domain model is simply a problem statement, with a glossary of
terms that are used in the statement. More-precise models use types, collaborations, and
refinements to define static and dynamic business rules.

The description can be made without reference to a particular system we propose to
design. It can be used either as the basis for a system analysis or just to get a clear view of
the business processes, with a view to improvement or reengineering of business pro-
cesses.

If the model is to be used as the basis for a system development, we would expect to
see many of the object types identified at this stage carrying through the system analysis,
design, and ultimately into the program code. The same business model should be relevant
to many systems.

13.4.1.2 System Context

This involves understanding the role the system we wish to build will play in the context
of the business: the interactions it will have with other objects in that world. Our system is
part of a larger design, whether of software or hardware components or people, that may
or may not have been explicitly described elsewhere. The objective of this part is to cap-
ture that information.

13.4.1.3 System Specification

This is a precise description of what is required of our system. It should be documented
independently of how the requirements may be achieved. Clearly it will be necessary to
think ahead, and consider some implementation questions, in part because there’s no point
in specifying something that cannot be made and in part because the creative minds of the
analysts inevitably speculate about how it will work. We’ve already discussed the differ-
ence between doing these steps in parallel and documenting them separately.

13.4.1.4 Component Models

In this study, we assume that there are several large components from which we wish to
build. They may already be purchased or may exist from a previous piece of design.

We make specifications of each component; again, they may already exist, or we may
build them from our understanding of the components. In dire cases, this means reverse-
engineering models for these components, experimenting with them in testbeds. The pro-
cess of formalizing the spec exposes the questions that need to be answered.

13.4.1.5 System Architecture: High-Level Design

Here, the components are connected to form a design that meets the system spec. It is also
important to document a justification for believing that it does so properly. As a high-level
design, this describes only the overall scheme of interactions: large-grained components
and their collaborations as well as corresponding static dependencies needed between dif-
ferent development packages. The detailed coding will be left until coding.

Chapter 13 Process Overview 529
In this case study we have not adopted any particular component architecture such as
Cat One (see Section 10.8.1, Cat One: An Example Component Architecture). So our con-
nectors have been limited to standard requests or responses between large-grained compo-
nents rather than higher-level facilities such as events, properties, and workflow transfers.

13.4.1.6 System Detailed Design

Further work is required for those components that are used in the design but not yet
implemented—not purchased or adapted from previous projects. Just as we had a specifi-
cation of the whole system and broke it into successive pieces, so each component can be
broken into subcomponents, which in turn are specified and implemented until we get
down to units directly implementable in program code.

13.5 Main Process Patterns

The patterns in this section form the basis of a customizable process of developing soft-
ware; they show how the techniques are also applied to engineering business processes.
Customization of these patterns would result in different routes through the method.
Many, but not all, of these patterns have been applied and tested in practice.

13.5.1 Development Context: Defining Routes
The first few patterns offer a breakdown of how to proceed along a route through the
method, given different assumptions about your goals.

• Pattern 13.1, Object Development from Scratch, shows how to proceed assuming that
you have no existing design.

• Pattern 13.2, Reengineering, assumes an existing design and shows how you should go

about improving it.

• Pattern 14.1, Business Process Improvement, is about applying object technology to

organizations other than software.

• Pattern 16.6, Separate Middleware from Business Components, offers one strategy for
handling legacy systems as well as for insulating the project from certain technology

changes.

Regardless of which route, or combination, is appropriate, most projects would benefit
from carefully managed iterations (see Pattern 13.3, Short-Cycle Development) and from
concurrent development work (see Pattern 13.4, Parallel Work).

13.5.2 Phases
Each of the development context patterns applies some combination of the following pat-
terns, which deal in different phases and activities of the development process. The idea is
that they form a kit of tools rather than a fixed procedure. To begin with, you apply them

530 PART V HOW TO APPLY CATALYSIS
by following one of the development context patterns; with experience, you apply them as
needed.

• Business or domain models

– Pattern 14.2, Make a Business Model: Understand the terms your clients are using

before anything else; capture business rules, behaviors, and constraints that are inde-
pendent of software solutions.

• System or component specification

– Pattern 15.5, Make a Context Model with Use Cases: Understand the collaborations

with and around an object.

– Pattern 15.7, Construct a System Behavior Spec: Treating your system as a single

object, define the type of any implementation that would meet the requirements.

– Pattern 15.8, Specifying a System Action: Specify an action with the help of snap-
shots.

– Pattern 15.9, Using State Charts in System Type Models: Building state charts of
specification types is a useful cross check for completeness and uncovers missing

cases of actions and effects.

– Pattern 15.12, Avoid Miracles, Refine the Spec: Go into more detail about actions

and the corresponding attributes; alternatively, abstract away from details to a

higher-level, more task-oriented model.

• Internal design: technical architecture

– Pattern 16.6, Separate Middleware from Business Components: Keep separate your
legacy systems, business models (newly built or wrapped around legacy systems),
and infrastructure middleware elements.

– Pattern 16.7, Implement Technical Architecture: Define major technical components

of your design as an architectural collaboration. These components might be GUI,
business logic, persistence (database or file system), communications, and other
middleware elements.

• Internal design: application architecture and detailed design

– Pattern 16.8, Basic Design: Take each system action and distribute responsibilities

between collaborating internal components. For small systems, begin by assuming

that there is a direct implementation for every specification type of the system type

model. For larger systems, use intermediate levels of collaborating large-grained

components.

– Pattern 16.10, Collaborations and Responsibilities: Document and minimize cou-
pling by designing responsibilities and collaborators; compose patterns of collabora-
tions to define the design.

– Pattern 16.11, Link and Attribute Ownership: Decide and document the directional-
ity of links and the visibility of attributes.

– Pattern 16.12, Object Locality and Link Implementation: Locality of an object—
where it resides and executes—can be decided independently of basic design,
employing appropriate patterns to implement links and messages crossing locality

Chapter 13 Process Overview 531
boundaries. This applies across boundaries of hosts, processes, applications, and

media.

– Pattern 16.13, Optimization: Apply localized refinements to make the project run

faster.

• Implement, test, deploy

The line between design and implementation/test is a fine one; unfortunately, some

people believe that textual descriptions, including code in C++ or Java, represent
implementation and that diagrams represent design. Others use terms such as dia-
grams versus specifications. But that is simply a matter of notation; you can draw

diagrams to assemble components and generate executable code. The Catalysis dis-
tinction between interface specification as a type—refined to an internal design as a

collaboration—covers implementation in any form, whether expressed as diagrams

or text.

A Java class chooses its internal data members that collaborate to implement a

Java interface; similarly, a traditional program with a set of global variables refer-
ring to its collaborating top-level objects implements a specification of the entire

process as a type.

Moreover, as discussed in Section 13.1.2, Specify, Document, Implement, and

Test: Business to Code, activities to build, install, and deploy a system are consis-
tently thought of as implementation steps at different levels: implementation of
internal design, system spec, and the to-be business model.

532 PART V HOW TO APPLY CATALYSIS
Pattern 13.1 Object Development from Scratch

This pattern describes how to build a design starting from scratch. This route is suitable
when you’re designing a computer system or subsystem with no existing installation, no
available major components to reuse, and no existing model of the business.

Considerations
Is there really no legacy? Consider people who have worked on an earlier system, or exist-
ing implementations that could perhaps be componentized and reused to reduce the devel-
opment effort (see Pattern 10.5, Using Legacy or Third-Party Components). What are the
business changes that accompany deployment? Use Pattern 13.2, Reengineering, to plan
the transition and successive deployments.

Strategy
Apply Pattern 14.2, Make a Business Model, and Pattern 15.13, Interpreting Models for
Clients, to the following series of phases.

• Pattern 14.2, Make a Business Model: Describe your understanding of the users’ con-
cepts and concerns and the vocabulary in which they express them. This activity is not
limited to any single set of requirements and can serve as the basis for more than one
development project.

• Pattern 15.5, Make a Context Model with Use Cases: Focus on the collaborations
between your proposed system and other objects—people, machines, other software sys-
tems—with which it will interact. Also include relevant collaborations between them not
involving your system, improving your understanding of what’s going on around it.

• Pattern 15.7, Construct a System Behavior Spec: Treating your system as a single
object, create a type specification for any system that would meet the requirements.
Actions (and hence the type model) should be as abstract as possible at first cut—not indi-
vidual keystrokes!

• Pattern 15.12, Avoid Miracles, Refine the Spec: Define more-detailed actions and
attributes as a refinement.

• Pattern 16.7, Implement Technical Architecture: Define and implement major compo-
nents of design as a collaboration. Typically, these might be GUI, client, business logic,
persistence (database or file system), and communications.

• Pattern 16.8, Basic Design: Take each system action and distribute responsibilities
among collaborating internal components. Begin by assuming that there is a class for
every type of the system type spec. For larger systems, design an intermediate level of
large-grained collaborating components.

• Pattern 16.11, Link and Attribute Ownership: Extract common components and recast
the design in terms of the components.

Chapter 13 Process Overview 533
• Pattern 16.12, Object Locality and Link Implementation: Decide how the basic design is
split among machines, applications, and hosts.

• Pattern 16.13, Optimization: Perform localized refinements for performance.

An object-oriented design according to these principles can be fully traceable from
business requirements through to code, whether or not the correspondence is direct.

534 PART V HOW TO APPLY CATALYSIS
Pattern 13.2 Reengineering

In this pattern you make an OO system using both the knowledge derivable from legacy
code and the legacy code itself.

Intent
The idea is to gain the benefits of OO, but without throwing away old code. You want to
be able to make systems that remain flexible as your organization and its structure and
working methods change. You want to build many applications from a set of basic compo-
nents. These are features of object-oriented designs.

You have a great deal of code written in an older tradition—for example, a relational
database and its driving software. You cannot afford to hold everything while you rewrite
it all.

For example, one of the authors worked a while ago with a GIS system that had been
conceived 10 years earlier and written in Fortran. It was successful, so over the decade
many features were added by popular demand. As the system gradually lost its original
coherence, it came to the point that you couldn’t tweak one end without the other falling
over. Most of the patch-makers weren’t around during the original development, so they
understood only as much as they needed to. Many local changes were made that should
ideally have been done at a more global level, and even from the outside it looked like a
bit of a mess. It was decided to reimplement the system gradually as an OO design so as to
give it another lease on life. However, there was no way for the organization to stop for a
couple of years and rewrite it all: The company depended on income from maintenance
contracts, and that meant providing customers with regular new features. How should it
proceed?

In another case, a bank was writing an inquiry and loan application processing system.
We wanted to get the benefit of object technology so that we could easily fashion variants
of the system for different banks. But there was no point in building it entirely from
scratch: The conventional databases were already in place, although each bank had a dif-
ferent one. How could we integrate the new technology with the old?

Considerations
Are you going to reuse the old code; or only the old design ideas; or only the old business
model? In general, each of these elements can be reused using appropriate techniques. In
each case, it is essential to capture the existing concepts first (using the modeling notation
in earlier chapters) and, separately, to document where you’d like to be.

Are you going to wrap old code and gradually rework it, or leave it wrapped and
rework only when essential, doing redesign in the wrapping layer?

Are you going to reengineer the business process of which the software system forms a
part? (See Pattern 14.1, Business Process Improvement.)

Chapter 13 Process Overview 535
Strategy

Make As-Is and To-Be Models. This can be done at several levels: business, system
requirements, and system design.4 The as-is model keeps fairly strictly to what exists at
the present. (Because of ad-hoc changes over the years, it may be horrible. You’re allowed
some omissions when early reworking is an obvious necessity.) The to-be model is your
vision of the ideal future. In practice, you should also make an intermediate near-term
objective. It is often useful to abstract from the as-is model a truly “essential” model of
what must be done; the as-is was the previous refinement of this model, and the to-be will
be an alternative, improved refinement (see Figure 13.6).

Plan the transition from as-is to to-be via intermediate steps, perhaps based on your
chosen path or process. Be more specific in planning for the earlier transitions, because
subsequent ones will inevitably be replanned as you approach them (see Pattern 13.3,
Short-Cycle Development).

4. This strategy was formulated by the methods groups at TI-Software, London.

Figure 13.6 Reengineering and transition plan.

Business
model

Essential Model

One unfolding of a
detailed process

Abstract essential parts
Ask “why” for each as-is
element
Identify issues,
bottlenecks,
opportunities

Redesign to address
issues
Seek components,
skills, technologies

1

System
model

System
design

As-Is
3

Business
model

2

System
model

System
design

To-Be

Tr
an

si
ti

on
 p

la
n

Reengineering

536 PART V HOW TO APPLY CATALYSIS
As-Is informs To-Be. The as-is model may be the best starting point for the to-be model.
The original architects of the old system probably had a clear model, which has been
obscured by numerous fixes and add-ons through the years, typically by younger folk who
haven’t entirely cottoned to the beauty of the original conception. (You can often find
some of the old-timers still hanging around: They get excited about building these models,
because they see it as a great opportunity to clear out all the indignities their brainchild has
suffered over the years. Be sure not to leave them out of the activity, but don’t be surprised
if they come to blows with one another about the precise details of the original big idea.)

On the other hand, do not take legacy terminology as Gospel truth; always seek a more
essential description if the terms used seem contrived or artificial. Be particularly suspi-
cious of legacy terms that are purely artifacts of an ingrained way of doing things—for
example, complex “codes” that are used to label business objects with compound mean-
ings.

Abstract and Re-refine. This is an important technique for reengineering (see Chapter 6,
Abstraction, Refinement, and Testing). Abstract the as-is model to form a more general
statement of requirements. For example, the sequence of actions <customer inquiry; issue
loan application; receive application; approve application> can be abstracted to the single
action make loan. Then consider whether you can redesign the abstraction a better way
(but don’t do so just because you can!). For example, you might redesign the abstraction to
<customer-inquiry(details); approve application>, eliminating the steps to transfer an appli-
cation.

Apply Abstraction and Re-refine to Each Development Layer. Do this for the business
model, the system context model, and the abstract and detailed layers of design, as listed in
Section 13.5, Main Process Patterns. Each of the three principal layers can be approached
differently.

Reengineering Business Model and System Requirements. These can often be reengi-
neered directly toward the ideal. There isn’t always so much complexity in the processes
of human interaction that they can’t be altered, although you should proceed with caution
through people’s sensitivities (see Pattern 14.1, Business Process Improvement).

Reengineering System Designs. You can apply small changes by the usual patching pro-
cess. But radical changes require bigger solutions, and some systems should be explicitly
designed to allow upgrades while they’re running. Furthermore, the prospect of continu-
ing change demands that business logic be decoupled from the underlying system. These
considerations lead to the three-layer model, or middleware (see Pattern 16.6, Separate
Middleware from Business Components).

An alternative is to consider gradually carving out and redeveloping the software. In
many cases, realistically, such a process would not end within the life of the software and
could ultimately represent much wasted effort. Instead, it is better to develop new compo-
nents in OO terms, leaving the old stuff cleanly wrapped.

Chapter 13 Process Overview 537
Pattern 13.3 Short-Cycle Development

In this pattern, you set specific short-term targets and more-general longer-term ones, and
you use early feedback through scoped and managed short development cycles. This pat-
tern is also known as “one step at a time,” “don’t chew off too much in one go,” “walk
before you run,” the “spiral model,” and “proceed with caution.”

Intent
In any project in which the outcome of one phase will affect the plan for what follows, we
need a systematic and realistic approach to planning by successive approximation, when
the outcome and success of each piece of work is known only when complete. This does
not apply (apart from exceptional circumstances) to building a house or baking bread,
when the requirements, inputs, and outcomes of all steps are fully understood in advance.
It does apply to all design projects, whether software or hardware, to all changes of organi-
zation, such as adopting new design methods, and to all research and development.

Considerations
It is unrealistic to write a linear plan for a research project; if you knew how each stage
would go and what it would lead to, it wouldn’t be research. The same holds for any intel-
lectual work. But we need some way of planning.

Reaching a project goal is a bit like leaping from one spot to another. If you try to do it
all in one leap, you must aim carefully to begin with, because it’s difficult to change
course in midflight. Object technology is good at handling changes and so enables us to do
the job as a series of shorter jumps. There’s less investment risked in each one, and
because we can correct our direction at each step, we’re surer of reaching the goal in a pre-
dictable and controlled fashion.

Customers like short cycles because they see results early and can take part in the
development early. They don’t like hearing nothing for a year and then getting a system
that doesn’t do what they want.

Developers like short cycles because it gives them a periodic feeling of achievement.

Project managers like short cycles because they feel they’re in some sort of control as
long as it does not degenerate into a euphemism for undirected hacking. They also like the
Böhm’s spiral model because it gives a respectable name and rationale to the fact that they
don’t know exactly what will be happening in week 42. That was always the case anyway,
but it could feel a little uncomfortable in front of senior management.

Strategy
Plan in short cycles, each of which ends with the assessment of a deliverable that is
measurable in terms of the ultimate goal, which then feeds into the planning of the next
few cycles. Expect only an approximate idea of the cycles ahead of time.

538 PART V HOW TO APPLY CATALYSIS
Begin with cycles that use small investments to tackle issues that represent high project
risk. Typically, these risks fall into two categories: requirements and technical architec-
ture. More resources can be fed into successive cycles as confidence is gained. The idea is
fractal: a big project’s single cycle can be composed of several smaller cycles of sub-
projects.

Let cycles overlap and proceed in parallel (see Pattern 13.4, Parallel Work).

Each cycle consists of plan, execute, and evaluate phases. Set goals, level of invest-
ment, and acceptable risks; plan and decide what will be evaluated and how it will affect
future cycles; determine fallbacks; execute the plan; evaluate the outcome. For software
development cycles this often translates into plan, specify, design and implement, and
evaluate.

Typical cycles in software development might include feasibility study, GUI mock-up,
requirements analysis and prototype, single-user, single-machine vertical incremental
slices, tightening of relations between documentation layers, distribution across hosts, and
multiuser deployment. A typical 10-person software development might use cycles rang-
ing from two to six weeks.

Make your package structure reflect the separations needed across iterations so that dif-
ferent work products can be managed and developed separately.

User-visible cycles should deliver meaningful functionality to users. Plan deliverables for
these cycles in terms of abstract business actions (use cases) for the users based on their pri-
oritization and on dependencies between these actions that are uncovered by system specifi-
cation. For each use case delivered, track all refining system actions and corresponding
internal component interactions, and schedule cycles accordingly. For any design element
(action, effect, attribute, invariant), schedule its development based on the earliest scheduled
use case that uses it.

Other cycles can be horizontal: one that does not deliver new user-visible functionality
but instead carries a minimal use case through increasingly deep layers of the application
and infrastructure components, exercising all communication channels. An example is a
single user interaction carried from the user interface through the business object layer via
an object request broker (ORB) to the applicable databases and back.

Early user cycles need not build on the technical architecture; instead, treat them as
prototypes that will yield early feedback from users. These cycles—vertical slices of user-
visible functionality—are focused on correct visible functional behavior at the user inter-
faces. They might be implemented purely as a single-machine, single-process prototype.

Adoption of new methods within a company might have cycles that begin with a small
demonstration by a few people. Their experience feeds into something bigger, training for
more people, selection of tools, and so on. With careful planning, the new methods may be
taken on by a large project or complete division over a period of many months to years.
(Trying to do it overnight doesn’t work!)

Chapter 13 Process Overview 539
Pattern 13.4 Parallel Work

Structure your packages to enable units of work to be done in parallel without excessive
risk of rework. Do this early in the project, and sustain it throughout the project.

Intent
A project development team completes a multitude of tasks over the project lifetime. Some
tasks are heavily dependent on others and should be serialized, perhaps using Pattern 13.3,
Short-Cycle Development; others are largely independent and should proceed in parallel
because downstream work is dependent on them.

Considerations
Some tasks are best done by small groups. For example, clarifying requirements and
defining a precise, even if high-level, system specification is an activity best done with a
few key people. Similarly, coming up with an initial definition of system architecture, and
subsequently maintaining and evolving this architecture, is best done by a small team.

On the other hand, projects are often staffed early. Keeping the larger team construc-
tively involved throughout the project, while minimizing rework, is good for the project
schedule as well as team morale.

Strategy
As early as possible, define the system context and all known constraints on the system, its
initial architecture, and internal components. Examine interfaces to external systems.
There is often significant work in realizing the connections to those systems, whether it
involves communications, hardware interfaces, database requests, and so on. This work
can be started early.

Across the entire specify-implement-test cycle (Figure 13.3), there are several mostly
independent tasks that can be run in parallel, ranging from setting up development tools
and environment, to writing installation programs, to defining process and QA standards.

Partition system specification into subject areas. Define early the key type model
attributes or effects that one subject area depends on; another subject area can specify the
detailed constraints on those attributes or effects. Always have a mechanism (such as
attributes or effects) that relates subject areas to one another.

Start work on the technical architecture early. This may involve acquiring and learning
third-party packages. Build architectural prototypes based on a test slice of the system
spec, and evaluate the architecture against nonfunctional requirements—throughput, scal-
ability, data volumes, response time, and so on—by using architectural simulation tools or
by writing drivers to load the prototype. Understand the capabilities of middleware pack-
ages; databases and transaction servers often offer services that can reduce the develop-
ment work on the main application logic.

540 PART V HOW TO APPLY CATALYSIS
If there are external components—software or hardware—that define objects you need
to use, spin off a task to evaluate whether to use these objects exactly as defined or
whether to build a layer that offers a model closer and more natural to the one you would
like to use internally in your development. If a core component defines widely shared and
widely used objects, you may need to design a generic architectural scheme for extensible
object data and behaviors.

Start user-interface prototyping when the high-level system actions and type model
have been identified. Focus on a consistent UI metaphor, and cross check the user inter-
faces against the type model as the latter becomes better defined.

Structure packages to consistently separate interfaces from implementations, and aim
for early initial definition of interfaces. Also, designate team roles that cut across parallel
activities, watching for issues or overlaps that should be addressed separately.

	Part V How to Apply Catalysis
	Chapter 13 Process Overview
	13.1 Model, Design, Implement, and Test—Recursively
	13.1.1 � Models and Designs: Business to Code
	13.1.2 � Specify, Document, Implement, and Test: Business to Code

	13.2 General Notes on the Process
	13.2.1 � Multiple Routes through the Method
	13.2.2 � The Process Is Nonlinear, Iterative, and Parallel
	13.2.3 � Rigor, QA, and Testing Are Continuous
	13.2.4 � Emphasis on Architecture
	13.2.5 � Unambiguous Notation
	13.2.6 � Typical Process for Business Systems
	13.2.6.1 � Requirements: Spanning Outside, Boundary, and Inside
	13.2.6.2 � System Specification: The Boundary
	13.2.6.3 � Architectural Design: The Inside
	13.2.6.4 � Component Implementation: The Inside

	13.2.7 � Modeling the Catalysis Process

	13.3 Typical Project Evolution
	13.4 Typical Package Structure
	13.4.1 � Levels of Description in the Case Study
	13.4.1.1 � Business (Domain) Model
	13.4.1.2 � System Context
	13.4.1.3 � System Specification
	13.4.1.4 � Component Models
	13.4.1.5 � System Architecture: High-Level Design
	13.4.1.6 � System Detailed Design

	13.5 Main Process Patterns
	13.5.1 � Development Context: Defining Routes
	13.5.2 � Phases
	Pattern 13.1 Object Development from Scratch
	Considerations
	Strategy

	Pattern 13.2 Reengineering
	Intent
	Considerations
	Strategy
	Make As-Is and To-Be Models
	As-Is informs To-Be
	Abstract and Re-refine
	Apply Abstraction and Re-refine to Each Development Layer
	Reengineering Business Model and System Requirements
	Reengineering System Designs.

	Pattern 13.3 Short-Cycle Development
	Intent
	Considerations
	Strategy

	Pattern 13.4 Parallel Work
	Intent
	Considerations
	Strategy

