
 Chapter 11 Reuse and Pluggable

Design

Frameworks

in Code

Code reuse is a sought-after goal, but it does not happen automatically. It costs money, and
it requires explicit attention at the level of design and in the structure of the development
process within and across projects.

Reuse requires that components be built in a manner that is both generic—not overly
tied to a specific application—and customizable so it can be adapted to specific needs.

Reuse comes in many flavors, from cut-and-paste to building libraries of low-level util-
ity routines and classes to creating skeletons of entire applications with plug-points that
can be customized. The latter requires a particular mind-set to extract commonality while
deferring only those aspects that are variable.

There are two keys to systematic use of frameworks in code: The first is to make prob-
lem descriptions more generic. Second, you must have code techniques for implementing
generic or incomplete problem specifications and then specializing and composing them.

11.1 Reuse and the Development Process

One of the most compelling reasons for adopting component-based approaches to devel-
opment, with or without objects, is the promise of reuse. The idea is to build software from
existing components primarily by assembling and replacing interoperable parts. These
components range from user-interface controls such as listboxes and HTML browsers to
components for networking or communication to full-blown business components. The
implications for reduced development time and improved product quality make this
approach very attractive.
453

454 PART IV IMPLEMENTATION BY ASSEMBLY
11.1.1 What Is Reuse?
Reuse is a variety of techniques aimed at getting the most from the design and implemen-
tation work you do. We prefer not to reinvent the same ideas every time we do a new
project but rather to capitalize on that work and deploy it immediately in new contexts. In
that way, we can deliver more products in shorter times. Our maintenance costs are also
reduced because an improvement to one piece of design work will enhance all the projects
in which it is used. And quality should improve, because reused components have been
well tested.

11.1.1.1 Import Beats Cut-and-Paste

Something like 70% of work on the average software design is done after its first installa-
tion. This means that an approach, such as reuse, aimed at reducing costs must be effective
in that maintenance phase and not just in the initial design (see Figure 11.1).

People sometimes think of reuse as meaning cutting chunks from an existing implemen-
tation or design and pasting them into a new one. Although this accelerates the initial design
process, there is no benefit later. Any improvements or fixes made to the original component
will not propagate to the adapted versions. And if you’re going to adapt a component by cut-
and-paste, you must first look inside it and understand its entire implementation thor-
oughly—a fine source of bugs.

Good reuse therefore implies using the same unaltered component in many contexts, a
technique much like the idea of importing packages described in Chapter 7, Using Pack-
ages. Texts on measuring reuse don’t count cutting and pasting as proper reuse.

Figure 11.1 Cut-and-paste versus Import.

- Benefits whole life cycle
- but requires more effort up front

mport generic components
include unaltered

Generic
Component
Library Products

- Benefits first 20% of work

ut and paste adopt, adapt, and improve

Older Product Newer Product

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 455
11.1.1.2 The Open-Closed Principle and Reuse Economics

But there is a difficulty. If alterations are not allowed, a component can be useful in many
contexts only if it is designed with a good set of parameters and plug-points. It must fol-
low the well-known Open-Closed Principle:

Every component should be open to extension but closed to modification.

It takes effort to work out how to make a component more generic, and the result might
run slower when deployed. The investment will be repaid in savings every time the com-
ponent is used in a design and every time maintenance must be done on only one compo-
nent rather than many slightly different copies. But it is not always certain exactly when or
how a component will be reused in the future. So, as with all investments, generalizing a
component is a calculated risk.

11.1.2 What Are the Reusable Artifacts?
A reusable artifact is any coherent chunk of work that can be used in more than one
design. Following are examples.

• Compiled code; executable objects

• Source code; classes, methods

• Test fixtures and harnesses

• Designs and models: collaborations, frameworks, patterns

• User-interface “look and feel”

• Plans, strategies, and architectural rules

This list includes all kinds of development work. We have already discussed model
frameworks and template packages, which can be valuable to an enterprise. They are
white-box assets: What you see is what is they offer. By contrast, an executable piece of
software, delivered without source code, can perform a useful and well-defined function
and yet not be open to internal inspection. Software vendors prefer such black-box compo-
nents.

11.1.3 Reuse Truths
What should you reuse? The executable? Source code? Interface specifications? Problem
domain models?

© Reuse Law 1 Don’t reuse implementation code unless you intend to reuse the specification

as well. Otherwise, a revised version of the implementation will break your code.

© Reuse Lemmas (1) If you reuse a specification, try a component-based approach: Implement
against the interface and defer binding to the implementation.

(2) Reuse of specifications leads to reuse of implementations. In particular, whenever you

can implement standardized interfaces, whether domain-specific or for infrastructure ser-
vices, you enable the reuse of all other implementations that follow those standards.

(3) Successful reuse needs decent specifications.

456 PART IV IMPLEMENTATION BY ASSEMBLY
(4) If you can componentize your problem domain descriptions themselves and reuse

domain models, you greatly enhance your position to reuse interface specifications and

implementations downstream.

11.1.4 A Reuse Culture
In a reuse culture, an organization focuses on building and enhancing its capital of reus-
able assets, which would include a mixture of all these kinds of artifacts. Like any invest-
ment, this capital must be managed and cultivated. It requires investment in building those
assets, a suitable development process and roles, and training and incentives that are
appropriate for reuse.

But designs must be generalized to be reusable. Generalizing a component can’t be jus-
tified in terms of its original intended purpose. If you write a collision avoidance routine
for airplanes, there’s no reason you should do the extra work to make it usable by your
maritime colleagues: You have your own deadlines to meet. And if your product deals
only with air traffic, you have no reason to separate out those pieces of the airplane class
that could apply to vehicles in general. All these generalizations require broadening of
requirements beyond your immediate needs.

On the other hand, if you notice three lines of code that crop up in six different places
in your own product, then you will easily see the point of generalizing them and calling a
single routine from each place. That’s because you’re controlling the resources for all the
places it could be used; and the problem is small enough that you can easily get a handle
on what’s required.

On the larger scale, reuse of components between individuals, between design teams,
and across and outside organizations takes more coordination. It’s usually someone who
holds responsibility for all the usage sites who can assign the resources to get the general-
ization done. To make it happen, reuse needs an organization and a budget.

A significant part of identifying large-grained reuse comes from careful modeling of
the problem domain and of the supporting domains—UI, communications, and so on—
that would be a part of many applications. This activity also crosses specific project
boundaries and so needs organization support.

Should a component be made sufficiently general for reuse? How generic and reusable
should it be? These are decisions that must be made consciously and carefully. We have all
made such generalizations when deciding that a few lines of code could be moved to a
subroutine of their own. Parameterizing a whole class or group of classes follows the same
principle but employs a wider variety of patterns and should be more carefully thought
through.

Some components can be reused more widely than others. Some objects, routines, or
patterns might be useful only in several parts of the same software product; but if it is a big
product or a product family, several teams may need coordinating.

“Galloping generalization” is the syndrome wherein a group spends months producing
something that runs like a snail on dope and has hundreds of interesting features, most of
which will never be used. The best strategy seems to be to generalize a component only after

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 457
it is earmarked for use in more than one context; and then generalize it only as much as is
necessary for the envisaged applications.

Naturally, the organization that measures developer productivity in terms of lines of code
written has some rethinking to do before reuse can succeed. Suitable incentives schemes
should be based more on the ratio of code reused to new code written.

11.1.5 Distinct Development Cycles
In a reuse culture, development tends to split into two distinct activities.

• Product development: The design and creation of applications to solve a problem. This
phase is centered on understanding the problem and rapidly locating and assembling reuse
capital assets to provide an implementation.

• Asset development: The design and creation of the reusable components that will be
used in different contexts. This is carried out with more rigorous documentation and
thought. Because software capital assets will be used in many designs, the impact of a
change can be, for better or worse, quite large.

It is therefore worth putting much serious effort and skill
into assets. Of course, the products must work properly;
but whereas much may be gained by, for example, tun-
ing a reusable asset’s performance as far as possible, a
product that is used only in one context often must be
good enough only for that purpose. Strong documenta-
tion also pays off more with assets than with products.

For developing reusable assets, you would generally
want to apply many of the techniques in this book. Reuse
means investing in the quality of software; the old argu-
ment that “we don’t have time to document” can have
only a negative effect in a reuse culture. The development
of products or applications will also use many of the same
techniques, but the process can be quite different (for
example, see Section 10.11, Heterogenous Components).

11.2 Generic Components and Plug-Points

For a component to be reused in different contexts, it must be sufficiently generic to cap-
ture the commonality across those contexts; yet it must also offer mechanisms so it can be
specialized as needed.

This means that you must understand what parts of the component are common across
those contexts. Design it so that those parts that vary across contexts are separated from

Generalize

Select and
specialize

Enhance

Certify

Asset
library

Applications

“We might need a …
… and it could also do …”

458 PART IV IMPLEMENTATION BY ASSEMBLY
the component itself at carefully selected plug-points where that variation can be encapsu-
lated and localized—places where specialized components can be plugged in to adapt the
overall behavior. As Figure 11.2 illustrates, a resource allocator component might be spe-
cialized to allocate machine time on a factory floor; a hotel component might accommo-
date various room allocation policies; and an editor might accommodate any spell checker.

11.2.1 Plugs: The Interfaces
Let’s look at a couple of ways in which components can be made to plug together. In partic-
ular, it helps to distinguish between (1) composing components to build something bigger
and (2) plugging parts into a generic component in order to specialize its behavior to current
needs. Although both approaches place similar demands on modeling and design, the intent
of each one is different. These distinctions may get blurred in the presence of callback-styled
programming and reentrant code; when an architecture is layered, with calls restricted to a
single direction from higher layers to lower, the distinction remains sharp.

11.2.2 Upper Interfaces: For “Normal” Use
The components we use are made from other components. Figure 11.3 illustrates how a
larger component (a video rental system) might be assembled by assembling components
for membership, reservations, and stock management. We think of this as the “upper”
interface; it is the direct and visible connecting of parts that provide well-defined services.
Examples of such upper interfaces are the public operations of a class, APIs of databases,
windows systems, and, of course, the primary services offered by the membership, reser-
vations, and stock management components.

Figure 11.2 Plug-points for plug-ins.

Plug-point
Plug-ins

Resource Allocator

Generic
Component

Hotel

Editor

Machine Time

Room Allocator

Spell Checker

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 459
11.2.3 Lower Interfaces: For Customization
Each of the components whose “normal” interface we used is itself an incomplete imple-
mentation; to provide its services, it needs additional parts to be plugged in to it.
Figure 11.4 illustrates the use of “lower” interfaces via which a generic component is spe-
cialized with several plug-ins that customize its behavior to the problem at hand. In this
case, a generic membership manager is being adapted by plugging in specifics for video
store members and their accounts.

Generic components have plug-points—parameterized aspects that can be filled in
appropriately in a given context—both for implementation components and for generic
model components that are built to be adapted and reused. When designing a complex
component, we might reach into a component repository and build our specific models
from generic model components in this library. Of course, the generic versions must pro-
vide mechanisms for extension and customization to the specific domain at hand.

Modern desktop software bristles with plug-points. Web browsers, as well as word pro-
cessors and spreadsheets, accept plug-ins for displaying specialized images; desktop pub-
lishing software accepts plug-ins for doing specialized image processing. In those cases,
the plug-ins usually must be designed for a particular parent application. Using dynamic
linking technologies, the plug-ins are coupled with the parent application when it begins to
run.

Every OO language provides some form of plug-ins. The most common form is the use
of framework classes: the superclasses implement the skeleton of an application—imple-
menting methods that call operations that must be defined in the subclasses—and a set of
subclasses serves to specialize the application. The plug-points are the subclasses and their
overriding methods. In C++, a template List class can be instantiated to provide lists of
numbers, lists of elephants, or lists of whatever class the client needs; the plug-point is a
simple template parameter.

Figure 11.3 Using upper interfaces to build a larger component.

To build this
component,

we use these
components.

Membership

manager
Reservations

manager
Stock

manager

Video Store System

460 PART IV IMPLEMENTATION BY ASSEMBLY
The principle is not limited to single classes but rather can span multiple abstract
classes that collaborate and must be jointly extended before use. Many class libraries pro-
vide user-interface frameworks (such as Smalltalk’s Model-View-Controller). You make a
user interface (either manually or with a visual builder tool) by inheriting from the frame-
work classes and plugging specializing methods in to your subclasses.

11.2.3.1 Infrastructure Services: A Special Kind of Lower Interface

To operate properly, many components need an underlying set of infrastructure services (see
Section 10.2.2, Components and Standardization). These services do not customize the
behavior of the component in any interesting way; they simply provide an implementation of
a common virtual machine for use by all components.

Obvious examples include the POSIX interface, which provides a common view of
many different operating systems, and the Java virtual machine, which provides all the
services needed to run Java components. However, this underlying virtual machine may
be more specialized to the problem at hand—for example, a state-machine interpreter or a
graph transformation engine.

11.3 The Framework Approach to Code Reuse

In object-oriented design and programming, the concept of a framework has proven to be
a useful way to reuse large-grained units of design and code while permitting customiza-

Figure 11.4 Using lower interfaces to customize a component.

To build this
component,

we use these
components,

providing plug-ins
to customize them.

Specifics about
video accounts

Specifics about
video members

(part of)
Video Store System

Generic Membership
manager

Account class

Member class

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 461
tion for different contexts. The style of reuse with frameworks, and the mind-set for fac-
toring out commonality and differences, is quite distinctive.

11.3.1 OOP Frameworks
An object-oriented framework is often characterized as a set of abstract and concrete
classes that collaborate to provide the skeleton of an implementation for an application. A
common aspect of such frameworks is that they are adaptable; the framework provides
mechanisms by which it can be extended, such as by composing selected subclasses
together in custom ways or defining new subclasses and implementing methods that either
plug in to or override methods on the superclasses.

There are fundamental differences between the framework style and traditional styles
of reuse, as illustrated by the following example.

Design and implement a program for manipulating shapes. Different shapes are displayed dif-
ferently. When a shape is displayed, it shows a rendering of its outline and a textual printout of
its current location in the largest font that will fit within the shape.

In the next two sections we will contrast the traditional approach to reuse with the
framework style of factoring for reuse.

11.3.1.1 Class Library with Traditional Reuse

A traditional approach to reuse might factor the design as follows. Because the display of
different shapes varies with the kind of shapes, we design a shape hierarchy. The display
method is abstracted on the superclass—because shapes display themselves differently—
and each subclass provides its own implementation.

There are common pieces to the display method, such as computing the font size appro-
priate for a particular shape given its inner bounding box and printing the location in the
computed font. Hence we implement a computeFont and printLocation method on the super-
class (marked protected in Java so that it is subclass-visible).

class Shape {
// called from subclass: given a Bounding Box and String, compute the font
protected Font computeFont (BoundingBox b, String s) { }
// called from subclass: print location on surface with Font
protected void printLocation (GraphicsContext g, Font f, Point location) { ... }
public abstract void display (GraphicsContext g);

}

A typical subclass would now look like this:

class Oval extends Shape {
// shape-specific private data
private LocationInfo ovalData;
// how to compute my innerBox from shape-specific data
private BoundingBox innerBox() { }
// rendering an oval
private void render (GraphicsContext g) { ... trace an oval ... }
// display myself

462 PART IV IMPLEMENTATION BY ASSEMBLY
public void display (GraphicsContext surface) {
render ();
BoundingBox box = innerBox();
// let the superclass compute the font
Font font = super.computeFont (box, ovalData.location.asString());
// let the superclass print the location
super.printLocation (surface, font, ovalData.location);

}
}

A class model is shown in Figure 11.5. The dynamics of the inheritance design can
be shown on an enhanced interaction diagram, separating the inherited and locally
defined parts of an object to show calls that go up or down the inheritance chain.

11.3.1.2 Framework-Style Reuse and the Template Method

With framework development, the skeleton of the common behavior is one of two things:
either (1) an internal method specified on an interface that must be implemented by a spe-
cialized class, or (2) a template method in the superclass with the variant bits and pieces
deferred to the subclasses. We will illustrate the latter design here.

With a framework approach to reuse, our factoring looks quite different from that of the
traditional approach. We start with the assumption that all shapes fundamentally do the
same thing when they are displayed: render, compute a font for their inner bounding box,
and print their location in that font. Thus, we implement at the level of the superclass:

class Shape {
public void display (GraphicsContext surface) {

// delegate to subclass to fill in the pieces
render (surface); // plug-point: deferred to subclass

Figure 11.5 Inheritance design and enhanced interaction diagram.

= “protected”; + = “public”; – = “private”

A client

display

render

innerBox

computeFont

printLocation

An oval

Oval Shape «class»

computeFont ()

printLocation ()

+ display () «abstract»

Oval «class»

– ovalData

– innerBox ()

– render ()

+ display ()

 anOval: Oval

Shape::computeFont ()

Shape::printLocation ()

Oval::display ()

Oval::innerBox ()

Oval::render ()

Shape

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 463
BoundingBox box = innerBox(); // plug-point: deferred to subclass
Point location = location(); // plug-point: deferred to subclass

// then do the rest of “display” based on those bits
Font font = computeFont (box, location);
surface.printLocation (location, font);

}
}

The actual rendering and computation of the inner box and location must be deferred to
the subclasses: plug-points. However, if a subclass provides the appropriate bits as plug-
ins, it can inherit and use the same implementation of display. Thus, we are imposing a
consistent skeletal behavior on all subclasses but permitting each one to flesh out that
skeleton in its own ways.

class Oval extends Shape {
// implement 3 shape-specific “plug-ins” for the plug-points in Shape
protected void render (GraphicsContext g) { ...trace an oval ...}
protected BoundingBox innerBox () { ... }
protected Point location () { return center; }

// private shape-specific data
private Point center;
private int majorAxis, minorAxis, angle;

}

Figure 11.6 illustrates this approach. Although this example focuses on a single class hier-
archy, it extends to the set of collaborating abstract classes that are characteristic of frame-
works.

To display itself, the Shape hierarchy, for example, requires certain services from the
GraphicsContext object. There could also be different implementations of GraphicsCon-
text—for screens and printers—using a similar framework-styled design. It is this parti-
tioning of responsibility—among different shape classes and among shapes and the
GraphicsContext—that gives the design its flexibility. Thus, any packaging of a class as a
reusable unit must also include a description of the behaviors expected of other objects—
that is, their types.

Table 11.1 Contrast between Traditional and Framework Styles

Traditional Framework

Begin with the mind-set that the Assert that the display methods are really the
display methods would be different same and then identify the essential
and then seek the common pieces that differences between them to defer to the subclasses.
could be shared between them.
Focus on sharing the lower-level Share the entire skeleton of the application logic
operations such as computeFont and itself. Each application plugs in to the skeleton
printLocation. The higher-level the pieces (such as render, innerBox, particular
application logic is duplicated, and GraphicsContexts) required to complete the

464 PART IV IMPLEMENTATION BY ASSEMBLY
each one calls the shared lower-level skeleton.
bits.

Most (many) calls go from the framework
skeleton to the individual applications; in fact,
one of the hallmarks of a framework is, “Don’t
call me—I’ll call you.”
Define an interface representing demands that the
reusable skeleton framework makes on the
applications—the plug-points for extension.
Application contains newer code; however, the
existing (base) code calls newer code to delegate
specialized bits.
The framework implements the architecture and
imposes its rules and policies on the applications.

11.3.1.3 Contrast of Styles

Table 11.1 summarizes the contrast between the approaches in terms of factoring of code,
degree of reuse, and consistency of resulting designs. These differences are summarized in
Figure 11.7, which show the contrast between base and application levels in the two
approaches.

A significant part of framework design is factoring the plug-points that are provided for
adaptation or customization. This example requires that a subclass provide the missing
behaviors. A more frequently recommended design style for frameworks is based on dele-
gation and composition; by composing an instance of a framework class with an instance
of a custom class that implements a standard framework interface, we adapt the behavior
of the framework.

Figure 11.6 Framework-style inheritance design.

A client

display
render

innerBox

location

computeFont

printLocation

An oval

Oval Shape «class»

computeFont ()
printLocation ()
+ display ()

Oval «class»

– ovalD ata

innerBox ()
render ()

 anOval: Oval
Shape: : computeFont ()
Shape: : printLocation ()
Oval: : display ()
Oval: : innerBox ()
Oval: : render ()

Shape

= “protected”; + = “public”; – = “private”

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 465
11.3.2 Non-OOP Frameworks
Object-oriented programming provides novel ways to implement with plug-points and
plug-ins by using class inheritance. However, you can use other techniques to achieve the
underlying style of implementing a skeletal application and leave places in it that can be
customized. The central such technique is delegation (see Section 11.5.3, Polymorphism
and Forwarding). The framework approach to building systems extends to component-
based development as well (see Section 1.9.2, Component Frameworks).

11.4 Frameworks: Specs to Code

In the preceding section we saw how framework techniques in object-oriented program-
ming can help build a skeletal implementation, with plug-points for customization to spe-
cific needs. We saw in Chapter 9, Model Frameworks and Template Packages, that pieces
of code are not the only useful reusable artifacts; recurrent patterns occur in models, spec-
ifications, and collaborations. Moreover, the basic OOP unit of encapsulation—a class—is
not the most interesting unit for describing designs; it is the collaborations and relation-
ships between elements that constitute the essence of any design.

11.4.1 Generalizing and Specializing: Models and Code
To systematically apply framework-based techniques to development, we start with tem-
plate packages to construct domain models, requirements specifications, and designs from
frameworks. We could construct the specifications for a particular problem by applying
the generic framework and plugging in details for the problem at hand. On the implemen-
tation side, an implementation for the generic specification should be correspondingly
customizable for the specialized problem specification (see Figure 11.8).

A framework implementation thus provides a customizable solution to an abstract
problem. If it is done right, the points of variability in the problem specifications—plug-

Figure 11.7 Traditional versus framework-style designs.

Application with plug-ins

Skeletal code with “plug-points”
Traditional Framework

Application Calls

Base

Shape

Base

Graphics
Context

466 PART IV IMPLEMENTATION BY ASSEMBLY
points on the specification side—will also have corresponding plug-points on the imple-
mentation side.1

11.4.1.1 Combining Model Frameworks

Consider the operations of a service company that markets and delivers seminars. Differ-
ent aspects of this business, and hence its software requirements, can be described sepa-
rately: allocation of instructors and facilities to a seminar, on-time production of seminar
materials for delivery, trend analysis for targeted marketing of seminars, invoicing and
accounts receivable, and so on.

Each such aspect can be generalized to be independent of seminar specifics, creating a
library of reusable abstract specification frameworks, shown in Figure 11.9 with details of
invariants and action specs omitted.

This model framework uses abstract types such as Job, Requirement, and Resource and
abstract relationships such as meets, provides, and so on. These types will map in very dif-
ferent ways to a car rental application (Resource=Vehicle, Job=Rental, meets=model cate-
gory matches) than to assigning instructors to seminars (Resource=Instructor,
Job=Session, meets=instructor qualified for session topic).

These frameworks must now be mapped to our problem domain and must be related to
one another by shared objects, attributes, and so on. Figure 11.10 shows the overall prob-
lem model as an application of these frameworks. Of course, these frameworks must inter-

1. The relation between these plug-points is analogous to refinement.

Figure 11.8 Frameworks for specification versus implementation.

then specialize
to different
requirements …

Specialize the
implementation

Implement
abstract
solution

… by plugging
in differences

Generalize the
problem …

Specifications Implementations

Framework Specification

Implementation A Implementation BRequirements-A

Specification
Requirements-B

Specification

Framework

Implementation

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 467
act. A session must have both an instructor and a room assigned; failure of either means
that the session cannot hold.

When a session holds, copies of course materials must be produced, and the customer
trends are updated. Note that each problem domain object can play multiple roles in differ-
ent frameworks. For example, a Course Title serves as a Requirement in the two applica-
tions of the Resource Allocation framework and serves as a Product in the applications of
the Marketing and Production framework.

Figure 11.9 Specification frameworks for the seminar business.

Assign a resource to a job if its
capability meets the job requirement

If product stock drops below threshold,
place an order

*

meets

*

* provides

**

requires

schedule

*

allocated

0,1

Resource Allocation

<Requirement>

<Job> <Resource>

<Capability>

0,1

*

*

Production

<Product>

stock

threshold

<Item>

<Order>

<Producer>

* *

*

*

Marketing Trend

<Product>

<Trend> <Indication>

<Customer>

<Indicator>

reliability

Track purchasing trend of different
products for each customer based
on different indicators

468 PART IV IMPLEMENTATION BY ASSEMBLY
11.4.1.2 Combining Code Frameworks

Each of the model frameworks in Figure 11.10 could come with a default implementation
framework. Our design, at the level of framework-sized components, would look like
Figure 11.11. Each of the framework components has its plug-points suitably filled by
implementation units from this problem domain. Thus, the instructor allocator has Instruc-
tor and Session as plug-ins for Resource and Job; and the trend monitor has Session and
Topic plugged in for Indication and Product.

Here are two (of many) schemes to implement the plug-ins while making these frame-
works interact correctly with each other.

1. Separate objects (SessionJob, Occupancy, Indication) within each framework cap-
turing the framework’s view of a session so that we have a federated component system.
We also need some form of cross-component links between them and a mechanism to
keep them in sync. This is often best implemented with a central session object, Session-
Glue, that acts as the glue between each of the role objects; it registers for events from the
roles and uses the events to keep the other roles in sync. Each of these role objects can
inherit a default implementation that is part of the generic framework itself:

// the role of a session within the instructor allocation framework
class SessionJob implements IJob extends D efaultJob {

Figure 11.10 Specification by composing frameworks.

Produce
copies

Allocate
rooms

Allocate
instructors

Track title
trends

Requirement Requirement
Capability Capability

Resource ResourceJob Job

Product

Product

Item
Producer

Indication

Customer

Skill

Instructor

Resource Allocation

Facilities

Room

CopyCenterCopy

Session

Customer

Course Title

Marketing Trend

Resource Allocation

Production

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 469
// link to the “glue” object, SessionGlue, via an event notification interface
ISessionJobListener listener;

// just became confirmed from the allocation framework
void confirm () {

super.confirm () // do normal inherited confirmation stuff
// notify the listener object about confirmation
listener.confirmed (self);
// could also update the marketing indicators directly; simpler, more coupled
// MarketingTrendMonitor::indicationConfirmed (trendIndication);

}
}

class SessionGlue implements ISessionJobListener, ... {
// maintain the cross-component links
// code to receive events from one of the role objects
// update any shared state, invoke methods on other role objects

}

2. Shared objects for the sessions, perhaps implemented in a SessionMgr component
(which might be the shared database). Each session offers different interfaces for each role
a session plays in each of the frameworks: IJob, IOccupancy, IIndication. Its class will
implement methods on each interface to make explicit invocations into the other frame-
works if necessary.

// one interface for each role this shared object plays
class Session implements IIndication, IJob, IOccupancy {

// just became confirmed from the allocation framework

Figure 11.11 Two alternative ways to compose code frameworks.

1. Local objects, plus cross-component
links via events

2. Shared object with
many interfaces

Framework
components

*

SessionJob

IJob

IOccupancy

IIndication

Instructor Allocator

SessionGlue *

*

Occupancy

Room Allocator

Producer

SessionMgr

Session

*

Marketing Trend

Monitor

Indication

470 PART IV IMPLEMENTATION BY ASSEMBLY
void confirm () {
...do normal confirmation stuff
// but confirmation must also update the marketing indicators
MarketingTrendMonitor.indicationConfirmed (self);

}
}

A third way is to uniformly compose roles (see Pattern 11.1, Role Delegation).

11.4.2 Issues of Composing Multiple Code Frameworks
Combining independently designed frameworks is not easy. As discussed in
Section 11.3.1.3, Contrast of Styles, a framework attempts to codify and prescribe the pol-
icies and rules for interactions among its application’s objects; in particular, the frame-
work usually takes control, and the applications simply plug in the parts they need. We
need explicit attention to interframework coordination at the level of the interframework
architecture.

One way to open up the control is to adopt a more component-oriented approach across
frameworks. Each framework instance might publish a variety of “internal” events to other
interested framework instances; these events expose selected state changes from one frame-
work and offer the others a chance to react to the change.

A somewhat more sophisticated approach would refine the event notification to a nego-
tiative-style protocol: Rather than announce “I’ve done X,” a framework announces, “I’m
about to do X; any objections?” Other frameworks then have a chance to veto the pro-
posed event if it would compromise some of their rules. This approach is particularly use-
ful when each framework imposes its own restrictions on what can be done in the other
rather than only extending the behaviors (as described in the discussion on joining of spec-
ifications in Section 8.3.5, Joining Type Specifications Is Not Subtyping). JavaBeans
offers a facility of vetoable events that uses exceptions to signal the vetoing of a proposed
event. At the level of federated business components, an alternative is to use cross-compo-
nent transactions to the same effect: either all, or none, complete.

11.5 Basic Plug Technology

There are several implementation mechanisms for achieving the effect of plug-points and
plug-ins. This section discusses the main ones, emphasizing the value of black-box com-
position over white-box inheritance for large-grained reuse.

11.5.1 Templates
C++ provides a compile-time template facility that can be used to build generic classes or
families of generic classes. One way to implement a framework for resource allocation is
to use a family of C++ template classes that are mutually parameterized:

template <class Job>

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 471
class Resource { // a resource is parameterized by its job
Set<Job*> schedule;
makeUnavailable (D ate d) {

...
for (each job in schedule overlapping d, if any)

job.unconfirm ();
}

}

template <class Resource>
class Job { // a job is parameterized by its resource

Resource* assignedTo;
Range<D ate> when;
unconfirm () { }

}

template <class Resource, class Job>
class ResourceAllocator {// a resource allocator manages resources and jobs

Set<Resource*> resources;
Calendar<Resource*, Job*> bookings;
...

}

We can use inheritance to have a domain class, Instructor, act as a resource for a semi-
nar session:

class Instructor : public Resource<Session*>, ...

We might use multiple inheritance2 to have our Session play the role of Job for two
resources:

class Session : public Job<Instructor*>, public Job<Room*> {
....

}

11.5.2 Inheritance and the Template Method
For an inheritance-based design, the template method (see Section 11.3.1.2, Framework-
Style Reuse and the Template Method) forms the basis of plug-ins. This design style, com-
mon initially, has now fallen somewhat out of favor.

11.5.2.1 Inheritance Is One Narrow Form of Reuse

Inheritance was initially touted as the preferred object-oriented way to achieve reuse and
flexibility. In the early days of Smalltalk (one of the earliest popular OO programming
languages), several papers were written promoting “programming by adaptation.” The
principle was that you take someone else’s code, make a subclass of it, and override
whichever methods you require to work differently. Given, for example, a class that

2. Some circularities in type dependencies will not work with C++ templates.

472 PART IV IMPLEMENTATION BY ASSEMBLY
implements Invoices, you could define a subclass to implement BankAccounts: Both are
lists of figures with a total at the end.

Although the code runs OK, this wouldn’t be considered good design. The crunch
comes when your users want to update their notion of what an Invoice is. Because a
BankAccount is a different thing, it’s unlikely that they’ll want to change that at the same
time or in the same way or that the overrides retain the behavior expected of an Invoice. It
then takes more effort to separate the two pieces of code after the change, losing any sav-
ings you gained in the first place.

The programmer who uses inheritance in this way has forgotten the cut-and-paste keys:
They provide the proper way to start a design that borrows ideas from another one. If the
concepts are unrelated, then the code should also be unrelated.

Do not inherit code unless you also intend to inherit its specification, because the internal
implementation itself is always subject to change without notice.

11.5.2.2 Inheritance Does Not Scale for Multiple Variants

What else might inheritance be good for? Perhaps multiple variants of a basic class. Con-
sider a hotel booking system. When a guest checks in, the system does various operations,
including allocating a room. Different hotels allocate their rooms using different strate-
gies: Some of them always choose the free room nearest the front desk; others allocate in a
circular way to ensure that no room is used more than another; and so on.

So we have several subclasses of Hotel, one for each room-allocation strategy. Each
subclass overrides allocateRoom() in its own way. The main checking-in function dele-
gates to the subclass.

class Hotel
{ public void check_in (Guest g)

{ ... this.allocateRoom (g); ...}
protected abstract Room allocateRoom (Guest g);

}
class LeastUsedAllocatingHotel extends Hotel
{

public Room allocateRoom (Guest g) {....}

But the problem is that it is difficult to apply this pattern more than once: If Hotels can
have different staff-paying policies, does that mean we must have a different subclass for
each combination of room allocation and staff payment? That would not scale very well
even if you used multiple inheritance.

11.5.3 Polymorphism and Forwarding
The solution is to forward these tasks to separate specialist strategy objects that implement
different policies behind a common interface [Gamma95]; this is the essence of good
polymorphic design.

class Hotel {

check_in

LeastUsedAllocatingHotel

allocateRoom

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 473
Allocator allocator;
public void checkInGuest (Guest g)
{... allocator.doAllocation(g); ...}

}

interface Allocator {
Room doAllocation (...); // returns a free room

}

class LeastUsedAllocator implements Allocator {
Room doAllocation (...) {...code ...}

}

class EvenSpaceAllocator implements Allocator {
Room doAllocation (...) {...code ...}

}

Each Hotel object is coupled to a room allocator object, to which it delegates decisions
about allocating rooms. Separately, it is coupled to a staff payer, and the same is true for
whatever other variant policies there may be. Different policies are implemented by differ-
ent classes, which may be completely different in their internal structure. The only
requirement is that all room allocator classes must implement the doAllocation() mes-
sage—that is, they must conform to a single interface specification.

This polymorphic coupling between objects is far more important as a design principle
than inheritance is. It is what enables us to link one component to many others and thereby
to build a great variety of systems from a well-chosen set of components. Both compo-
nent-based and “pure” object-oriented approaches can take good advantage of this delega-
tion-based approach via interfaces.

Let’s return to the BankAccount and Invoice example: If there is any common aspect to
the two things, the proper approach is to separate it into a class of its own. A list of figures
that can be added might be the answer; so whereas BankAccount and Invoice are separate
classes, both of them can use ListOfFigures.

11.5.4 Good Uses for Inheritance
Is there any good use for inheritance? Extremists would say we can do without it—and
write good object-oriented software—provided that we have the means (a) to document
and check interface implementation and (b) to delegate efficiently to another object with-
out writing very much explicit forwarding code. All object-oriented programming lan-
guages support these techniques, although some do so better than others. Java, for
example, has good support for interfaces, whereas C++ mixes implementation and inter-
face. Smalltalk has support for inheritance but no type-checking. Few languages properly
support delegation; it can be done in Smalltalk, and Java gets halfway there with its inner
classes. Perhaps the next fashionable successor to Java will have explicit support for dele-
gation.

check_in

A Hotel

A LeastUsedAllocator

An EvenSpaceAllocator

allocateRoom

Allocator

474 PART IV IMPLEMENTATION BY ASSEMBLY
More pragmatically, class inheritance has its place and value but should not be used
when delegation via a polymorphic interface would work. It’s reasonable to inherit from
an abstract class, which provides an incomplete or skeletal implementation, and then
extend it to plug in bits specific to your need. Inheritance with arbitrary overriding of
methods is not advisable.

11.5.5 A Good Combination
One good way to combine these techniques is as follows.

• For every role, define an interface:

interface IResource { }

• For every interface, define a default implementation with inheritance plug-points:

abstract class CResource implements IResource {
protected abstract plugIn ();
public m () { plugIn(); ...}

}

• Each default implementation should itself delegate to other interfaces:

abstract class CResource implements IResource {
private IJob myJob;

}

• Concrete classes typically inherit from the default implementation, but they could also

independently implement the required interface.

• Use a factory to localize the creation of new objects of the appropriate subclasses:

class ResourceFactory {
IResource newResource () {

return new CResource;
}

}

In that way you can make a local change to the factory and have entirely new kinds of
resources be created and used polymorphically.

11.5.6 Replacing Inheritance with Type-Based Composition
Any inheritance structure can be replaced by a more flexible and late-bound composition
structure provided that you don’t use language primitives for checking object identity.3

The key idea is to treat the different portions of an instance of a subclass as though they
were separate objects that are composed; explicitly forward calls for inherited up calls as

3. We hope that the next generation of component-aware languages can make an assembly of
objects appear as one, with intelligent query of object identity and interfaces.

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 475
well as template-method down calls; and define explicit types to describe the call pattern
between super- and subportions.

Figure 11.12 shows an example. For external clients, class A implements a type TA with
its two public methods. The class A implements this type but expects to have the method
Z() implemented by B; hence, the type of B as required by this implementation of A would
be TBA. Similarly, the implementation of B provides the operation Q in addition to X and Y
and expects the type TAB from its “super” portion. This results in four distinct types,
which can be mapped directly to the two implementation classes.

When an instance of B is created, it must be passed an object that implements TAB. The
code for B includes a reference to this object. Similarly, when an instance of A is created, it
must be passed an instance that implements TBA. If the initialized references are thereafter
frozen, the effect is very similar to inheritance except through a more robust and docu-
mented black-box type interface (see next page).

Figure 11.12 From inheritance to type-based composition.

X(), Y() a: A
 A «class»

+ X() { ... }

+ Y() { ... self.z(); ... }

Z() «abstract»

P() { ... }

Z()

P()
Q()

 B «class»

Z() { }

+ Q() { P(); }

 TA

X()

Y()

 TAB

P()

 TBA

Z()

 TB

Q()

b: B

A «class»

a b

B «class»

476 PART IV IMPLEMENTATION BY ASSEMBLY
class B implements TB, TBA {
private TAB a; // the “super” part

// interface for general clients: TB
public X() { a.X(); }
public Y() { a.Y(); }
public Q() { a.P(); }

// interface for the “template-method” calls from A: TBA
public Z() { }

// constructor: accepts an instance that implements TAB; or can create one itself
B (TAB super) { a = super; }

}

class A implements TA, TAB {
private TBA b; // the “sub” part

// interface for general clients: TA
public X() { }
public Y() { b.Z(); }

// interface for the “up-calls” calls from B: TAB
public P() { }

// constructor: accepts an instance that implements TBA;
// circularity may need an additional “setter” method
B (TBA sub) { b = sub; }
public setB (TBA sub) { b = sub; }

}

Although this structure may seem heavy for everyday use, keep it in mind as a possible
transformation. You may use some variant of it to replace implementation inheritance with
black-box reuse across component boundaries.

11.5.7 Specifying the Super/Sub Interface
One of the problems with inheritance frameworks is that they are white-box in nature: The
extender of a framework must study and understand the source code in order to make
extensions and to understand which methods to override, which other (template) methods
that override will affect, and how the set of overridden methods must behave for the
framework to function properly. The real reason for this legacy is that the “vertical” inter-
faces of class frameworks have rarely been documented explicitly, abstracting away from
the code.

We have explained at length how type-based specification of interfaces lets us specify
accurately, and yet precisely, the behavior expected of an object; and you have just seen
how any inheritance structure can be analyzed, and even coded, using a type-based com-

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 477
position structure. Even if you do not change the implementation to composition, you can
now document the super/sub interfaces using all the tools of type specification.

11.5.8 Component- and Connector-Based Pluggability
Let’s not forget that components and connectors (see Chapter 10) provide yet another level
of abstraction in building and plugging together components. Different, possibly custom-
ized, forms of connectors can make it much simpler to describe and implement the compo-
nent configurations you need.

11.6 Summary

This chapter deals in some detail with the business of building reusable code components
that are pluggable.

Reuse of software is not simply a matter of cut-and-paste; it should involve the reuse of
interface specifications before implementation code is reused. Successful reuse poses
many organizational challenges (culture, development processes, and so on) as well as
technical ones (designing components that are adaptable to many different contexts and
devising techniques for plugging in the adaptations).

The framework approach to code reuse provides a concrete, yet incomplete, implemen-
tation of the architecture: The rules and policies about how application objects interact are
codified and enforced by the framework itself. Frameworks can be both white-box—a
template method in the superclass must be overriden by a subclass after understanding the
calls made in the superclass implementation—and black-box, in which interfaces for the
plug-in calls are explicitly specified and implemented according to the spec.

The frameworks approach also works at the level of problem domain models. The ideal
approach is to formulate requirements themselves in a modular fashion by using model
frameworks and plugging in the specifics for your problem; implementing a code frame-
work solution to the generic problem specification; and specializing that implementation
framework to construct your system. A typical system consists of numerous such code
frameworks and demands careful use of component-based techniques—such as event pro-
tocols across frameworks—so that the parts work together correctly.

The basic idea of plugging in to a code framework shows up in different ways in differ-
ent languages, including C++ templates, component/connector technologies, and class
hierarchies. The latter tend to be overused; it is often better to replace the inheritance with
composition and explicit forwarding and to use types to document the subtle call patterns
between superclasses and subclasses.

478 PART IV IMPLEMENTATION BY ASSEMBLY
Pattern 11.1 Role Delegation

Adopt a uniform implementation architecture based on composition of separate role
objects to allow plugging together of code components.

Intent
The idea is to compose separately implemented objects for different roles.

Objects play several roles, each of which may have several variants. We don’t want a
separate class to implement every combination of all the variants—for example, a Person
can be a Full-time or a Part-time Employee; a Natural, Foster, or Step-Parent; and so on.
The set of roles (and the choice of variant) may change at run time. We need to change the
type without losing the object’s identity.

Combining two specifications is easy: You just and them together (that is, you tell the
designer to observe both sets of requirements). You can’t do that with code, so we look for a
standard mechanism for cooking up an object by systematically combining roles from sev-
eral collaborations. This approach enables us to stick with the big idea that design units are
often collaborations (and not objects) but retain the convenience of plugging implemented
pieces together like dominoes.

Strategy
The technique is to delegate each of the role-specific pieces of behavior to a separate
object (see Figure 11.13). One conceptual object is then implemented by several: one for
each role, and (usually) a principal to hold them all together. The principal object keeps
those parts of the state to which access is shared among the roles. Each role conducts all
dialog with the other participants in the collaboration from which it arises. Generally, the
roles are designed as observers of various pieces of the principal’s state.

Make the group behave to the outside world as a single object, which was the original
intent, by always keeping them in sync and being careful with identity checks. You must
design an interface for all plug-ins to the same principal so that new plug-ins can be added
for new roles. Never use a language-defined identity check (== in Java). Instead, have a
sameAs(x) query; plug-ins pretend they’re all the same object if they share the same prin-
cipal. Calls to self within plug-ins usually go to the principal.

For example, the basic trading principal has a stock of products and cash assets. Into
this can be plugged a role for retailing that knows about a D istributor and monitors the
stock level, generating orders when necessary. Or we could make it a D istributor, plugging
in the appropriate role; perhaps a D ealer would be something with both the Retailer and
the D istributor roles.

Chapter 11 Reuse and Pluggable Design: Frameworks in Code 479
Figure 11.13 Building objects by connecting role objects.

Shared state

Role-specific state

480 PART IV IMPLEMENTATION BY ASSEMBLY
Pattern 11.2 Pluggable Roles

Make role objects share state via observation of a shared object.

Intent
We need to supply complete implementations of frameworks, but frameworks are often
about collaborations among roles rather than complete object behaviors.

Strategy
• Implement components as collaborations between role plug-ins. Each role implements

the responsibilities of its framework spec, and each role is an observer of the shared

state.

• Ensure a common interface for plug-ins. To build new collaborations, designers couple

principals to collaborations.

Roles Observe the Shared State. So that a fully coded component can mimic the struc-
ture of the corresponding specification frameworks, each role should incorporate the code
necessary for implementing placeholder actions. Most placeholder triggers boil down to
monitoring changes of state. Each role can therefore be built as an observer of the parts of
the common state that it is interested in.

The principal provides a standard pluggable interface allowing each role to register its
interests and makes each shareable attribute a potential subject.

Collaborating Components Mirror Framework Specs. After building a specification
by composing framework models, you can implement it by plugging together the corre-
sponding fully implemented collaborations (if they are available).

This scheme could exact a performance penalty compared with purpose-built systems.
There is overhead in the wiring of the observers wherever components are plugged
together, although more-efficient versions of Observation, such as the JavaBeans event
model, may adequately address this. In exchange for performance, you get rapid develop-
ment; and you always have the option of designing an optimized version by working from
the composed framework specifications.

Observation

CustVendCode

RetailShop Code

RetailDist Code

	Chapter 11 Reuse and Pluggable Design Frameworks in Code
	11.1 Reuse and the Development Process
	11.1.1 � What Is Reuse?
	11.1.1.1 � Import Beats Cut-and-Paste
	11.1.1.2 � The Open-Closed Principle and Reuse Economics

	11.1.2 � What Are the Reusable Artifacts?
	11.1.3 � Reuse Truths
	11.1.4 � A Reuse Culture
	11.1.5 � Distinct Development Cycles

	11.2 Generic Components and Plug-Points
	11.2.1 � Plugs: The Interfaces
	11.2.2 � Upper Interfaces: For “Normal” Use
	11.2.3 � Lower Interfaces: For Customization
	11.2.3.1 � Infrastructure Services: A Special Kind of Lower Interface

	11.3 The Framework Approach to Code Reuse
	11.3.1 � OOP Frameworks
	11.3.1.1 � Class Library with Traditional Reuse
	11.3.1.2 � Framework-Style Reuse and the Template Method
	11.3.1.3 � Contrast of Styles

	11.3.2 � Non-OOP Frameworks

	11.4 Frameworks: Specs to Code
	11.4.1 � Generalizing and Specializing: Models and Code
	11.4.1.1 � Combining Model Frameworks
	11.4.1.2 � Combining Code Frameworks

	11.4.2 � Issues of Composing Multiple Code Frameworks

	11.5 Basic Plug Technology
	11.5.1 � Templates
	11.5.2 � Inheritance and the Template Method
	11.5.2.1 � Inheritance Is One Narrow Form of Reuse
	11.5.2.2 � Inheritance Does Not�Scale for Multiple�Variants

	11.5.3 � Polymorphism and Forwarding
	11.5.4 � Good Uses for Inheritance
	11.5.5 � A Good Combination
	11.5.6 � Replacing Inheritance with Type-Based Composition
	11.5.7 � Specifying the Super/Sub Interface
	11.5.8 � Component- and Connector-Based Pluggability

	11.6 Summary
	Pattern 11.1 Role Delegation
	Intent
	Strategy

	Pattern 11.2 Pluggable Roles
	Intent
	Strategy
	Roles Observe the Shared State
	Collaborating Components Mirror Framework Specs

