
Factors Affecting Effective Software Quality Management Revisited

Nasib S. Gill
Department of Computer Science & Applications,
Maharshi Dayanand University, Rohtak – 124001

Haryana (India)
Email: nsgill_2k4@yahoo.com

Abstract

Developing a good software system is a very complex task. In
order to produce a good software product, several measures for
software quality attributes need to be taken into account. System
complexity measurement plays a vital role in controlling and
managing software quality because it generally affects the
software quality attributes like software reliability, software
testability and software maintainability. Thus, software quality
assurance (SQA) needs to be addressed keeping in view the new
strategies, tool, methodologies and techniques applicable to
software development life cycle.

This paper is primarily aimed at revisiting and examining peculiar
aspects of software development process that affect software
quality management process. These aspects of software
development process include software reliability measurement,
ISO approach applicable to software quality and some aspects
related to software testing improvement. Software testing and
evaluation methods/tools/techniques do not guarantee effective
testing and ensure high software quality. The way to improve the
effectiveness of testing is to improve the attitude of software
developers towards testing.

In this paper, all these factors affecting software quality
management have been discussed as well as all the possible
improvements have been suggested. The results of this paper may
be quite helpful to the researchers in quantifying the specific
measuring tools for these software quality attributes.

Keywords: Software Quality, Software Quality Management,
Software Reliability, ISO, Software Quality Assurance.

1. Introduction

Software quality is gaining much more attention these days as well
as much more emphasis is being placed on production of high
quality software products.

Software development is a complex process requiring careful
integration of diverse disciplines, technical activities, project
management etc. Most software are produced by the co-operative
effort of many designers and programmers working over a period
of man years. The resulting product can’t be fully understood by
any person. No matter how elegant the methods used to test the
final product, how complete the documentation, how structured
the methodology, the development plans, the project reviews, the
walkthroughs, the database management, the configuration
control, no matter how advanced the tools and techniques - all will

come to nothing and the project will fail if the quality management
system is not effective.

2. Software Quality Management

Quality standards can only be achieved by employing effective
quality management system. Quality is built into software
products through the management and technical procedures that
are defined and implemented to assure:

• Quality,
• Schedule and
• Budget Compliance

A number of technologies have been for Software Improvement,
which has been the most important goal of Software Engineering.
Few examples of the important technologies are:

• Requirement definition
• Defect prevention
• Defect detection
• Defect removal.

3. Software Reliability Measurement

Software reliability can be measured, directed, and estimated using
historical and development data. In statistical terms, ‘software
reliability’ is defined as “the probability of failure free operation
of a computer program in a specified environment for a specified
time”.

Many researchers attempted to extrapolate the mathematics of
hardware reliability theory to the prediction of software reliability.
Most hardware related reliability models are predicated on failure
due to wear rather than failure due to design defects.

In hardware, failures due to physical wear such as effects of shock,
temperature, corrosion, etc. are more likely than a design related
failure. Unfortunately, the opposite is true for software. In fact, all
software failures can be traced to design or implementation
problems; wear does not enter into the picture.

If we consider a computer-based system, a simple measure of
reliability is MTBF (mean Time Between Failure) and the same is
given as:
 MTBF = MTTF + MTTR
where
 MTTF : Mean Time To Failure
 MTTR : Meant Time To Repair

ACM SIGSOFT Software Engineering Notes Page 1 March 2005 Volume 30 Number 2

mailto:nsgill_2k4@yahoo.com

In addition to a reliability measure, another measure is defined as
availability measure, where availability measure is defined as
defined as the probability that a program is operating according to
requirements at a given point in time and is defined as:

ISO 9000/IS 14000 defines the essential features of the system and
does not attempt to prescribe how the system will be implemented.
It is for developers to establish procedures appropriate to their own
scale, methodology and organisation to achieve the requirements
of the standard. The standard establishes requirements for software
quality management system to be designed, developed and
maintained with the objective of ensuring that the software will
meet the requirements of a contract, purchase order or other
agreement.

 Availability = MTTF / (MTTF + MTTR) x 100%

4. Software Quality Assurance

Software quality assurance is the mapping of the managerial
precepts and design disciplines of quality assurance onto the
applicable managerial and technological space of software
engineering.

SQA is an “umbrella activity” that is applied at each step in the
software process. SQA is complicated by the complex nature of
the software quality that is defined as an attribute of computer
programs that is defined as “conformance to explicitly and
implicitly defined requirements”. SQA encompasses the
following:

In every organisation, anybody having anything to do with
developing of software contributes to the quality. All
responsibilities and authorities, which includes for quality, should
therefore be clearly established and understood. Working
relationships between sub-groups of the organisation require clear
understanding and co-ordination between managers and
employees.

An effective system to quality management, planned and
developed in conjunction with other functions, should be
documented. Requirements should be met by the establishment
and implemented of procedures with the specific purpose of
ensuring that only software conforming to contractual
requirements is delivered.

• Quality management approach
• Effective software engineering technology
• Formal technical reviews that are applied throughout

the software process
• Multi-tiered testing strategy
• Control of software documentation

 • Procedure to assure compliance with software
development standards In pursuance of these requirements, the system should:

• Demonstrate both recognition of the factors which may
affect quality

• Measurement and reporting mechanisms.

• Ensure that quality requirements are determined and that
standards and procedures are established to satisfy such
requirements, including development, acquisition,
inspection and testing, packaging, shipping, storage,
installation and maintenance

Software safety and hazard analysis are software quality assurance
activities that focus on the identification and assessment of
potential hazards that may impact software negatively and cause
an entire system to fail.

• Provide for the early and prompt detection of actual or
potential deficiencies, trend or conditions which could
result in non-compliance with requirements and for
timely and effective corrective action; and

If hazards can be identified early in the software engineering
process, software design features can be specified that will either
eliminate or control potential hazards. A modelling and analysis
process is conducted as part of software safety. Initially, hazards
are identified and categorized by criticality and risk. • Make available evidence that the quality system is

effective.
 5. ISO Approach To Software Quality Management
All standards and procedures to be used in development of
software should be well documented and readily accessible. They
should detail standards of code and documentation, including
planned content and format, and procedures to be executed in the
testing and implementation of the software, and should cover
following additional subjects:

ISO 9000 describes quality assurance elements that can be applied
to any business regardless of the products or services offered. The
ISO 9000 quality assurance models treat an enterprise as a
network of interconnected processes. For a quality system to be an
ISO-compliant, these processes must address the areas identified
in the standard. ISO 9000 describes the elements of a quality
assurance system in general terms.

• Project Management: It includes milestones,
resource allocation, sub-contractor control,
significant timing and reporting structure.

• Design Techniques: It covers methodology selection
and reference to other manuals where necessary.

ISO 9000/IS 14000 is intended to provide common mean for
establishing an effective quality management system when related
to software, which together with procedures for the specifications,
design, implementations and evaluation, allow development of
software in a controlled manner. This should result in creation of
software in the most cost effective way, having due regard to
whole life cycle of the product, and should instil a high degree of
confidence that the software will meet the operational
requirements.

• Review Procedures: It defines the method of review,
responsibilities and corrective action, where
appropriate.

ACM SIGSOFT Software Engineering Notes Page 2 March 2005 Volume 30 Number 2

5.1 ISO 9001

ISO 9001 is the quality assurance standard that applies to software
engineering. ISO 9001/IS 14001 is the quality system model
appropriate for the software industry. The standard contains the
following 20 requirements:

• Statistical techniques
• Management responsibility
• Quality system
• Contract review
• Design control
• Document and data control
• Purchasing
• Control of customer supplied product
• Product identification and trace ability
• Process control
• Inspection and testing
• Control of inspection, measuring, and test

equipment
• Inspection and test status
• Control of non-conforming product
• Corrective and preventive action
• Handling, storage, packaging, preservation, and

delivery
• Control of quality audits
• Training
• Servicing.

However, ISO 9001/IS 14001 being generic in nature requires to
be understood in the context of software industry. Guidance in this
respect has been provided by another standard, namely, ISO 9000-
3/IS 14000 (Part 3), by correlating the 20 elements of ISO 9001/IS
14001 to the activities in the software industry.

To properly conduct software quality assurance, data about the
software engineering process should be collected, evaluated and
disseminated. Statistical SQA helps to improve the quality of the
product and the software process itself. Software reliability models
extend measurements, enabling collected defect data to be
extrapolated into projected failure rates and reliability predictions.

6. Foundation of Software Testing

As the complexity of applications and the software increases,
software testing and evaluation becomes more difficult and its
effectiveness falls below expectations. Software testing is not an
exact science but is both an art and a science. But testing has often
been pursued purely on technical grounds and during the past two
decades there have been considerable advancement in software
testing techniques and methodologies.

The foundations of software testing are:

• Test process, test cases and test plan
• Techniques, methodologies, tools and standards
• The people and the organisation.

The test process, techniques and tools are significant contributors
to effective and efficient testing and quality assurance. They can

offer better results only when they are built upon the “people
foundation: and sound managerial and organisational culture”.
It is the people and the culture of the organisation that determines
how any system is practised.

Testing has to concentrate on critical, significant, high value
software elements from the customers’ perspective. This requires a
greater awareness of the application environment and deeper
understanding of the customer’s requirements. The following are
three different types of requirements:

• Implied requirements
• Expected requirements
• Exciting requirements

The above requirements have a different impact on customer
satisfaction. As the objective of software development to satisfy
the customer’s requirements, software should be tested not only
for implied requirements, but also for expected and exciting
requirements. Further, software be tested for its robustness and test
cases should include invalid inputs to check the operation of the
software under invalid or erroneous conditions.

7. Key-problems of Current Software Testing

Practices

The existing software practices are badly suffering from many ills
caused due to:

• Testing practices
• Attitudes of users
• Culture of organisation.

Ills of existing software testing practices, attitudes and
organisational culture include:

• Shortcuts in testing
• Reduction in testing time
• ‘Let go’ - deliver now, correct errors later - attitude
• Poor planning and co-ordination
• Lack of user involvement
• Poor documentation
• Lack of management support
• Inadequate knowledge of application environment
• Improper staffing
• Poor testability

8. Improving Software Quality Through Proper

Testing

Quality is everybody’s job, but management’s responsibility. The
quality culture of the organisation is the first aspect that need to be
appraised and improved, if required. By culture we mean the way
in which quality is viewed, talked about and implemented in the
organisation.

Potential areas of improvement include:

• Management and organisational commitment and culture
• Participative testing
• Focus of testing
• Better planning and effective co-ordination

ACM SIGSOFT Software Engineering Notes Page 3 March 2005 Volume 30 Number 2

• Feedback and quest for continuous improvement
• Design of testability.

9. Conclusions

Loosely tested software system lowers down the system reliability
that thereafter negatively affects ‘Software Quality’. In the present
paper ‘Software Reliability Measurement’ has been discussed
besides ISO approach applicable to software quality assurance
(SQA).

In order to enhance the effectiveness of testing and to improve the
software quality, software houses must make transitions to higher
software culture. Software testing techniques, methodologies, tools
and standards can only aid in testing, but it is the management and
the people involved who have to plan for and carry out effective
testing. Testing need to focus on maximising ‘customer
satisfaction’, rather than just detecting and correcting errors
involved in delivered software. In this paper, all these factors
affecting software quality management have been discussed as
well as all the possible improvements have been suggested. The
results of this paper may be quite helpful to the researchers in
quantifying the specific measuring tools for these software quality
attributes.

References

1. Aurum, A., Jeffrey, R., Wholin, C., and Handzic, M. (2003)

Managing Software Engineering Knowledge, Springer, 2003
2. Rosenberg, Linda and Gallo, Albert (2002). Software Quality

Assurance at NASA. IEEE Aerospace Conference, 2002.
3. Gill N.S. (2002). Software Engineering: Software Reliability,

Testing and Quality Assurance. Khanna Books Pub. Co.(P)
Ltd., New Delhi. 2002.

4. Ghezzi Carlo, Jazayeri Mehdi, Mandrioli Dino (1996).
Fundamentals of Software Engineering. Prentice-Hall of
India Pvt. Ltd., 1996.

5. Gillies, Alan C. (1997) Software Quality, Theory and
Management. International Thomson Computer Press, 1997

6. Kitchenham, Barbara, Pfleeger, Shari Lawrence (1996).
Software Quality: The Elusive Target. IEEE Software, Vol 13,
No 1 (January 1996) 12-21

7. Gill N.S., Grover P.S., Taneja D.R. (1994). System
Complexity As An Aid to Quality Assurance. IEEE’s
Proceedings of Ist International Conference on Software
Testing, Reliability and Quality Assurance, Dec. 21-22, 1994,
pp. 116-120.

8. Pressman Roger S. (1997). Software Engineering: A
Practitioner’s Approach. McGraw-Hill International Editions,
1997.

9. Rosenberg, Linda, and Hyatt, Lawrence (1996). Developing a
Successful Metrics Program. 8th Annual Software Technology
Conference, 4/96

10. Schulmeyer, G. Gordon and McManus, James I., Handbook of
Software Quality Assurance, 3rd Edition, Prentice Hall PRT,
1998

11. Wilson, W., Rosenberg, L., Hyatt, L. (1996). Automated
Quality Analysis of Natural Language Requirement

Specifications. Proceedings of the Fourteenth Annual Pacific
Northwest Software Quality Conference, 1996

12. Aggarwal K.K. (1993). Reliability Engineering. Kluwer
Academic Publishers, 1993.

13. Conte S.D., Dunsmore H.E., Shen V.Y. (1986). Software
Engineering Metrics And Models. The Benjamin/Cummings
Publishing Company, Inc., 1986.

14. Murugesan S. (1994). Attitude Towards Testing: A Key
Contributor to Software Quality. IEEE’s Proceedings of Ist
International Conference on Software Testing, Reliability and
Quality Assurance, Dec. 21-22, 1994, pp. 111-115.

15. Shooman M. L. (1991). Software Engineering. McGraw-Hill
International Editions, 1991.

16. Rawat A. S. (1994). ISO 9000: Software Perspective. CSI
Communication, May 1994, pp. 4-9.

17. Tiwari Ashish, Tandon Amit (1994). Shaping Software
Quality - The Quanititative Way. IEEE’s Proceedings of Ist
International Conference on Software Testing, Reliability and
Quality Assurance”, Dec. 21-22, 1994, pp. 84-94.

18. P.S. Grover, N.S. Gill, and R Singh (1994). Measuring
Software Systems. In Theory and Practice on Operations
Research, 1994.

19. Mall Rajib (1999). Fundamentals of Software Engineering.
Prentice-Hall of India Pvt. Ltd., 1999.

20. Ghosh Hiranmay (1994). A Comparison of ISO 9000 and
SEI/CMM for Software Engineering Organisation. IEEE’s
Proceedings of Ist International Conference on Software
Testing, Reliability and Quality Assurance”, Dec. 21-22,
1994, pp. 78-83.

ACM SIGSOFT Software Engineering Notes Page 4 March 2005 Volume 30 Number 2

	Abstract
	1. Introduction
	
	References

