
A SOFTWARE QUALITY ASSURANCE EXPERIMENT 

J. P. Benson 

S. H. Saib 

General Research Corporation 

Santa Barbara, California 

ABSTRACT 

An experiment was performed to evaluate the 

ability of executable assertions to detect program- 
ming errors in a real time program. Errors selec- 

ted from the categories of computational errors, 
data handling errors, and logical errors were in- 

serted in the program. Assertions were then written 
which detected these errors. While computational 
errors were easily detected, data handling and log- 
ical errors were more difficult to locate. New 

types of assertions will be required to protect 
against these errors. 
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INTRODUCTION 

Over the past two years a number of techniques 
designed to eliminate errors in software have been 

implemented in a collection of programs called the 
Software Quality Laboratory (SQLAB). I-4 An impor- 

tant goal of this effort has been the ability to 

analyze "realistic" programs. By realistic we mean 
programs which can execute on current computers 

with current compilers, use floating point arith- 
metic, incorporate data structures, be composed of 
multiple modules, and have a total size of perhaps 
several thousand statements. 

In order to demonstrate SQLAB's ability to lo- 

cate errors, a medium size program (~i000 state- 
ments) was selected. The program simulates the 
tracking of objects using a radar and embodies many 

of the characteristics of a complex software system 
including multitasking and data structures composed 
of queries and records. 

The experiment described in this paper was de- 

signed to evaluate the use of assertions in a real 
time program. The experiment consisted of adding 
errors to the test program from a list of the most 
common software errors. A number of errors from a 

set of error categories were selected and intro- 
duced into the test program. (During the course of 

the experiment some errors already present in the 
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program were also detected.) Executable assertions 

were written to detect the errors and the program 

was run to verify that the errors were actually de- 

tected. The results suggest that some of the asser- 
tions could have been made part of the variable 

definition statements of the programming language 
itself rather than separate statements. In addi- 
tion, three new types of assertions which would be 

useful in error detection were identified: vari- 

able range assertions, approximate result asser- 
tions, and sequencing assertions. 

ASSERTIONS 

Assertions for software were first proposed by 
Floyd 5 as a method for proving the correctness of 

programs. Floyd's assertions were statements ex- 

pressed as logical formulas in the first-order 
predicate calculus which specified the correct op- 
eration of the code. These assertions are combined 
with the statements of the program to generate 

logical formulas. If these formulas can be shown 

to be valid, the program is considered correct. 

More recently, Stucki and Fosbee 6 have used 

executable assertions to dynamically verify the 

execution of programs. Executable assertions are 

translated by a preprocessor into executable state- 

ments. When the logical expression in the asser- 
tion is false, an error message is printed along 

with the values of the variables named in the as- 
sertion. Assertions can also be used to indicate 
when the value of a variable exGeeds its declared 

range, to report an invalid array subscript, to 
specify particular values that a variable may 
take on, and to report when the value of read-only 

parameters are changed by invoked procedures. 
SQLAB also uses executable assertions which are 
translated into executable code by a preprocessor 
so that they can be evaluated at run time. When 
the expression in an assertion is false, it is 
reported and a FAIL block can be executed. Code in 
the FAIL block can institute recovery procedures to 
either correct the cause of the error or reinitial- 
ize the software. 

In addition to executable assertions, SQLAB 
also uses assertions to perform "static analysis" 
on software. Static analysis refers to consistency 

checks which can be performed without having to 
execute the program. UNITS assertions are used to 
specify the physical units of variables. Each ex- 
pression in the program is then analyzed by SQLAB 
to verify that the units are used consistently. 
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INPUTS and OUTPUYS assertions state which variables 
(global to a subroutine or procedure) are read-only, 
write-only, or read/write. Using these assertions, 
checks on the consistency of data usage (data flow 
analysis) in a program can be performed by a static 

analyzer. 

ASSERTIONS AND ERROR CATEGORIES 

A number of software error studies 7-II have 

shown that the following types of errors occur most 

often: 

Computation errors - Using the wrong 
equation, overflow or underflow, missing 
or extraneous computations 

Data handling errors - Subscript errors, 
failure to initialize a variable, refer- 
encing or updating the wrong variable 

Logic errors - Missing tests, incorrect 
tests, incorrect sequencing 

Since these are the errors most often found in 
software, we feel it is important to develop asser- 
tions to identify them. 

Computation errors__ can be detected using assertions 
which place bounds on the computation being per- 
formed or provide alternative computations which 
achieve the same result (e.g., sorting by HEAPSORT 
or by QUICKSORT). Computation bounds can be either 
fixed ranges or linear or higher order approxima- 
tions to the result being computed. The assertion 

RECVTIME < 2.0*RANGE/VLITE 

is an example of a computational bounds assertion. 
In this case, a bound for the approximate time at 
which to expect a radar return (RECVTIME) is stated 
using only the object s range and the speed of light. 
The movement of the object during the radar pulse 
and other second order calculations were ignored. 

Data handling errors can usually be detected by as- 
sertions which specify ranges, units, scale factors 
and other specific information concerning the type, 
and computer representation of variables. The fol- 
lowing assertion which constrains the range of the 
variable BEAM is an example of a data handling as- 

sertion. 

INITIAL (FIRSTBEAM <= BEAM) AND (BEAM <=MAXBEAM); 

This kind of assertion could be added to a program- 
ming language and required when a variable is de- 
clared. Instead, BEAM could be declared as 

BEAM : INTEGER [FIRSTBEAM..MAXBEAM]; 

which means that the variable BEAM takes on in- 
teger values from FIRSTBEAM to MAXBEAM. 

This declaration does away with the need for 
the assertion if the compiler can use the declar- 
ation to compile run-time checks on the value of 
BEAM. For languages like FORTRAN, however, these 
checks must be added as executable assertions. In 
addition, the assertions are valuable to further 
limit the range of a declared variable in a part 

of the program. 

Logic errors and sequencing errors are the most 
difficult to detect using assertions. The infor- 
mation for writing these assertions must be found 
in the program specifications or by considering in 
detail the problem that the program is to solve. 
For example, incorrect program sequencing can only 
be detected if the correct sequencing is described 
apart from the program. 

A SAMPLE PROGRAM 

The program that we used in our experiment, 
ORDGEN, constructs a schedule for the operation of 
a radar. It is written in V-PASCAL 12, a preproces- 
sor language which is translated into PASCAL. 

The schedule is expressed in terms of a time 
line. Commands are executed by the radar at cer- 
tain points in time. These commands are: send a 
radar pulse, point the radar in a particular dir- 
ection, and listen for a return from an object. 
There are certain constraints placed upon the gen- 
erated schedule. These constraints are both physi- 
cally and intuitively obvious. The radar cannot 
both send pulses and receive echoes at the same 
time, and it takes a finite amount of time in which 
to change the direction in which the radar is send- 
ing or receiving. 

The schedule is constructed from a sequence of 
radar action requests. Each request specified one 
of four types of radar pulse: search, verify, spe- 
cial search, or track. Each of these pulse types 
has associated with it the length of time required 
to send the pulse and the length of time which the 
radar should listen for an expected return. Each 
request also includes the direction in which the 
radar should send the pulse (the beam number), the 
time at which the pulse should be transmitted, and 
the time between the transmit pulse and the expec- 
ted return. This is a measure of the distance from 
the radar to an object. 

ORDGEN takes as input a sequence of these 
radar action requests and constructs as output a 
schedule of radar commands which do not violate 
the constraints discussed previously. 

ERROR SEEDING EXPERIMENT 

The goal of the experiment was to discover if 
assertions could be written to detect typical 
errors from all the error categories. Assertions 
for detecting the types of errors previously dis- 
cussed were added to ORDGEN. We also introduced 
into ORDGEN errors chosen from the categories of 
software errors determined to occur most often. 
The data handling, computation, and logic errors 
added to ORDGEN are shown in Table i. ORDGEN was 
then run and the assertion error reports examined 
to determine which assertions (if any) detected 

the errors. 

Error Ci (a computation error) was already 
present in ORDGEN. A reference was made to a con- 
stant specifying pulse length rather than to a 
constant specifying receive window length while 
scheduling a receive window. This error had not 
been detected in the output from ORDGEN even 
though we had been using the program for several 

months! 
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TABLE 1 

ERRORS ADDED TO ORDGEN 

• Ci: 

• C2: 

• C3: 

• Di: 

• D2: 

• D3: 

• Li: 

• L2: 

• L3: 

COMPUTATION ERRORS 

Using the wrong variable name in an equation 

Leaving out a computation 

Adding an unneeded computation 

DATA HANDLING ERRORS 

Referencing the wrong variable name 

Using the wrong arithmetic operator 

Not initializing a variable correctly 

LOGIC ERRORS 

Leaving out a test 

Using the wrong relational operator in a test 

Executing the wrong sequence of decisions 

Error D1 (a data handling error) occurred in 
ORDGEN when the wrong variable was referenced. In 
ORDGEN, pulse length and receive-window length 
are specified for each type of radar pulse (search, 
verify, special search, and track) using the PASCAL 
data structure of enumerated type. An array of 
pulse lengths and an array of receive-window 
lengths are indexed by pulse types; e.g., 
RWINDOW[SEARCH] refers to the length of the search- 
pulse receive window. 

Using the wrong variable name in a statement 
is a very difficult error to detect by executable 
assertions. In this case, the error was detected 
by associating the indices of each array with the 
values to be stored in the array, using an asser- 
tion such as the one following: 

ASSERT (INDEX3 = SEARCH => 
RTNTIME = BSDUR + SEARCHWINDOW) 

AND (INDEX3 = VERIFY => 
RTNTIME = BSDUR + VERIFYWINDOW) 

AND (INDEX3 = SPECIAL SEARCH => 
RTNTIME = BSDUR + SPSEARCHWINDOW) 

AND (INDEX3 = TRACK => 
RTNTIME = BSDUR + TRACKWINDOW); 

This assertion was able to detect the replace- 
ment of RWINDOW[INDEX3] by PDURAT[INDEX3] in the 
statement 

RTNTIME := BSDUR + RWINDOW[INDEX3]; 

It would appear that errors such as C1 and D1 
are more easily caught by static analysis than by 
executable assertions. Providing an assertion for 
every variable reference is, in effect, duplicating 
each statement. Strong type-matching requirements 
may be one method for locating these errors. For 
example, the variable RTNTIME should be calculated 
using variables whose values are associated only 
with receiving radar returns. If the constants 
PDURAT and RWINDOW were associated with the types 
TRANSMIT TIME and RECV TIME, respectively, then 

errors such as C1 and D1 could be caught by type 
checking. 

Error D2 (using the wrong arithmetic operator) 
was introduced into ORDGEN by changing the state- 
ment 

to 

REQUEST.XMITTIME := CURRENTTIME + PINOM; 

REQUEST.XMITTIME := CURRENTTIME - PINOM; 

This error was detected by the existing executable 
assertion in VERGEN 

ASSERT CURRENTTIME < REQUEST.XMITTIME; 

which states that the time at which a radar trans- 
mit pulse is requested must be later than the cur- 
rent time. 

In general, using the wrong operator in an ex- 
pression can be detected by specifying variable 
ranges or stating approximate bounds on the re- 
sults of computations. 

Error D3 (incorrect initialization of a vari- 
able) can usually be detected by range checks if 
the range of the variable can be declared. PASCAL 
allows some range checking through subrange types. 
In ORDGEN, this error was introduced by initializing 
the variable SPOUT to -i rather than 0. This was 
detected by,the assertion 

INITIAL 0 <= SPOUT; 

While static analysis methods can be used to 
detect whether a variable has been initialized, 
this type of checking is expensive. A better sol- 
ution would be to allow (or require) that a vari- 
able's initial value be stated when the variable 
is defined by a statement such as 

SPOUT ~ INTEGER [0..MAXSPOUT] INITIAL 0; 

which would specify that SPOUT is to take on the 
values from 0 to MAXSPOUT and is initialized 
to 0. Verifying that the initial value is correct 
should still be done by executable assertions in 
the routines that use the variable. 

Error C2 (leaving out a computation) was in- 
troduced into ORDGEN by leaving out a statement. 
This error was detected by the assertion 

ASSERT RQUEST.BEAMPOS = TOTDSREC.OTBEAM; 

In general, this kind of error can be detec- 
ted by assertions which describe the computation 
that a routine performs or set bounds on the re- 
sult of a computation. In the simplest case (as 
in the above example) the assertion may merely 
verify the action of a statement. 

Error C3 (an extraneous computation) was an- 
other error that existed in ORDGEN but was not 
discovered until the experiment. The expression 

+TOTDSREC.OTVCL*PITRK 
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which should have been deleted from the second line structure, the statement 
of 

RQUEST.RECVTIME := ROUND (2*(OTRNGE + OTVCL*PITRK 

+ TOTDSREC.OTVCL*PITRK)/VLITE 

RWINDOW[TRACK]/4); 

was mistakenly left in when this statement was cor- 
rected for another error. This error results in 
the calculation of an incorrect range. The error 
was detected by the assertion 

ASSERT RQUEST.}~CVTIME = ROUND ( 
(2.0*OTDSREC.OTRNGE/VLITE - TRACKWINDOW/2) 

-(2.0*OTDSREC.OTVCL/VLITE - TRACKWINDOW/2)); 

which is just an alternative way of expressing the 
previous computation. As with the assertions for 
errors D1, Ci, and C3, this assertion checks the 
result of a statement by duplicating (or equiva- 
lently expressing)(the expression in the statement. 

Error Li (leaving out a test) Was implemented 
in ORDGEN by leaving out a decision. The effect of 
this error was that more than the maximum allowed 
number of search pulses were left outstanding (had 
not had their returns processed). This eventually 
caused the radar orders buffer to overflow. The 
assertion on the range of the number of outstanding 
search pulses 

ASSERT (0 <= SPOUT) AND (SPOUT <= MAXSPOUT); 

detected this error. 

Missing tests can only be discovered if the re- 
quirements for the program include these tests. 
In the above case, the redundant specification of 
the range of the variable SPOUT (which counts the 
number of outstanding search pulses) allowed the 
error to be detected. 

Error L2 (using the wrong relational operator 
in a test) is a common error which is not easily 
detected. This was another error which was al- 
ready present in ORDGEN and was not detected until 
the experiment. The incorrect test was part of a 
REPEAT...UNTIL construct. Instead of the correct 
test 

UNTIL NEXT > NUMBER - i; 

the test 

UNTIL NEXT >= NUMBER - i; 

was substituted. ~his resulted in the final entry 
in the radar activities queue not being processed. 

The assertion to catch this error used an 
auxiliary variable (a variable not used elsewhere 
in ORDGEN) to count the number of radar requests 
processed. This number is then compared with the 
number of requests in the queue by the assertion 

ASSERT PROCESSED = NUMBER; 

Error L3 (executing the wrong sequence of de- 
cisions) is another error that was already present 
in ORDGEN that was not detected by testing. Due to 
the misplacement in an IF..ELSE..ENDIF control 

PUT2 (REQUEST); 

which returns an unprocessed request to the radar 
request queue, could be executed twice for the 
same queue entry. This results in duplicate 
entries in the queue. 

This error can be detected by specifying the 
conditions that must be true whenever the ELSE 
clause of an IF statement is executed. This error 
points out a weakness in the ELSE construct, it 
allows a statement or block of statements to be 
executed whatever conditions are true. If decision 
statements in the program are executed out of their 
intended order, the conditions which were assumed 
to hold when the ELSE clause was executed may no 
longer be true. For this reason it is recommended 
that assertions be placed after all ELSE statements. 
These assertions should specify all conditions that 
must be true when the ELSE is executed. 

For example, the following assertion was 
placed in ORDGEN in order to catch error L3. (The 
sequence of decisions is repeated here to show the 
source of the assertion.) 

IF XMITTIME < EFRAM THEN 

IF IR + BSDUR + RWINDOW[INDEX3] < EFRAM THEN 

IF IX + BSDUR + PDURAT[INDEX3] > XLATE THEN 

IF RFIRST + RECVTIME + BSDUR + RWINDOW[INDEX3] 
< EFRAM THEN 

ELSE 
ASSERT (XMITTIME < EFRAM) 

AND (IR + BSDUR + RWINDOW[INDEX3] < EFRAM) 

AND (IX + BSDUR + PDURAT [INDEX3] > XLATE) 

AND (RFIRST + RECVTIME + BSDUR 
+ RWINDOW[INDEX3] >= EFRAM) 

ENDIF; 

RESULTS 

The experiment showed that executable asser- 
tions could be written to detect the most common 
types of programming errors. They appear to be 
most valuable in catching computational errors. 
Many computational errors can be found by specify- 
ing variable ranges and by stating approximate 
bounds on the results of computations. These 
types of assertions are so valuable that they 
should probably be considered as a separate type 
of assertion from the normal logical assertions. 
Assertions can also be used for detecting some 
data handling and logic errors. However, other 
types of analysis such as static analysis and 
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sequence analysis seem more promising for these 
types of errors. 

The addition of assertions to the program in- 
creased its compilation time by 56 percent, its 
execution time by 12 percent, and its storage re- 
quirements by 13.5 percent. This data has been 
substantiated in several other programs, including 
SQLAB itself. 

As a result of the difficulties in writing as- 
sertions to detect errors in program logic and in- 
correct sequencing, we are developing two exten- 
sions to executable assertions to detect these 
types of errors. In one, we use a finite state 
machine model to indicate correct sequencing in a 
program, and in the other we use the idea of "aux- 
iliary variables" proposed by Owiki and Gries 13 to 
retain information about the program in addition 
to that stored in the program's variables. The 
ability of these types of assertions to detect 
errors will be evaluated in future experiments. 
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