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Abstrac t

During the past several years Total
Quality Management (TQM) has become a
driving

	

force

	

in

	

the

	

service

	

and
manufacturing industries . TQM and Total
Quality Control (TQC) are very applicabl e
to the software development industry and
thereby, applicable to software engineering
instruction . This article focus on the
need for integration of TQM concepts int o
the regular computer curriculum of the
computer science and software engineerin g
program .

Introduction

Quality has been defined by bot h
practitioners and researchers to mea n
"fitness for use" [JURAN] and meeting th e
requirements as stated in the design phase
[CROSBY] . Other definitions focus on th e
utility of the product or service . In the
software arena related definitions hav e
been applied when software is tested
against the system requirements, as wel l
as, the reliability of the software and it s
ability to be maintained . Further
verification of the quality of softwar e
would include the measurement of th e
software against

	

the needs of th e
user/customer .

The software development life cycle, as
taught in undergraduate programming and
software engineering courses, has over the
years focused on analysis of the problem ,
establishment of the system requirements ,
design of the solution, coding and
debugging, testing, documentation, and
implementation . Ongoing maintenance cause s
this life cycle to be continuous .

Total Quality Management, as applied to th e
software development process, would alte r

this waterfall approach . With the use of
TQM, various stages of the softwar e
development cycle would be reordered . The
entire area of quality control an d
management emphasizes the need to plac e
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more effort on the analysis and desig n
phases . With the older developmen t
technologies software could be develope d
with flaws or weaknesses in the design .
The later in the development cycle that
flaws are identified the more costly it i s
to repair them . In certain cases the flaw s
are so severe that the software is rendere d
useless .

TQM places a high value on not fixing known
problems but eliminating them during the
analysis and design phases . It is best to
build quality in, not attempt to add i t
later . As in the case of a manufacturin g
plant, it is quite costly to wait until th e
inspection process to find a product i s
defective . Earlier identification of the
problem in the design and tooling phase an d
the elimination of the design flaws ca n
result in greatly reduced defect rates .
Dr . W . Edwards Deming strongly believe s
that the inspection phase of manufacturing
should be eventually eliminated . It woul d
be interesting to test this theory in th e
software engineering process . Moving a
portion of the test phase in softwar e
engineering to the analysis and desig n
phases can result in a higher degree o f
software correctness and reliability .

Teaching TOM As A Fundamental 	 Software
Engineering Concep t

Two distinct models can be used fo r
teaching TQM . As used in both engineerin g
and business administration curriculums ,
one choice is to include a separate cours e
which introduces the student to th e
concepts of quality and the implementatio n
of a total quality management program . The
second option is to integrate TQM into eac h
of the major courses taught by the computer
science department .

The

	

first

	

choice

	

would

	

cause

	

the
development of a specific course taught a t
perhaps the junior or senior level . The
course could consist of two parts . Th e
first part consists of lecture and a
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reading portion which teaches the studen t
the key concepts of TQM and its application
to software engineering . A'second part o f
the course would focus on the creation o f
teams which would implement TQM principle s
in the analysis and design of a software
project . The team role playing would b e
extremely helpful since team building an d
employee empowerment are some of th e
cornerstones of TQM .

The advantage of the second option ,
integrating TQM modules into the ke y
software engineering courses, allows for
the potential application of TQM concept s
within a number of different environments .
Such reenforcement is quite helpful in th e
learning process . This integration of TQM
into individual coursework requires that
each instructor within the departmen t
become more than just familiar with the
theory and application of TQM . In many
departments this knowledge and experienc e
is at best lacking . However, as TQ M
expands and the work of various researchers
and practitioners is published, this lac k
of knowledge should diminish . The
acquisition of "Profound Knowledge", as Dr .
W . Edwards Deming describes his theory o f
quality, is something that must occur over
time .

The best situation would be the
implementation of both a separate cours e
and the integration of TQM concepts into
individual software engineering courses .
Using this approach, adequate time could b e
spent in examining additional areas of th e
quality movement, quality circles ,
statistical process control (SPC), human
aspects of quality, leadership, and related
ideas .

Conclusio n

Total Quality Management has a potentia l
for improving the way in which software i s
developed and maintained . The overal l
benefits of TQM are far reaching and wil l
allow the student to understand th e
implementation of TQM in the softwar e
industry . Because TQM will be use d
extensively in the next years in all type s
of businesses and governmental agencies ,
students with formal TQM exposure an d
training will be in great demand .

Overall, I strongly urge that computer
science and information science program s
begin to investigate the benefits of TQM
and related quality control techniques a s
they relate to software engineeering .
Those departments which integrate thes e
techniques into their courses will becom e
leaders in software engineering education .

Regardless of which option is chosen there
are benefits that can be gained . Before
the levels of success which are expected
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can be obtained, it is necessary tha t
computer science faculty be trained in TQM
and its many facets, particularly as they
apply to the software development process .
Various organizations are beginning t o
address this training need . The attache d
references include a listing of thes e
groups .
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time, broad enough to give them a wide r
view of the field .

This success, however, has not bee n
without costs . For several years we mad e
Computer Fundamentals prerequisite t o
CS1 . This worked nicely for compute r
science majors but effectively locked out
of our first course, other science an d
engineering students as well as curiou s
humanities majors . Perhaps even mor e
seriously, making Computer Fundamentals a
prerequisite to the first programmin g
course may well have discourage d
potential majors . Weren't many of us i n
the field smitten with the machine as th e
result of our first programming course ?
We have, this year, dropped Compute r
Fundamentals as a prerequisite for CS 1
but strongly encourage majors to take in
their first or second semester .

The Computer Fundamentals requirement ha s
also posed a problem for sophisticate d
transfer students, returning student s
with industry experience, and majors i n
electrical engineering who decide i n
their third year that they want to minor
in computer science . These students have
often picked up most of what is taught i n
Computer Fundamentals or can easil y
acquire on their own what they hav e
missed . The solution to this problem i s
fairly simple . We screen for thes e
students at the beginning of Compute r
Fundamentals and allow them to fulfil l
this requirement with a more advance d
course .

In the future we hope to write a n
interpreter for PAL to be run under VMS .
Though it is instructive for students t o
write programs in our pseudo assembler ,
it is certainly more gratifying to se e
one's work execute . From the
instructor's point of view, a long penci l
and paper assembly language program ca n
be difficult to decipher .

We, of course, have a textbook in th e
works .
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his own pool of "string space" complet e
with garbage collection . None of th e
students who chose to develop their ow n
string routines completed a working program
by the due date .

4 .Next Developments in strings .
Some users of these strin g

implementations are troubled by th e
"MaxStrLength" limitation : This constan t
must be known at compile-time and ever y
string will use that much space . This i s
the standard questions of static vs .
dynamic storage allocation . It led to a
fourth implementation : StrType .Inf .

In this case, StrType is a pointer to a
"block" which resembles the earlie r
StrType .Std . A block can contain up to
"CharsPerBlock" (a new programmer-define d
constant) characters and possibly a pointe r
to another block . Thus, the length of a
string is limited only by available memory
and short strings can be as short as on e
block .

Although a working implementation i s
possible with only the four core routine s
described in section 2, efficient use of
dynamic data structures usually requires
some form on initialization . The fifth
"core" routine is InitStr (S) .

InitStr guarantees that storage is
available for S . Every program should cal l
InitStr before using a string . Although the
Std, TP, and C versions of InitStr d o
nothing, the Inf version uses NEW t o
allocate space for the first block, sets
the length field to 0, and sets the firs t
block's "Next" pointer to nil . Separating
core operations from higher-leve l
operations allowed creating a reasonably
full set of operations on a dynamic data
structure with surprisingly little coding .

Certainly other data structures ar e
amenable to this level of separation . I
recently shared a layered toolkit fo r
character-based windowing (using these
string

	

routines)

	

with

	

a

	

software
engineering class (They surprised
themselves with the quality of their use r
interfaces!) and am now re-implementing its
"core" to port it to two other compilers
running on different operating systems .
Maybe "second-degree" data abstraction wil l
help the cause of software portability ,
too .

I can supply a copy of the "second
degree" string routines and some sample
programs to anyone who sends one formatted
MS-DOS diskette in a self-addressed stampe d
mailer .
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Training

American Society for Quality Control, P .O .
Box 3005, Milwaukee, WI 53201-300 5

Specific courses in TQM, Quality
Control, Software Quality Assurance .

George Washington University, Continuin g
Engineering Education Program, 801 22 n
Street NW, Washington, DC 2005 2

Offers a wide variety of quality

oriented courses .

Juran Institute, Inc . 11 River Road ,
Wilton, CT .

Special training in quality management
as related to software engineering, as wel l
as, courses in quality control an d
management .

Quality Assurance Institute, Suite 350 ,
7575 Dr . Phillips Blvd ., Orlando, FL . 3281 9

Provides quality training in a wid e
variety of information system and softwar e
engineering fields . Specific course s
offered in testing and measurement .


