
A SOFTWARE QUALITY ASSURANCE EXPERIMENT

J. P. Benson

S. H. Saib

General Research Corporation

Santa Barbara, California

ABSTRACT

An experiment was performed to evaluate the

ability of executable assertions to detect program-
ming errors in a real time program. Errors selec-

ted from the categories of computational errors,
data handling errors, and logical errors were in-

serted in the program. Assertions were then written
which detected these errors. While computational
errors were easily detected, data handling and log-
ical errors were more difficult to locate. New

types of assertions will be required to protect
against these errors.

Key Words: assertions, error categories

CR Categories: 4.6

INTRODUCTION

Over the past two years a number of techniques
designed to eliminate errors in software have been

implemented in a collection of programs called the
Software Quality Laboratory (SQLAB). I-4 An impor-

tant goal of this effort has been the ability to

analyze "realistic" programs. By realistic we mean
programs which can execute on current computers

with current compilers, use floating point arith-
metic, incorporate data structures, be composed of
multiple modules, and have a total size of perhaps
several thousand statements.

In order to demonstrate SQLAB's ability to lo-

cate errors, a medium size program (~i000 state-
ments) was selected. The program simulates the
tracking of objects using a radar and embodies many

of the characteristics of a complex software system
including multitasking and data structures composed
of queries and records.

The experiment described in this paper was de-

signed to evaluate the use of assertions in a real
time program. The experiment consisted of adding
errors to the test program from a list of the most
common software errors. A number of errors from a

set of error categories were selected and intro-
duced into the test program. (During the course of

the experiment some errors already present in the

This work was supported by the Army Ballistic

Missile Defense Systems Command under contract
DASG60-76-C-0050.

program were also detected.) Executable assertions

were written to detect the errors and the program

was run to verify that the errors were actually de-

tected. The results suggest that some of the asser-
tions could have been made part of the variable

definition statements of the programming language
itself rather than separate statements. In addi-
tion, three new types of assertions which would be

useful in error detection were identified: vari-

able range assertions, approximate result asser-
tions, and sequencing assertions.

ASSERTIONS

Assertions for software were first proposed by
Floyd 5 as a method for proving the correctness of

programs. Floyd's assertions were statements ex-

pressed as logical formulas in the first-order
predicate calculus which specified the correct op-
eration of the code. These assertions are combined
with the statements of the program to generate

logical formulas. If these formulas can be shown

to be valid, the program is considered correct.

More recently, Stucki and Fosbee 6 have used

executable assertions to dynamically verify the

execution of programs. Executable assertions are

translated by a preprocessor into executable state-

ments. When the logical expression in the asser-
tion is false, an error message is printed along

with the values of the variables named in the as-
sertion. Assertions can also be used to indicate
when the value of a variable exGeeds its declared

range, to report an invalid array subscript, to
specify particular values that a variable may
take on, and to report when the value of read-only

parameters are changed by invoked procedures.
SQLAB also uses executable assertions which are
translated into executable code by a preprocessor
so that they can be evaluated at run time. When
the expression in an assertion is false, it is
reported and a FAIL block can be executed. Code in
the FAIL block can institute recovery procedures to
either correct the cause of the error or reinitial-
ize the software.

In addition to executable assertions, SQLAB
also uses assertions to perform "static analysis"
on software. Static analysis refers to consistency

checks which can be performed without having to
execute the program. UNITS assertions are used to
specify the physical units of variables. Each ex-
pression in the program is then analyzed by SQLAB
to verify that the units are used consistently.

87

INPUTS and OUTPUYS assertions state which variables
(global to a subroutine or procedure) are read-only,
write-only, or read/write. Using these assertions,
checks on the consistency of data usage (data flow
analysis) in a program can be performed by a static

analyzer.

ASSERTIONS AND ERROR CATEGORIES

A number of software error studies 7-II have

shown that the following types of errors occur most

often:

Computation errors - Using the wrong
equation, overflow or underflow, missing
or extraneous computations

Data handling errors - Subscript errors,
failure to initialize a variable, refer-
encing or updating the wrong variable

Logic errors - Missing tests, incorrect
tests, incorrect sequencing

Since these are the errors most often found in
software, we feel it is important to develop asser-
tions to identify them.

Computation errors__ can be detected using assertions
which place bounds on the computation being per-
formed or provide alternative computations which
achieve the same result (e.g., sorting by HEAPSORT
or by QUICKSORT). Computation bounds can be either
fixed ranges or linear or higher order approxima-
tions to the result being computed. The assertion

RECVTIME < 2.0*RANGE/VLITE

is an example of a computational bounds assertion.
In this case, a bound for the approximate time at
which to expect a radar return (RECVTIME) is stated
using only the object s range and the speed of light.
The movement of the object during the radar pulse
and other second order calculations were ignored.

Data handling errors can usually be detected by as-
sertions which specify ranges, units, scale factors
and other specific information concerning the type,
and computer representation of variables. The fol-
lowing assertion which constrains the range of the
variable BEAM is an example of a data handling as-

sertion.

INITIAL (FIRSTBEAM <= BEAM) AND (BEAM <=MAXBEAM);

This kind of assertion could be added to a program-
ming language and required when a variable is de-
clared. Instead, BEAM could be declared as

BEAM : INTEGER [FIRSTBEAM..MAXBEAM];

which means that the variable BEAM takes on in-
teger values from FIRSTBEAM to MAXBEAM.

This declaration does away with the need for
the assertion if the compiler can use the declar-
ation to compile run-time checks on the value of
BEAM. For languages like FORTRAN, however, these
checks must be added as executable assertions. In
addition, the assertions are valuable to further
limit the range of a declared variable in a part

of the program.

Logic errors and sequencing errors are the most
difficult to detect using assertions. The infor-
mation for writing these assertions must be found
in the program specifications or by considering in
detail the problem that the program is to solve.
For example, incorrect program sequencing can only
be detected if the correct sequencing is described
apart from the program.

A SAMPLE PROGRAM

The program that we used in our experiment,
ORDGEN, constructs a schedule for the operation of
a radar. It is written in V-PASCAL 12, a preproces-
sor language which is translated into PASCAL.

The schedule is expressed in terms of a time
line. Commands are executed by the radar at cer-
tain points in time. These commands are: send a
radar pulse, point the radar in a particular dir-
ection, and listen for a return from an object.
There are certain constraints placed upon the gen-
erated schedule. These constraints are both physi-
cally and intuitively obvious. The radar cannot
both send pulses and receive echoes at the same
time, and it takes a finite amount of time in which
to change the direction in which the radar is send-
ing or receiving.

The schedule is constructed from a sequence of
radar action requests. Each request specified one
of four types of radar pulse: search, verify, spe-
cial search, or track. Each of these pulse types
has associated with it the length of time required
to send the pulse and the length of time which the
radar should listen for an expected return. Each
request also includes the direction in which the
radar should send the pulse (the beam number), the
time at which the pulse should be transmitted, and
the time between the transmit pulse and the expec-
ted return. This is a measure of the distance from
the radar to an object.

ORDGEN takes as input a sequence of these
radar action requests and constructs as output a
schedule of radar commands which do not violate
the constraints discussed previously.

ERROR SEEDING EXPERIMENT

The goal of the experiment was to discover if
assertions could be written to detect typical
errors from all the error categories. Assertions
for detecting the types of errors previously dis-
cussed were added to ORDGEN. We also introduced
into ORDGEN errors chosen from the categories of
software errors determined to occur most often.
The data handling, computation, and logic errors
added to ORDGEN are shown in Table i. ORDGEN was
then run and the assertion error reports examined
to determine which assertions (if any) detected

the errors.

Error Ci (a computation error) was already
present in ORDGEN. A reference was made to a con-
stant specifying pulse length rather than to a
constant specifying receive window length while
scheduling a receive window. This error had not
been detected in the output from ORDGEN even
though we had been using the program for several

months!

88

TABLE 1

ERRORS ADDED TO ORDGEN

• Ci:

• C2:

• C3:

• Di:

• D2:

• D3:

• Li:

• L2:

• L3:

COMPUTATION ERRORS

Using the wrong variable name in an equation

Leaving out a computation

Adding an unneeded computation

DATA HANDLING ERRORS

Referencing the wrong variable name

Using the wrong arithmetic operator

Not initializing a variable correctly

LOGIC ERRORS

Leaving out a test

Using the wrong relational operator in a test

Executing the wrong sequence of decisions

Error D1 (a data handling error) occurred in
ORDGEN when the wrong variable was referenced. In
ORDGEN, pulse length and receive-window length
are specified for each type of radar pulse (search,
verify, special search, and track) using the PASCAL
data structure of enumerated type. An array of
pulse lengths and an array of receive-window
lengths are indexed by pulse types; e.g.,
RWINDOW[SEARCH] refers to the length of the search-
pulse receive window.

Using the wrong variable name in a statement
is a very difficult error to detect by executable
assertions. In this case, the error was detected
by associating the indices of each array with the
values to be stored in the array, using an asser-
tion such as the one following:

ASSERT (INDEX3 = SEARCH =>
RTNTIME = BSDUR + SEARCHWINDOW)

AND (INDEX3 = VERIFY =>
RTNTIME = BSDUR + VERIFYWINDOW)

AND (INDEX3 = SPECIAL SEARCH =>
RTNTIME = BSDUR + SPSEARCHWINDOW)

AND (INDEX3 = TRACK =>
RTNTIME = BSDUR + TRACKWINDOW);

This assertion was able to detect the replace-
ment of RWINDOW[INDEX3] by PDURAT[INDEX3] in the
statement

RTNTIME := BSDUR + RWINDOW[INDEX3];

It would appear that errors such as C1 and D1
are more easily caught by static analysis than by
executable assertions. Providing an assertion for
every variable reference is, in effect, duplicating
each statement. Strong type-matching requirements
may be one method for locating these errors. For
example, the variable RTNTIME should be calculated
using variables whose values are associated only
with receiving radar returns. If the constants
PDURAT and RWINDOW were associated with the types
TRANSMIT TIME and RECV TIME, respectively, then

errors such as C1 and D1 could be caught by type
checking.

Error D2 (using the wrong arithmetic operator)
was introduced into ORDGEN by changing the state-
ment

to

REQUEST.XMITTIME := CURRENTTIME + PINOM;

REQUEST.XMITTIME := CURRENTTIME - PINOM;

This error was detected by the existing executable
assertion in VERGEN

ASSERT CURRENTTIME < REQUEST.XMITTIME;

which states that the time at which a radar trans-
mit pulse is requested must be later than the cur-
rent time.

In general, using the wrong operator in an ex-
pression can be detected by specifying variable
ranges or stating approximate bounds on the re-
sults of computations.

Error D3 (incorrect initialization of a vari-
able) can usually be detected by range checks if
the range of the variable can be declared. PASCAL
allows some range checking through subrange types.
In ORDGEN, this error was introduced by initializing
the variable SPOUT to -i rather than 0. This was
detected by,the assertion

INITIAL 0 <= SPOUT;

While static analysis methods can be used to
detect whether a variable has been initialized,
this type of checking is expensive. A better sol-
ution would be to allow (or require) that a vari-
able's initial value be stated when the variable
is defined by a statement such as

SPOUT ~ INTEGER [0..MAXSPOUT] INITIAL 0;

which would specify that SPOUT is to take on the
values from 0 to MAXSPOUT and is initialized
to 0. Verifying that the initial value is correct
should still be done by executable assertions in
the routines that use the variable.

Error C2 (leaving out a computation) was in-
troduced into ORDGEN by leaving out a statement.
This error was detected by the assertion

ASSERT RQUEST.BEAMPOS = TOTDSREC.OTBEAM;

In general, this kind of error can be detec-
ted by assertions which describe the computation
that a routine performs or set bounds on the re-
sult of a computation. In the simplest case (as
in the above example) the assertion may merely
verify the action of a statement.

Error C3 (an extraneous computation) was an-
other error that existed in ORDGEN but was not
discovered until the experiment. The expression

+TOTDSREC.OTVCL*PITRK

89

which should have been deleted from the second line structure, the statement
of

RQUEST.RECVTIME := ROUND (2*(OTRNGE + OTVCL*PITRK

+ TOTDSREC.OTVCL*PITRK)/VLITE

RWINDOW[TRACK]/4);

was mistakenly left in when this statement was cor-
rected for another error. This error results in
the calculation of an incorrect range. The error
was detected by the assertion

ASSERT RQUEST.}~CVTIME = ROUND (
(2.0*OTDSREC.OTRNGE/VLITE - TRACKWINDOW/2)

-(2.0*OTDSREC.OTVCL/VLITE - TRACKWINDOW/2));

which is just an alternative way of expressing the
previous computation. As with the assertions for
errors D1, Ci, and C3, this assertion checks the
result of a statement by duplicating (or equiva-
lently expressing)(the expression in the statement.

Error Li (leaving out a test) Was implemented
in ORDGEN by leaving out a decision. The effect of
this error was that more than the maximum allowed
number of search pulses were left outstanding (had
not had their returns processed). This eventually
caused the radar orders buffer to overflow. The
assertion on the range of the number of outstanding
search pulses

ASSERT (0 <= SPOUT) AND (SPOUT <= MAXSPOUT);

detected this error.

Missing tests can only be discovered if the re-
quirements for the program include these tests.
In the above case, the redundant specification of
the range of the variable SPOUT (which counts the
number of outstanding search pulses) allowed the
error to be detected.

Error L2 (using the wrong relational operator
in a test) is a common error which is not easily
detected. This was another error which was al-
ready present in ORDGEN and was not detected until
the experiment. The incorrect test was part of a
REPEAT...UNTIL construct. Instead of the correct
test

UNTIL NEXT > NUMBER - i;

the test

UNTIL NEXT >= NUMBER - i;

was substituted. ~his resulted in the final entry
in the radar activities queue not being processed.

The assertion to catch this error used an
auxiliary variable (a variable not used elsewhere
in ORDGEN) to count the number of radar requests
processed. This number is then compared with the
number of requests in the queue by the assertion

ASSERT PROCESSED = NUMBER;

Error L3 (executing the wrong sequence of de-
cisions) is another error that was already present
in ORDGEN that was not detected by testing. Due to
the misplacement in an IF..ELSE..ENDIF control

PUT2 (REQUEST);

which returns an unprocessed request to the radar
request queue, could be executed twice for the
same queue entry. This results in duplicate
entries in the queue.

This error can be detected by specifying the
conditions that must be true whenever the ELSE
clause of an IF statement is executed. This error
points out a weakness in the ELSE construct, it
allows a statement or block of statements to be
executed whatever conditions are true. If decision
statements in the program are executed out of their
intended order, the conditions which were assumed
to hold when the ELSE clause was executed may no
longer be true. For this reason it is recommended
that assertions be placed after all ELSE statements.
These assertions should specify all conditions that
must be true when the ELSE is executed.

For example, the following assertion was
placed in ORDGEN in order to catch error L3. (The
sequence of decisions is repeated here to show the
source of the assertion.)

IF XMITTIME < EFRAM THEN

IF IR + BSDUR + RWINDOW[INDEX3] < EFRAM THEN

IF IX + BSDUR + PDURAT[INDEX3] > XLATE THEN

IF RFIRST + RECVTIME + BSDUR + RWINDOW[INDEX3]
< EFRAM THEN

ELSE
ASSERT (XMITTIME < EFRAM)

AND (IR + BSDUR + RWINDOW[INDEX3] < EFRAM)

AND (IX + BSDUR + PDURAT [INDEX3] > XLATE)

AND (RFIRST + RECVTIME + BSDUR
+ RWINDOW[INDEX3] >= EFRAM)

ENDIF;

RESULTS

The experiment showed that executable asser-
tions could be written to detect the most common
types of programming errors. They appear to be
most valuable in catching computational errors.
Many computational errors can be found by specify-
ing variable ranges and by stating approximate
bounds on the results of computations. These
types of assertions are so valuable that they
should probably be considered as a separate type
of assertion from the normal logical assertions.
Assertions can also be used for detecting some
data handling and logic errors. However, other
types of analysis such as static analysis and

90

sequence analysis seem more promising for these
types of errors.

The addition of assertions to the program in-
creased its compilation time by 56 percent, its
execution time by 12 percent, and its storage re-
quirements by 13.5 percent. This data has been
substantiated in several other programs, including
SQLAB itself.

As a result of the difficulties in writing as-
sertions to detect errors in program logic and in-
correct sequencing, we are developing two exten-
sions to executable assertions to detect these
types of errors. In one, we use a finite state
machine model to indicate correct sequencing in a
program, and in the other we use the idea of "aux-
iliary variables" proposed by Owiki and Gries 13 to
retain information about the program in addition
to that stored in the program's variables. The
ability of these types of assertions to detect
errors will be evaluated in future experiments.

REFERENCES

i. J. P. Benson and R. A. Melton, "A Laboratory
for the Development and Evaluation of BMD
Software Quality Enhancement Techniques,"
Proceedings of the Second International Con-
ference on Software Engineering, IEEE Catalog
No. 76CHi125-4C, IEEE Computer Society, Long
Beach, California, October 1976, pp. 106-109.

2. D. M. Andrews and J. P. Benson, Advanced Soft-
ware Quality Assurances Software Quality Lab-
oratory Users Guide, General Research Corpor-
ation CR-4-770, May 1978.

3. S. H. Saib et al., Advanced Software Quality
Assurances Final Report, General Research
Corporation CR-6-720, March 1977.

4, S. H. Saib et al., Advanced Software Quality
Assurances Final Report, General Research
Corporation CR-3-770, March 1978.

5. R. W. Floyd, "Assigning Meanings to Programs,"
in Proceedings of a Symposium in Applied
Mathematics, J. T. Schwartz, Ed., Vol. 19,
"Mathematical Aspects of Computer Science,"
American Mathematical Society, 1967, pp. 19-
32.

6. L. G. Stucki and G. L. Foshee, "New Asser-
tion Concepts for Self-Metric Software
Validation," Proceedings International Con-
ference on Reliable Software, IEEE Catalog
No. 75CH0940-7CSR IEEE Computer Society,
Long Beach, April 1975, pp. 59-71.

7.

8.

M. J. Fries, Software Error DataAcquisition,
Boeing Aerospace Company RADC-TR-77-130,
April 1977.

A. B. Endres, "An Analysis of Errors and Their
Causes in System Programs," IEEE Transactions
on Software Engineering, Vol. SE-i, No. 2,
June 1975, pp. 140-149.

9. T. A. Thayer, et al., Software Reliability
Study, TRW Defense & Space Systems Group
76-2266.1.9-5, August 1976.

i0. R. W. Motley and W. D. Brooks, Statistical
Prediction of Programming Errors, IBM Corp.
Federal Systems Division RADC-TR-77-175,
May 1977.

ii. J. A. Dana and J. D. Blizzard, Verification
and Validation for Terminal Defense Program
Software: The Development of a Software
Error Theory to Classify and Detect Software
Errors, Logicon HR-74012, May 31, 1974.

12. N. B. Brooks and E. N. Kostruba, Verifiable
P_ASCAL Users Manual, General Research Corpor-
ation, February 1978.

13. S. Owiki and D. Gries, "Verifying Properties
of Parallel Programs: An Axiomatic Approach,"
Communications of the ACM, May 1976, pp.
279-285.

91

