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ABSTRACT
Various models and techniques have been proposed and ap-
plied in literature for software quality prediction. Speci-
ficity of each suggested model is one of the impediments in
development of a generic model. A few models have been
quality factor specific whereas others are software develop-
ment paradigm specific. The models can even be company
specific or domain specific. The amount of work done for
software quality prediction compels the researchers to get
benefit from the existing models and develop a relatively
generic model. Development of a generic model will facil-
itate the quality managers by letting them focus on how
to improve the quality instead of employing time on decid-
ing which technique best suites their scenario. This paper
suggests a generic model which takes software as input and
predicts a quality factor value using existing models. This
approach captures the specificity of existing models in var-
ious dimensions (like quality factor, software development
paradigm, and software development life cycle phase etc.),
and calculates quality factor value based on the model with
higher accuracy. Application of the model has been dis-
cussed with the help of an example.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—software science,
product metrics

General Terms
Measurement

Keywords
Prediction, Generic models, Measurement-based prediction,
Metrics

1. INTRODUCTION
Software quality prediction helps minimize software costs

by allowing the mitigation of risks in early stages of software
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development process [4, 15, 8]. It further helps in prepara-
tion of better resource allocation plans [33, 29] and test plans
[33, 13, 23, 19]. These factors help produce a good quality
software which results in satisfied customer and healthier
return on investment. Various organizations and public de-
partments have been involved in studies related to quality
prediction like Commission of the European Communities’
Strategic program for Research in Information Technology
[1], Northern Telecom Limited, USA [15], Nortel, USA [14],
NASA [18], National Natural Science Foundation of China
[31] are a few examples. Earlier studies [13, 20, 33, 21,
22] have viewed quality in different aspects and have been
limited to a particular quality factor (for example reliabil-
ity, maintainability [5]). Moreover the application of those
models is very context specific [28, 24]. Details of all these
techniques can be found in [24]. Specificity of these ap-
proaches is a limitation of software quality prediction study
and refrains the community from taking full benefit of the
existing work. That is why a very small number of suggested
models are used in industry [3]. A generic model based on
existing models will help quality prediction endeavor. This
paper suggests such a model which is composed of exist-
ing models (called component models). Given a software in
terms of its collected metrics, the model selects the most
appropriate applicable model to predict the desired quality
factor value. The proposed model can be extended for as
many quality factors as there are models available for. Like
an integrated approach suggested by Wagner et al. [28], the
proposed model also requires the prior analysis of the im-
portant quality factors. Furthermore, it will automate the
selection of an appropriate prediction model.
Rest of the paper is organized as follows: In section 2 we
discuss the related approaches towards generic models. We
present our approach in section 3 and use an example to
explain the suggested approach in section 4. In section 5
we discuss the limitations and issues with the suggested ap-
proach before concluding the paper in section 6.

2. RELATED WORK
Various studies on product-based quality prediction mod-

els have been done [7, 9, 13, 11, 25, 23]. Ganesan et al.
employed case-based reasoning to predict design faults [7].
Grosser et al. [9] suggested a technique which was suitable
for object oriented (OO) software only. Company specific
[17] and domain specific ([12] for telecommunication sys-
tems) studies have also been presented. Because the work
has been done in various dimensions, need of a generic model
for software quality has been felt [3, 27, 28, 30]. But the
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Figure 1: Block diagram of suggested model.

application and context specific nature of existing models
causes difficulty in taking full advantage of the existing work.
Fenton et al. [6] have presented a critique of existing models
and highlighted their weaknesses [6]. A few models, generic
for a certain quality factor such as usability [30], have been
suggested. Bouktif et al. [3] have considered the unavailabil-
ity of large data repositories as an obstacle to generalize,
validate and reuse existing models. They have suggested
a technique for selecting an appropriate model from a set
of existing models. Their approach reused existing models
but it was restricted to selection of an appropriate model
only. Their major focus was on facilitating a company in
adapting object oriented software quality predictors to a
particular context. Though Wagner [27] has suggested an
approach to reduce the effort to apply a prediction model,
some other issues yet need to be addressed. It is difficult to
avoid specific behavior of a predictor of software quality. To
address this issue models have been divided in different di-
mensions of specificity. Wagner et al. [28] have argued that
software quality models differ along six dimensions namely
purpose, view, attribute, phase, technique and abstraction.
Rana et al. [24] have identified four dimensions for quality
prediction models: software development paradigm (SDP),
software development lifecycle (SDLC) phase, quality factor
and approach of the model. Both [28] and [24] have two
dimensions in common which are attribute (quality factor)
and phase (SDLC phase). Dimension SDP [24] is an impor-
tant information to capture regarding a model.
Other issues which hinder the development of a generic model
are inconsistent names of software metrics, and non-uniform
input to the existing models. For example model by Guo
et al. [10] refers to lines of code as TC (Total Code lines)
whereas many other models (like [13]) refer to it as LOC. On
the other hand, models by Khoshgoftaar et al. [15, 14] refer
to TC as ‘Total calls to other modules’. Such inconsisten-
cies make the existing models incomparable. Rana et al. [24]
have done unification of metrics nomenclature. Their work
paves the way towards development of a generic model.

3. OUR APPROACH
The block diagram of suggested prediction model is shown

in figure 1. It outputs a set of quality factor values, QF-
Value, which can be expressed by the following expression:

QFValue = f(Software,QF, SDP, SDLCPhase) (1)

where SDLCPhase is the Software Development Life Cy-

Software, SDLC Phase, SDP, QFi

Models
Repository

Model Selection

Unified Metrics

QFValue

Input Preprocessing

QFValue Calculation

Unify Model
Inputs Pick ModelsIf input not unified

Prune Irrelevant
Models

Input unified
If input
unified

Save Unified
ModelInput unified

Select Model
Select model with max

accuracy

Figure 2: Model Architecture.

Table 1: A snapshot from Unified Metrics Database

Metric Unified Name Aliases
Lines of code LOC TC

LOC
Total Comments TCOMM COM

TCOMM
Cohesion Metric CohM COM

CohM
Depth of Inheritance Tree
of a Class

DIT DEPTH

DIT

cle (SDLC) phase whose collected metrics are to be used,
SDP is the software development paradigm and QF is set
of quality factors which need to be determined. The soft-
ware is provided in terms of calculated metrics. The model
has three major phases as shown in figure 2:

• Input Preprocessing

• Model Selection

• QF Calculation

Input Preprocessing: This phase handles the inconsis-
tencies of input metrics’ names with the unified metrics
database. The unified metrics database contains the data
structures as shown in table 1 and is based on unifications
done in [24]. This phase is carried out manually and it is
needed so that appropriate models can be selected for this
software.

Model Selection: Model selection phase has further five
sub-activities. Each model is checked if its input interface
has been unified or not. If the input interface is not already
unified then ‘Unify Model Inputs’ sub-activity is carried out.
Otherwise the search for relevant models is started. For ex-
ample for a few models shown in figure 3 model Y and Z
are relevant models to predict number of errors in object
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Model: X
QF: Reliability

SDP: OOP
Phase: Design
Accuracy: 0.71

Location: ./models
Input: MetricsList
inputUnifiedFlag:true

Model: Y
QF: No. of Errors

SDP: OOP
Phase: Design
Accuracy: 0.72

Location: ./models
Input: MetricsList
inputUnifiedFlag: false

Model: Z
QF: No. of Errors

SDP: OOP
Phase: Design
Accuracy: 0.79

Location: ./models
Input: MetricsList
inputUnifiedFlag:true

Model: A
QF: Reliability

SDP: Structural
Phase: Design
Accuracy: 0.80

Location: ./models
Input: MetricsList
inputUnifiedFlag: true

Model: B
QF: No. of Errors
SDP: Structural
Phase: Design
Accuracy: 0.77

Location: ./models
Input: MetricsList
inputUnifiedFlag: false

Model: C
QF: No. of Errors
SDP: Structural
Phase: Design
Accuracy: 0.79

Location: ./models
Input: MetricsList
inputUnifiedFlag:true

Figure 3: Model Repository.

Table 2: Dimensions Captured
Dimension Example
Purpose constructive, predictive
View product-based, value-based
Attribute reliability, number of errors
Phase design, implementation, testing
Technique model based on testing process
Abstraction general, context specific
SDP structural, object oriented

oriented paradigm. The search is narrowed down through
pruning the irrelevant models. The process is made clear
in section 4 with an example. Once the list of applicable
models has been prepared, it is passed to the ‘Select Model’
process which then selects a model using the expression

Max(Acc1, Acc2, . . . , Acci, . . . , Accm) (2)

where m is total number of models for a certain type of soft-
ware and quality factor and Acci is accuracy of the ith model
for that type of software and quality factor. For example,
in figure 3 model A is the selected predictor of reliability for
software developed using structural programming.

QF Calculation: This phase invokes the prediction model
selected in previous phase and inputs the software metrics
to that model. The output of the invoked model becomes
output of our model.

3.1 Models Repository
The suggested model captures specificity of component

models along the seven dimensions listed in table 2. Speci-
ficity information regarding each component model is cap-
tured when it is placed in the repository shown in figure 3.
A model with given accuracy α or above can be put in the
repository, where accuracy is defined as percentage of the
correct predictions when predictor was run on test data. In
our case α = 65%.

3.2 Issues with Component Models’ Inputs
Issues regarding sufficient number of inputs have been no-

ticed. For example one model calculates a certain quality

All Component Models
{A, B, C, X, Y, Z}

Models for No. of errors
{B, C, Y, Z}

Models for OOP
{Y, Z}

Models
applicable in

Design
{Y, Z}

Rest of the
models

Model with max
accuracy

{Z}

Rest of the
models

Rest of the
models

Rest of the
models

Figure 4: Models Pruning and Selection on an ex-
ample.

factor with the help of 10 metrics whereas another model
needs 12 metrics to do the same job. Assume there is a
model A which has 90% accuracy for object oriented soft-
ware and it needs the metric named class hierarchy to pre-
dict stability. But this metric is not a part of the input
software. Now there is another model B with 85% accuracy
but all the required metrics are available. In such a case
our selector will be comparing model B with other models
which satisfy the constraint and will not consider model A
for comparison.

4. AN EXAMPLE
In this section we elaborate the working of our model us-

ing dataset kc1 [2]. The dataset originally comprises of 94
attributes which were used by Koru et al. for study in qual-
ity prediction [16]. On the basis of other studies on object
oriented metrics [32, 26], we have selected eight significant
metrics for this study shown in table 3. Suppose that we
have the models shown in figure 3. Let Y be a model based
on Linear Regression (LR) and Z be a Support Vector Re-
gression (SVR) based model. Their accuracies (calculated
using first 100 instances of the dataset kc1) are 69% and 83%
respectively. Rest of the information regarding the model re-
mains as it is in figure 3. Now our model is provided with
the following information in addition to the list of software
whose quality factor value is to be determined:

SDLCPhase = Design
SDP = ObjectOriented
QF = NumberofErrors

As shown in figure 2 the first step is ‘Input Preprocessing’.
At this step unification of input metrics is done by using
‘Unified Metrics’ database. The unified names are shown
in third column of table 3. In the next step the inputs of
all models are unified. For example in our case, there are
two models Y and B as shown in figure 3 which need their
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Table 3: Object-Oriented Metrics Used
Metric Name in dataset Unified Name
Coupling Between Objects COUPLING BETWEEN OBJECTS CBO
Depth of Inheritance Tree of a class DEPTH DIT
Lack of Cohesion in Methods LACK OF COHESION OF METHODS LCOM
Number of Children NUM OF CHILDREN NOC
Dependence on an a descendant DEP ON CHILD DEP ON CHILD
Count of calls by higher modules FAN IN FAN IN
Response For Class RESPONSE FOR CLASS RFC
Weighted Methods per Class WEIGHTED METHODS PER CLASS WMC

Table 4: Summary of Results
Model Z (SVR) Model Y (LR)

MAE 4.4669 5.5415
RAE 73.9543% 91.7451%
RMSE 10.6442 10.5929
MAE 97.4832% 97.0131

inputs to be unified. We ‘Unify Model Inputs’ and store
back the model in the repository with inputUnifiedFlag set
to true. The next step is to ‘Prune Irrelevant Models’. Fig-
ure 4 shows that only models Y and Z are relevant models
and the model Z having higher accuracy is selected to pre-
dict the numberoferrors. Once the best model is selected,
the next step is to calculate the QF value for all input soft-
ware. We applied model Z (SVR) on the dataset kc1 [2] to
predict number of errors in the 145 software. We then ap-
plied model Y (LR) to the same dataset in order to validate
our selection of model on the basis of accuracy. Summary of
the results is shown in table 4 where we observed four types
of errors namely Mean Absolute Error (MAE), Relative Ab-
solute Error (RAE), Root Mean Squared Error (RMSE) and
Root Relative Squared Error (RRSE). The table shows that
the error values for model Z are smaller than the error values
for model Y. The lower values of MAE and RAE imply that
values predicted by model Z were closer to actual values.

5. DISCUSSION
Currently the proposed model is handling structural and

object oriented development paradigms only, but it is ex-
tendible to other paradigms. It can also be extended for as
many quality factors as there have been models available for.
The model is usable at any stage of software life cycle pro-
vided the models repository contains models applicable in
that phase. Our model caters for the specificity of a compo-
nent predictor by taking three control inputs (Quality Fac-
tor, Software Development Life Cycle Phase, and Software
Development Paradigm), which contribute towards selection
of a predictor. We are using the product-based existing mod-
els unlike Bouktif et al. [3] who are using classification based
models.

Accuracy as selection criterion: Any model can be
plugged into the suggested model provided its accuracy does
not fall below the minimum threshold α. Li et al.[17] have
argued that accuracy is not a good criterion for model selec-
tion. They have asserted that in context of product testing

prioritization, model selection should be done considering
the specificity of the predictors. Although this concern ap-
plies to our selection criteria as well but we are restricting
ourselves to accuracy for the time being.

Generality: Integrated approach to predict software qual-
ity by Wagner et al. [28] is a significant contribution since it
provides the ways to describe generic quality characteristics
and how to adapt to different contexts. Our paper suggests
a model which is more general than the integrated approach
by Wagner et al. [28] since it does not require each orga-
nization to develop a base model before including purpose
models. The purpose models are specific models which are
derived from the base model in the light of quality goals [28].
Our idea is to have a predictor which requires minimum ef-
fort from quality engineer in predicting quality of software.
As shown in section 4, our model only needs the software
metrics and will do the rest of the work including model
selection and QF calculation.

6. CONCLUSIONS
In this paper we have suggested an approach which takes

benefits from the existing work. The approach caters for
the specific nature of component models and is extendible
as well as scalable. Extendible in the sense that it can be
used for more than one paradigms as well as for different
SDLC phases. Moreover it can have the capability to pre-
dict more than one quality factors. A new component model
for another quality factor can be added to the generic frame-
work at any time. The only restriction on the inclusion of a
component model is that the accuracy of the model can not
fall below a threshold α which is set to 65% in this paper.
The paper shows working of the model through an exam-
ple using 145 data instances. The example depicts that the
model selected based on its accuracy was better selection
in this case. The paper identifies some issues which still
need to be addressed. The first issue is whether a software
should be provided in the form of metrics or as source code.
The suggested approach took software in the form of metrics
but faced problems in using existing models as discussed in
section 3.2. So taking software in the form of metrics can
affect the accuracy of the prediction. In the second case the
suggested model first needs to calculate the software met-
rics of its choice. This might be time consuming but while
predicting software quality, accuracy is the most important
factor. So time taken to build and use the model can be
compromised as long as it guarantees higher accuracy. In
future our plan is to explore the tradeoffs between selection
of the above mentioned two choices.
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