
Surfing the Net for Software
Engineering Notes

Mark Doernhoefer
The MITRE Corporation

7515 Colshire Dr.
McLean, VA 22102
mdoernho@acm.org

Solving the Software Quality Problem
The subtitle to this month’s article is just meant to grab your
attention. I assure you, this column will not be solving the
software quality problem. What I do hope to do is point you
at some interesting web sites that discuss potential solutions
to the software quality problem and let you solve it on your
own.

The issue of improving the state of the art of software
engineering has been roundly debated for years. Some
believe the best way to improve the quality of software is by
licensing programmers and software engineers. Others
argue that software quality will only be improved if we
improve the educational foundations
of the practice; do a better job of
teaching software engineering in our
colleges and universities. Still others
propose techniques and tools as the
answer to the quality problem.

The debate has been long and, at
times, loud. I will try to stay neutral
in my presentation of the various
points of view and let you decide. I
recommend you download an
electronic version of this column and
surf by the links presented here. You
don’t have to read the entire content
of each site, but you’ll want to scan
the sites to give you some food for
thought.

There is a wide range of opinion as to
what actually constitutes “quality” as
it applies to software. For many, the
definition of quality software is
simply bug-free code. However for
those tasked with maintaining a
software product, the definition of
quality goes much deeper to address
ease of maintenance; degree to which the software can be
adapted or extended; the ability of the code to handle odd or
unusual inputs; or other factors. Wikipedia, in its article on
the Software Quality Model defines software quality as:

 “Software quality can be defined as 'conformance
to requirements' and/or 'fitness of use'. Quality

achievements start with a loud and clear definition
of what "quality of source code" means to your
organization or project. In simple terms all the
stakeholders must be well informed of what is
expected, what are the goals to be achieved, what is
evaluation criteria and how they can contribute to
achieve the goal.”

At a high level, that is a definition of quality shared by
many program and project managers. How about something
more formal?

There is an ISO standard, ISO/IEC 9126, which attempts to
formalize the definition of software quality by establishing
standards for modeling and measuring quality. The
standard, in four parts, describes a software quality model,
external metrics for measuring quality, internal metrics for
measuring quality and a set of quality in use metrics. The
ISO standards are copyrighted and not available on the web.
You can purchase the standards set for about US$500 from
the ISO website at: http://www.iso.org/.

The sites discussed in this column will address many of the
quality aspects of ISO 9126. You can apply education,
tools and techniques to address shortcomings in any of the
quality area discussed in the standard. So without further
ado, let’s start surfing.

SWEBOK
http://www.swebok.org

The Software Engineering Body of Knowledge was
produced as a joint project under the ACM and IEEE. The

mailto:mdoernho@acm.org
http://www.swebok.org/

SWEBOK contains ten Knowledge Areas (KA) such as
requirements, design, testing, construction, configuration
management, etc. and breaks down each KA into topic
areas. Each topic area contains a brief description of key
concepts and provides bibliographic references to classic
papers and publications that are considered the definitive
works on each concept. As such, the SWEBOK captures
what is called the “generally accepted knowledge”
associated with software engineering. Massive in scale,
work on the SWEBOK was started in 1998 and completed
in 2004. Along the way, the SWEBOK was peer reviewed
by over 500 software engineering practitioners in 42
countries who submitted approximately 9,000 comments
against the document. All of the comments and their
resolution are contained in a database at the SWEBOK site.

A work as important as the SWEBOK is certain to draw
controversy and it certainly has. The SWEBOK has been
criticized as a misguided attempt to set forth the mandatory
knowledge required of all software engineers and that the
SWEBOK could be used as a standard for licensing
programmers. In 2000, the ACM stated its opposition to the
licensing of programmers and withdrew from the joint
committee working on the SWEBOK. Critics claim that
unlike licensed civil engineers, the professional practice of
software engineering is not as mature as other engineering
disciplines and that licensing using the SWEBOK as the
basis for that licensing would provide a false assurance of
software engineering competence.

Nevertheless, the SWEBOK remains an invaluable source
of information for any software engineer. If you are seeking
the definitive source on a software engineering topic,

chances are you’ll find the answer in the SWEBOK.

Software Engineering 2004 (SE2004)
http://sites.computer.org/ccse

Also known as the Computing Curriculum Software
Engineering (CCSE), the SE2004 is similar to the
SWEBOK in that it contains a bibliography of information
that every software engineer should know. As opposed to
the SWEBOK, the SE2004 is not a licensing standard, but a
basic undergraduate curriculum in software engineering.
Instead of the end-point for licensing, the SE2004 is a
starting point for further (post-graduate) study.

SE2004 describes the Software Engineering Education
Knowledge (SEEK), the body of knowledge that is the
recommended course of study for an undergraduate program
in software engineering. The SEEK draws on the
knowledge areas of the SWEBOK and is intended to
emphasize the academic underpinnings of the knowledge
contained in the SWEBOK. In addition to the knowledge
areas, SE2004 also contains recommended course
sequences, guidelines for curriculum development, and
recommendations for alternative teaching environments.

Several years ago I taught evening classes in programming,
software engineering and systems engineering at a local
college. I had to write my own syllabus. I wish the SEEK
was available back then. Using this information, the
smallest junior college could teach a world class course in
just about any computer science subject.

http://sites.computer.org/ccse

Certified Software Development Professional
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb
9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs
_level1&path=ieeecs/education/certification&file=index.xm
l&xsl=generic.xsl&

The IEEE offers a Certified Software Development
Professional (CSDP) certification at
the IEEE web site. The URL for the
CSDP page is four lines long, so just
navigate to the IEEE site and select
the certification sub-menu item from
the “Career Development and
Education” main menu item on the
left. The CSDP certification requires a
baccalaureate or equivalent degree and
at least 9,000 hours of software
engineering experience in six of
eleven knowledge areas. The
knowledge areas for the CSDP are
almost the same as those in the
SWEBOK with the addition of an area
on professionalism and engineering
economics.

It is important to draw a distinction
between certification and licensing.
Licensing implies you must pass an
examination before you are allowed to
practice the discipline. Certification
allows one to work, but serves as
proof of professionalism and carries

with it a code of professional behavior
and ethics.

Software Engineering
Institute
http://www.sei.cmu.edu/managing/ma

naging.html

Not surprisingly, the Software
Engineering Institute (SEI) is
frequently mentioned in this column.
After all, this is Software Engineering
Notes, so it’s no wonder I often cite
the SEI. The URL listed above for the
management page at the SEI contains
links to several resources that will
help you improve software quality.
The links are grouped into sections for
quality; cost and schedule; tools;
acquisition practices; and research.
The SEI Capability Maturity Model
Integration (CMMI) is listed under the
quality section, but don’t go looking
for canned processes under the
CMMI. The CMMI is a handy

document to use if you are starting a new development or
evaluating your current development procedures; it lists all
the process areas your project should address. However, the
CMMI does not tell you how to execute these process areas.
For example, the CMMI says you ought to do configuration
management, but it doesn’t tell you how to do configuration
management. Check out the other sections or perhaps the
SWEBOK for thoughts on implementing CMMI processes.

http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/education/certification&file=index.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/education/certification&file=index.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/education/certification&file=index.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/education/certification&file=index.xml&xsl=generic.xsl&
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html

The SEI pages have other resources to help you improve
your software quality. The Software Engineering
Information Repository (SEIR) (free registration required)
contains all sorts of information on acquisition,
development processes, measurements and metrics and
more. The SEIR content is contributed by its members, so
you’ll find a lot of practical advice as well as the results of
academic research. The SEIR may not tell you how to set
up that configuration management system, but you’ll find a
lot of lessons learned and advice for tweaking your own CM
process.

SPAWAR Systems Center San Diego
http://sepo.spawar.navy.mil/

When’s the last time the US Department of
Defense has done something nice for you? Well,
if you are a software process engineer, here’s
something good. The Space and Naval Warfare
(SPAWAR) Systems Center (SSC for short) has
compiled a set of software process information in
their Systems Engineering Process Office.
SPAWAR has managed many of the Navy’s large
systems developments in communications,
combat systems and other complex, mission
critical systems. Okay, these aren’t your typical
banking, insurance; inventory or payroll systems,
but the quality engineering techniques used to
build these highly reliable, safety-critical systems
can greatly improve the quality in your business
system.

There’s a wealth of information on the SSC site.
You’ll find everything from a CMMI tutorial to
coding standards to project management plans to

a library of military Data Item Descriptions
(DIDs). A DID is a very handy document. It is
basically a format for a software development
artifact that includes and annotated outline for a
given development document. For example, if
you want to know what a software design
document should look like, download DID DI-
IPSC-81435A, entitled “Software Design
Description”. The DID contains a paragraph by
paragraph description of the necessary content for
a software design document. There are DIDs for
requirements documents, test plans, version
descriptions, operator’s manuals, and many
others. The SSC site is the next best thing to an
IEEE standards library. And it’s free.

No Silver Bullet
http://www-

inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html

I’m not posting a screen shot of this link because
its just Fred Brooks’ classic monolog, based on

his years at IBM, that no magic tool or methodology will
save us from bad software. This UC Berkeley site has
reprinted this classic paper as part of a 2002 class in
software development. In my opinion, it’s a must read for
every programmer.

Tom Van Vleck’s Software Engineering Stories
http://www.multicians.org/thvv/tvvswe.html

Every once in a while I find an odd, out-of-the-way page
with content so clever, I have to mention it. Tom Van
Vleck’s page of software engineering stories is one such
page. I started to read a couple of the stories and the next

http://sepo.spawar.navy.mil/
http://www-inst.eecs.berkeley.edu/%7Emaratb/readings/NoSilverBullet.html
http://www-inst.eecs.berkeley.edu/%7Emaratb/readings/NoSilverBullet.html
http://www.multicians.org/thvv/tvvswe.html

thing I knew it was an hour later and I still wasn’t at the
bottom of the page. The stories are amazing, inspirational,
educational, sometimes funny, sometimes poignant, but all
are a good read. They cover a lifetime of software
engineering from the first story, an article from this very
publication in 1989, to a thought-provoking piece on the
nature of bugs posted just a few months ago.

When you’re done with the stories, check out some of the

other content on
Van Vleck’s site.
If you are an old
guy like me, it will
bring back some
early memories of
what programming
was like before the
dawn of OO
anything. Van

Vleck’s stories about his work on the IBM 7094 in the mid-
60’s remind us of just how far we’ve come. The $3.5
million IBM 7094 shown here boasted 32K of 36-bit words
of memory composed of a 3-bit prefix, 15-bit decrement, 3-
bit tag, and 15-bit address. For those of you who are
concerned with SOAP interfaces in a Service Oriented
Architecture, this site will give you a whole ‘nuther view of
software engineering when interfaces were designed in bit
positions in a computer word instead of elements in an
XML document. Workmanship was not measured in the
degree of inheritance of parent classes, but by the speed and
efficiency of the memory manager you wrote for your
application. After reading a few of Van Vleck’s stories,
you’ll see just how far we’ve come.

Bad Software
http://www.badsoftware.com

The bad software site is the
companion web site for the
eponymous 1998 book by Cem
Kaner and David Pels. The site is
somewhat dated, but contains
articles on the legal aspects of bad
software. The book itself was
written to inform consumers of
their rights in the event that
purchased software is found to be
defective. Several sections of the
book are reprinted on the web site
and provide advice for the owners
of bad software. However, the
software practitioner will be most
interested in site section on the
“Law of Software Quality” and the
collection of court cases involving
bad software. Dr. Kaner is both a
software engineer (and professor of
computer science at the Florida

Institute of Technology) and a lawyer, so he knows how to
build bad software and how to sue the builders of bad
software.

The site and the book were originally intended to discuss
the impact of the Uniform Computer Information
Transactions Act (UCITA) of 1999. The act was widely
opposed by consumer advocates who claimed that a
consumer, by clicking on the End User License Agreement
(EULA) would lose the rights to sue the software vendor if
the user was damaged by the software. Eventually the law
was only adopted in Maryland and Virginia and several
states passed laws specifically barring the provisions of the
original UCITA proposal. The furor has mostly died down
over the past few years, but this site contains a nice
summary of UCITA activity.

Salon Software
http://dir.salon.com/topics/software/

Moving from the academic to the practical, the software
page on the Salon website contains several great articles on
programming and software engineering. The most recent
article by Andrew Leonard is an interview with Salon co-
founder Scott Rosenberg about his book, “Dreaming in
Code”, the story of three years of development on the
Chandler project. Entitled “Software is Hard”, the Salon
article ties together themes from Brooks’ “The Mythical
Man Month” and Yourdon’s “Death March” to once again
tell the story of how inattention to the basics of software
engineering can result in an undisciplined, out of control
project.

http://www.badsoftware.com/
http://dir.salon.com/topics/software/

The Salon site has other, easy-to-read articles that provide
insight to the practical, non-academic side to the software
engineering problem.

Robelle Solutions
http://www.robelle.com/library/papers

Bob Green of Robelle Solutions has
posted some common-sense
monographs on software quality on
his company’s web site. The papers
“Building Better Software” and
“Improving Software Quality” are a
couple of well-written editorials on
software quality and how to achieve it.
I present these works as another
counterpoint to the academic and
theoretical references presented
earlier. Green’s firm specializes in
software for the HP 3000, a niche
market if I’ve ever heard one, yet the
lessons he has learned over the years
and the way he explains how quality is
manifested in his products are brought
to life in a way any programmer can
understand.

Green cites the classic software
engineering references (Brooks,
Dijkstra, etc.) in his articles, but
instead of a standard instruction on

how to use those techniques, he takes
a higher level view of how the
software you write will impact the
user. The result is an almost Mark
Twain folksy approach to software
engineering. It’s a refreshing change
from the rather dry SEI material.

Usability Net
http://www.usabilitynet.org/home.htm

Following up on Green’s assertion that
the real hallmark of quality software is
the degree of user satisfaction, the
Usability Net project provides
recommendations and advice on
improving end user usability via user
centered design. Supported by the
European Union, Usability Net has
collected an impressive array of
resources for improving software
usability, particularly web application
usability.

There are a number of cool features on
this site, but my favorite is the

interactive methods table. The user-centric methods
supporting software development are displayed in the table
under the software development phase where the technique
is most valuable. For example, Usability Net recommends

http://www.robelle.com/library/papers
http://www.usabilitynet.org/home.htm

User Surveys for Requirements Analysis and Storyboarding
for the Design phase. All of the methods are hyperlinked to
pages providing details on how to employ the methods in
your development. But wait, there’s more! The page
allows you to select from three conditions, “limited
time/resources”, “no direct access to users”, and/or “limited
skills/expertise” and the table will highlight the techniques
that are most appropriate under your selected circumstances.

They practice what they preach at the Usability Net site.
Clicking on the WAMMI (no, I don’t know what WAMMI
stands for) button, found at various locations on the site,
takes you to a web usability user survey that Usability Net
uses to improve the quality of the site.

QJ-Pro
http://qjpro.sourceforge.net

I’ve covered many software quality tools in the past,
including coding standards checkers and static analysis
tools, but for some reason, I’ve missed QJ-Pro. This Java
code analyzer is designed to check quality attributes such as
reliability, maintainability, testability, and portability. It can

be used to measure adherence to your project’s coding
standards and comes with a default set of coding standards
based on good programming practice. QJ-Pro can be run as
a standalone client or as a plug-in to Eclipse, JBuilder,
JDeveloper, or Ant. QJ-Pro is the static analysis engine
used in several commercial source code analysis products.

At the QJ-Pro website, you can browse the CVS repository
containing the full source code for QJ-Pro and you can also
download binary executables for Windows, Linux, and
Solaris. In addition to the QJ-Pro tool itself, the QJ-Pro site
has a neat one-page discussion of the concepts of static
analysis and code quality assessment. Unlike this column,
the QJ-Pro discussion of code quality is well-written, very
concise and fairly comprehensive.

StickyMinds.com
http://www.stickyminds.com

I don’t usually include commercial sites in this column, but
the StickyMinds site is an exception. There is a lot of
content here to assist with the software quality problem.
From the rather pricy ($75 per year) Better Software
magazine to the free web site content, StickyMinds is a rich
resource for the software professional who is looking to
improve software quality. The homepage has the typical
advertisements for training courses, consulting assistance,
and events. And there are news articles of interest with the
standard RSS feed. But the good stuff is under the menu
items along the top of the web page.

The site is sponsored by software quality tools vendors such
as Compuware, McCabe, Mercury, Telelogic and others. If
you look under the resources tab, you’ll find a tools guide
that lists hundreds of quality tools, not just those offered by
the site sponsors. I’ve bookmarked this site just for the
tools guide. I can’t tell you how many times I’ve wanted to
find a tool that I’ve written about in a past article, but just
couldn’t remember the name of the tool. The StickyMinds
site fixes that for me, by providing a sticky place where I

http://qjpro.sourceforge.net/
http://www.stickyminds.com/

can scroll through the tools listings to jog my memory.
Once I’ve found the tool again, the listing usually has a link
that takes me right to the tool’s web site.

The TUNES Project
http://tunes.org/

The TUNES project to redefine computing has been
bumping along for many (by Internet standards) years.
Quoting from the site:
 “TUNES is a project to replace existing Operating Systems,
Languages, and User Interfaces by a
completely rethought Computing System,
based on a fully reflective architecture with
standard support for unification of system
abstractions, security based on formal proofs
from explicit negotiated axioms, higher-order
functions, self-extensible syntax, fine-grained
composition, distributed networking,
orthogonally persistent storage, fault-tolerant
computation, version-aware identification,
decentralized (no-kernel) communication,
dynamic code regeneration, high-level models
of encapsulation, hardware-independent
exchange of code, migratable actors, yet
(eventually) a highly-performant set of
dynamic compilation tools”.
In short, a whole new way of looking at
computing.

It’s an exciting concept. We’ve been working
for decades with things like flowcharts, data
flow diagrams, functionally decomposed
algorithmic languages, objects, and service

oriented architectures. So far, none of those
approaches have produced Brooks’ Silver
Bullet. So why not take a radical new look
at the computing problem? TUNES is
attempting to do just that. The TUNES site
collects several subprojects that are working
towards this redefinition and has a lot of
interesting reading that will give you a new
way of looking at computing.

Epigram
rghttp://e-pig.o

Epigram represents a new approach to

pplication, tupling

programming languages that focuses on
adding semantics into types. The Epigram
project itself consists of a dependently
typed programming language and an
interactive programming environment.
Quoting from Conor McBride’s Epigram
tutorial on the site:
“Abstraction and a
and projection: these provide the

`software engineering' super-structure for
programs, and our familiar type systems ensure
that these operations are used compatibly.
However, sooner or later, most programs inspect
data and make a choice -- at that point our familiar
type systems fall silent. They simply can't talk
about specific data. All this time, we thought our
programming was strongly typed, when it was just
our software engineering. In order to do better, we
need a static language capable of expressing the
significance of particular values in legitimizing
some computations rather than others.”

http://tunes.org/

Epig pe system that allows the programmer to

’s an interesting approach and this short blurb does not do

roblem.

ttp://www.qaforums.com

ram uses a ty
express the behavior of the program in the types and uses
the type checker to ensure the program is well-behaved.

It
it justice. Will it work? Heck if I know, but Epigram
certainly represents a different way of looking at the
programming problem and is representative of some of the
new work being done to attack the quality p

QAForums
h

I always like to throw in a forum site

ersation can
over a lot of ground. The Quality

 as quality
ssurance engineers. There are in

ssion groups.
any of the topics areas have

uality

where the topics and conv
c
Assurance Forum covers various
topics of interest to the QA
professional. The site features
extensive software testing discussions
including discussion groups talking
about test tools. Registration is free
and required to view any of the topic
groups in the QA Forum.

This is an outstanding resource for
software testers as well
a
depth discussions on software unit
testing, testing methodologies, metrics
collection and software process
improvement. This would be a good
site to visit when tasked with

establishing a software quality
assurance or software process
improvement program for any new
software development.

The QAForums site contains a number
of very active discu
M
thousands of posts and multiple
threads. The posts are recent and the
discussions appear lively without
rancor. The screen shot only lists a
few of the resources available. There
are a lot more groups listed further
down the page that are not visible in
the illustration.

The American Society for
Q
http://www.asq.org

The American Society for Quality

CM for quality
surance professionals. Their web

(ASQ) is the A
as
site features a wide variety of

educational material on all aspects of quality, including
software quality. In addition special sections of the site are
dedicated to the application of quality assurance techniques
in several industry sectors such as education, healthcare,
government and others. Special sections of the site contain
information on using the Six Sigma approach to quality and
information on preparations for competition for the
Malcolm Baldridge National Quality Award.

uality Assurance InQ stitute
http://www.qaiworldwide.org

The Quality Assurance Institute is the worldwide

rofessional organization that sponsors conferences, p
training, and certification in quality assurance. The Institute

offers two assessment packages that
will evaluate your organization’s
maturity in software testing and
software quality assurance.
Membership is $120 for an individual
and $1,000 for a corporate
membership. Members receive a
monthly newsletter, a quarterly
journal and access to the Process
Workshop, an online collection of
process white papers.

INCOSE

ttp://www.incose.orgh

This rather sparse looking website sits

he website for
e International Council on Systems

neering Body of
nowledge through the INCOSE

atop a ton of content. T
th
Engineering (INCOSE) provides a
great deal of basic advice on the
systems engineering process. Some of
the content is restricted to members
only, but there’s still a lot of good
stuff for non-members. While the
StickyMinds site lists quality tools, the
INCOSE site has an extensive list of

systems engineering tools. The tools matrix contains entries
for almost 1500 systems engineering tools with a query
capability to help you find what you are looking for. The
INCOSE team has conducted separate tools surveys for
requirements management tools, architecture tools, and
measurement tools. The survey pages compare the features
of the tools side by side, so you can determine which tool
best fits your needs.

You can also reach the SEBOK, the
Systems Engi
K
pages. Actually the link
(http://g2sebok.incose.org/) is to the
Guide to the SEBOK (using the ugly
acronym G2SEBOK). Unlike the
SWEBOK, the SEBOK is a
hierarchical listing of topics with a
brief discussion of the body of
knowledge about the topic. The
SEBOK lacks the bibliographic depth
of the SWEBOK.

End Note

Well, it looks
space for this

 like I’m out of time and
 month’s surfing trip. I

pe some of the sites here will ho
provide you with some new ideas on
how to improve the quality of your
software developments.

http://g2sebok.incose.org/

