
Integrating Total Quality Managemen t
with Software Engineering Educatio n

Gordon W . Skelto n
Department of Computer Scienc e

Belhaven Colleg e
1500 Peachtree St .
Jackson, MS 3920 2

2 9

Abstrac t

During the past several years Total
Quality Management (TQM) has become a
driving

	

force

	

in

	

the

	

service

	

and
manufacturing industries . TQM and Total
Quality Control (TQC) are very applicabl e
to the software development industry and
thereby, applicable to software engineering
instruction . This article focus on the
need for integration of TQM concepts int o
the regular computer curriculum of the
computer science and software engineerin g
program .

Introduction

Quality has been defined by bot h
practitioners and researchers to mea n
"fitness for use" [JURAN] and meeting th e
requirements as stated in the design phase
[CROSBY] . Other definitions focus on th e
utility of the product or service . In the
software arena related definitions hav e
been applied when software is tested
against the system requirements, as wel l
as, the reliability of the software and it s
ability to be maintained . Further
verification of the quality of softwar e
would include the measurement of th e
software against

	

the needs of th e
user/customer .

The software development life cycle, as
taught in undergraduate programming and
software engineering courses, has over the
years focused on analysis of the problem ,
establishment of the system requirements ,
design of the solution, coding and
debugging, testing, documentation, and
implementation . Ongoing maintenance cause s
this life cycle to be continuous .

Total Quality Management, as applied to th e
software development process, would alte r

this waterfall approach . With the use of
TQM, various stages of the softwar e
development cycle would be reordered . The
entire area of quality control an d
management emphasizes the need to plac e

SIGCSE

	

Vol . 25 No . 2 June 199 3
BULLETIN

more effort on the analysis and desig n
phases . With the older developmen t
technologies software could be develope d
with flaws or weaknesses in the design .
The later in the development cycle that
flaws are identified the more costly it i s
to repair them . In certain cases the flaw s
are so severe that the software is rendere d
useless .

TQM places a high value on not fixing known
problems but eliminating them during the
analysis and design phases . It is best to
build quality in, not attempt to add i t
later . As in the case of a manufacturin g
plant, it is quite costly to wait until th e
inspection process to find a product i s
defective . Earlier identification of the
problem in the design and tooling phase an d
the elimination of the design flaws ca n
result in greatly reduced defect rates .
Dr . W . Edwards Deming strongly believe s
that the inspection phase of manufacturing
should be eventually eliminated . It woul d
be interesting to test this theory in th e
software engineering process . Moving a
portion of the test phase in softwar e
engineering to the analysis and desig n
phases can result in a higher degree o f
software correctness and reliability .

Teaching TOM As A Fundamental 	 Software
Engineering Concep t

Two distinct models can be used fo r
teaching TQM . As used in both engineerin g
and business administration curriculums ,
one choice is to include a separate cours e
which introduces the student to th e
concepts of quality and the implementatio n
of a total quality management program . The
second option is to integrate TQM into eac h
of the major courses taught by the computer
science department .

The

	

first

	

choice

	

would

	

cause

	

the
development of a specific course taught a t
perhaps the junior or senior level . The
course could consist of two parts . Th e
first part consists of lecture and a

3 0

reading portion which teaches the studen t
the key concepts of TQM and its application
to software engineering . A'second part o f
the course would focus on the creation o f
teams which would implement TQM principle s
in the analysis and design of a software
project . The team role playing would b e
extremely helpful since team building an d
employee empowerment are some of th e
cornerstones of TQM .

The advantage of the second option ,
integrating TQM modules into the ke y
software engineering courses, allows for
the potential application of TQM concept s
within a number of different environments .
Such reenforcement is quite helpful in th e
learning process . This integration of TQM
into individual coursework requires that
each instructor within the departmen t
become more than just familiar with the
theory and application of TQM . In many
departments this knowledge and experienc e
is at best lacking . However, as TQ M
expands and the work of various researchers
and practitioners is published, this lac k
of knowledge should diminish . The
acquisition of "Profound Knowledge", as Dr .
W . Edwards Deming describes his theory o f
quality, is something that must occur over
time .

The best situation would be the
implementation of both a separate cours e
and the integration of TQM concepts into
individual software engineering courses .
Using this approach, adequate time could b e
spent in examining additional areas of th e
quality movement, quality circles ,
statistical process control (SPC), human
aspects of quality, leadership, and related
ideas .

Conclusio n

Total Quality Management has a potentia l
for improving the way in which software i s
developed and maintained . The overal l
benefits of TQM are far reaching and wil l
allow the student to understand th e
implementation of TQM in the softwar e
industry . Because TQM will be use d
extensively in the next years in all type s
of businesses and governmental agencies ,
students with formal TQM exposure an d
training will be in great demand .

Overall, I strongly urge that computer
science and information science program s
begin to investigate the benefits of TQM
and related quality control techniques a s
they relate to software engineeering .
Those departments which integrate thes e
techniques into their courses will becom e
leaders in software engineering education .

Regardless of which option is chosen there
are benefits that can be gained . Before
the levels of success which are expected

SIGCSE

	

Vol . 25 No . 2 June 199 3BULLETIN

can be obtained, it is necessary tha t
computer science faculty be trained in TQM
and its many facets, particularly as they
apply to the software development process .
Various organizations are beginning t o
address this training need . The attache d
references include a listing of thes e
groups .

Reference s

Avison, D .E . and Fitzgerald, G .
"Information systems development : current
themes and future directions", Information
and Software Technology, 1986, 30, 458-466 .

Beizer, Boris . Software System Testing&
Quality Assurance . New York : Van Nostrand
Reinhold, 1984 .

Bollinger, Terry B . and McGowan, Clement .
"A Critical Look at Software Capabilit y
Evaluations", IEEE Software, July 1991 ,
25-46 .

Card,

	

D .

	

"Understanding

	

proces s
improvement", IEEE Software, 1991, 102-103 .

Cho, Chin-Kuei . An Introduction to Softwar e
Quality Control . New York : John Wiley &
Sons, 1980 .

Connors, Danny T . "Software Development
Methodologies and Traditional and Modern
Information Systems", Software Engineering
Notes, Apr 1992, 43-49 .

Crosby, Phillip . Quality is Free . New York :
New American Library, 1979 .

Daughtrey, T . "The Search for softwar e
quality", Quality Progress, 21(11), 1988 ,
29-31 .

Deming, W . Edwards . Out of the Crisis . MIT ,
Center for Advanced Engineering Study ,
Cambridge, Mass ., 198 2

Deutsch,

	

Michael and Willis,

	

Ronald .
Software	 Quality	 Engineering :	 A	 Total
Technical & Management Approach . New York :
Prentiss Hall, 1988 .

Flaig, Scott . "Quality and Technology :
Sizing Up The U .S .", Solutions, Fall 1992 ,
4-5 .

Gillies, A .C . Software Quality : Theory and
Management . New York : Van Nostrand
Reinhold, 1992 .

Huda, F . and Preston, D . "Kaizen : the
application of Japanese Techniques to IT" ,
Software Quality Journal, Vol . 1, No . 1 ,
March 1992, 9-26 .

*** *
INTEGRATING TQ MGT-- continued on page 34

3 4

time, broad enough to give them a wide r
view of the field .

This success, however, has not bee n
without costs . For several years we mad e
Computer Fundamentals prerequisite t o
CS1 . This worked nicely for compute r
science majors but effectively locked out
of our first course, other science an d
engineering students as well as curiou s
humanities majors . Perhaps even mor e
seriously, making Computer Fundamentals a
prerequisite to the first programmin g
course may well have discourage d
potential majors . Weren't many of us i n
the field smitten with the machine as th e
result of our first programming course ?
We have, this year, dropped Compute r
Fundamentals as a prerequisite for CS 1
but strongly encourage majors to take in
their first or second semester .

The Computer Fundamentals requirement ha s
also posed a problem for sophisticate d
transfer students, returning student s
with industry experience, and majors i n
electrical engineering who decide i n
their third year that they want to minor
in computer science . These students have
often picked up most of what is taught i n
Computer Fundamentals or can easil y
acquire on their own what they hav e
missed . The solution to this problem i s
fairly simple . We screen for thes e
students at the beginning of Compute r
Fundamentals and allow them to fulfil l
this requirement with a more advance d
course .

In the future we hope to write a n
interpreter for PAL to be run under VMS .
Though it is instructive for students t o
write programs in our pseudo assembler ,
it is certainly more gratifying to se e
one's work execute . From the
instructor's point of view, a long penci l
and paper assembly language program ca n
be difficult to decipher .

We, of course, have a textbook in th e
works .

Bibliography

1. Brookshear, J . Computer Science : An
Overview .

	

Benjamin/Cummings ,
Redwood City, CA, 1988 .

2. Cooper, D . Oh My : Modula-21 . W .W .
Norton, New York, NY, 1990 .

3. Hutchinson,

	

S .,

	

Sawyer,

	

S .
Computers :	 The	 User	 Perspective .
Irwin, Homewood, IL, 1992 .

SIGCSE

	

Vol . 25 No . 2 June 199 3BULLETIN

4. Mandell,

	

S .

	

Computers _ and
Information Processing . W e s t
Publishing Company, St . Paul, MI ,
1992 .

5. Parker, C . Computers	 and	 Thei r
Applications . The Dryden
Press, Orlando, FL, 1991 .

6. Savitch, W . Pascal : An Introductio n
to	 the	 Art	 and	 Science	 o f
Programming .

	

Benjamin/Cummings ,
Redwood City, CA, 1991 .

7. Tanenbaum, A . Structured Compute r
Organization .

	

Prentice

	

Hall ,
Englewood Cliffs, NJ, 1990 .

8. Tucker, A ., Bradley, B ., Cupper, R . ,
Garnick,

	

D .

	

Fundamentals	 of
Computing I . McGraw-Hill, New York ,
NY, 1992 .

10. Tucker, A ., Garnick, D . A Breadth-
First Introductory Curriculum i n
Computing . Presented at SIGCS E
Conference, February, 1992 .

11. Walter, R . Introducing_ Computer
Science with Modula-2 .

	

West
Publishing Company, St . Paul, MI ,
1992 .

*** *
INTEGRATING TQ MGT--continued from page 3 0

Humphrey, Watts . S ., Snyder, Terry R ., and
Willis, Ronald R . "Software Proces s
Improvement at Hughes Aircraft", IEEE
Software, July 1991, 11-23 .

Juran, Joseph J . and Gryna, Frank M ., eds .
Juran's Quality Control Handbook, 4th . New
York : McGraw Hill, 1988 .

Perry, William E . Effective Methods of EDP
Quality Assurance, 3rd Edition . 1987 .

Perry, William E . "Quality Concerns i n
Software Development", Information System s
Management, Vol . 9, No 2, Spring 1992, 48 -
52 .

Shulmeyer, G . Gordon . and McManus, James .
Handbook of Software	 Quality Assurance .
New York : Van Nostrand Reinhold, 1992 .

Shulmeyer, G . Gordon and McManus, James I .
Total Quality Management for Software . New
York : Van Nostrand Reinhold, 1992 ,

Steward . N . "Software error costs", Quality
Progress, 1988, 21(11), 48-49 .

*** *
TQ REFERENCES-- continued on page 37

3 7

his own pool of "string space" complet e
with garbage collection . None of th e
students who chose to develop their ow n
string routines completed a working program
by the due date .

4 .Next Developments in strings .
Some users of these strin g

implementations are troubled by th e
"MaxStrLength" limitation : This constan t
must be known at compile-time and ever y
string will use that much space . This i s
the standard questions of static vs .
dynamic storage allocation . It led to a
fourth implementation : StrType .Inf .

In this case, StrType is a pointer to a
"block" which resembles the earlie r
StrType .Std . A block can contain up to
"CharsPerBlock" (a new programmer-define d
constant) characters and possibly a pointe r
to another block . Thus, the length of a
string is limited only by available memory
and short strings can be as short as on e
block .

Although a working implementation i s
possible with only the four core routine s
described in section 2, efficient use of
dynamic data structures usually requires
some form on initialization . The fifth
"core" routine is InitStr (S) .

InitStr guarantees that storage is
available for S . Every program should cal l
InitStr before using a string . Although the
Std, TP, and C versions of InitStr d o
nothing, the Inf version uses NEW t o
allocate space for the first block, sets
the length field to 0, and sets the firs t
block's "Next" pointer to nil . Separating
core operations from higher-leve l
operations allowed creating a reasonably
full set of operations on a dynamic data
structure with surprisingly little coding .

Certainly other data structures ar e
amenable to this level of separation . I
recently shared a layered toolkit fo r
character-based windowing (using these
string

	

routines)

	

with

	

a

	

software
engineering class (They surprised
themselves with the quality of their use r
interfaces!) and am now re-implementing its
"core" to port it to two other compilers
running on different operating systems .
Maybe "second-degree" data abstraction wil l
help the cause of software portability ,
too .

I can supply a copy of the "second
degree" string routines and some sample
programs to anyone who sends one formatted
MS-DOS diskette in a self-addressed stampe d
mailer .

References :

1 . Dale, and Lilly . Pascal Plus Data
Structures, Third Ed . D . C . Heath
& Company, Lexington, MA, 1991 .

SIGCSE

	

Vol . 25 No . 2 June 199 3
BULLETIN

2. Koffman, Eliot B ., Stemple ,
David, and Wardle, Caroline E .
"Recommended Curriculum for CS2 ,
1984," Communications of the ACM ,
28, 8 (Aug . 1985), pp . 815-818 .

3. Kumar, Ashok, and Beidler, John .
"Using

	

Generics

	

Modules

	

to
Enhance the CS2 Course, "
Proceedings of the Twentieth
SIGCSE Technical Symposium on
Computer Science Education (Feb .
1989), pp . 61-65) .

4. McCracken, Daniel D . A Second
Course in Computer Science Wit h
Pascal . John Wiley & Sons, Ne w
York, 1987 .

5. Collins, William, and McMillan ,
Thomas . "Implementing Abstract
Data Types in Turbo Pascal, "
Proceedings of the Twenty-First
SIGCSE Technical Symposium on
Computer Science Education (Feb .
1990), pp . 134-138 .

*** *
TQ REFERENCES-- continued from page 3 4

Tripp, Leonard L . "Software Engineering
Standards : Today and Tommorrow, Part 2 . " ,
Software Quality, September, 1992 .

Walton, Mary . The Deming Management Method .
New York : The Putnam Publishing Group ,
1986 .

Training

American Society for Quality Control, P .O .
Box 3005, Milwaukee, WI 53201-300 5

Specific courses in TQM, Quality
Control, Software Quality Assurance .

George Washington University, Continuin g
Engineering Education Program, 801 22 n
Street NW, Washington, DC 2005 2

Offers a wide variety of quality

oriented courses .

Juran Institute, Inc . 11 River Road ,
Wilton, CT .

Special training in quality management
as related to software engineering, as wel l
as, courses in quality control an d
management .

Quality Assurance Institute, Suite 350 ,
7575 Dr . Phillips Blvd ., Orlando, FL . 3281 9

Provides quality training in a wid e
variety of information system and softwar e
engineering fields . Specific course s
offered in testing and measurement .

