Integrating Total Quality Management
with Software Engineering Education

Gordon W.
Department of Computer Science
Belhaven College
1500 Peachtree St.

Jackson,

Abstract

During the past several years Total
Quality Management (TQM) has become a
driving force in the service and
manufacturing industries. TOQM and Total
Quality Control (TQC) are very applicable
to the software development industry and
thereby, applicable to software engineering
instruction. This article focus on the
need for integration of TQM concepts into
the regular computer curriculum of the
computer science and software engineering
program.

Introduction
Quality has been defined by both
practitioners and researchers to mean

"fitness for use" [JURAN] and meeting the
requirements as stated in the design phase
[CROSBY]. Other definitions focus on the
utility of the product or service. In the
software arena related definitions have
been applied when software is tested
against the system requirements, as well
as, the reliability of the software and its

ability to be maintained. Further
verification of the quality of software
would include the measurement of the
software against the needs of the
user/customer.

The software development life cycle, as

taught in undergraduate programming and
software engineering courses, has over the
years focused on analysis of the problem,
establishment of the system requirements,

design of the solution, <coding and
debugging, testing, documentation, and
implementation. Ongoing maintenance causes

this life cycle to be continuous.

Total Quality Management, as applied to the
software development process, would alter
this waterfall approach. With the use of

TQM, various stages of the software
development cycle would be reordered. The
entire area of quality control and

management emphasizes the need to place

SIGCSE

BULLETIN Vol

25 No. 2 June 1993

MS

29

Skelton

39202

more effort on the analysis and design
phases. With the older development
technologies software could be developed
with flaws or weaknesses in the design.
The later in the development c¢ycle that
flaws are identified the more costly it is
to repair them. In certain cases the flaws
are so severe that the software is rendered
useless.

TQOM places a high value on not fixing known
problems but eliminating them during the
analysis and design phases. It is best to
build gquality in, not attempt to add it
later. As in the case of a manufacturing
plant, it is quite costly to wait until the
inspection process to find a product is
defective. Earlier identification of the
problem in the design and tooling phase and
the elimination of the design flaws can
result in greatly reduced defect rates.
Dr. W. Edwards Deming strongly believes
that the inspection phase of manufacturing
should be eventually eliminated. It would
be interesting to test this theory in the
software engineering process. Moving a
portion of the test phase in software
engineering to the analysis and design
phases can result in a higher degree of
software correctness and reliability.

Teaching TOM As A Fundamental Software
Engineering Concept

Two distinct models can be wused for
teaching TQM. As used in both engineering
and business administration curriculums,
one choice 1s to include a separate course
which introduces the student to the
concepts of quality and the implementation
of a total quality management program. The
second option is to integrate TQM into each
of the major courses taught by the computer
science department.

The first choice would cause the
development of a specific course taught at
perhaps the junior or senior level. The
course could consist of two parts. The
first part consists of lecture and a

reading portion which teaches the student
the key concepts of TQOM and its application
to software engineering. A second part of
the course would focus on the creation of
teams which would implement TQM principles
in the analysis and design of a software
project. The team role playing would be
extremely helpful since team building and

employee empowerment are some of the
cornerstones of TQM.

The advantage of the second option,
integrating TQM modules into the key
software engineering courses, allows for

the potential application of TQOM concepts
within a number of different environments.
Such reenforcement is quite helpful in the
learning process. This integration of TQM
into individual coursework requires that
each instructor within the department
become more than Jjust familiar with the
theory and application of TQM. In many
departments this knowledge and experience
is at best lacking. However, as TQM
expands and the work of various researchers
and practitioners is published, this lack
of knowledge should diminish. The
acquisition of "Profound Knowledge", as Dr.

W. Edwards Deming describes his theory of
quality, is something that must occur over
time.

The best situation would be the

implementation of both a separate course
and the integration of TQM concepts into
individual software engineering courses.
Using this approach, adequate time could be
spent in examining additional areas of the
quality movement, quality circles,
statistical process control (SPC), human
aspects of quality, leadership, and related
ideas.

Conclusion

Total Quality Management has a potential
for improving the way in which software is
developed and maintained. The overall
benefits of TOM are far reaching and will

allow the student to understand the
implementation of TQM in the software
industry. Because TQM will be used

extensively in the next years in all types
of husinesses and governmental agencies,

students with formal TQM exposure and
training will be in great demand.
Overall, I strongly urge that computer

science and information science programs
begin to investigate the benefits of TQM
and related quality control techniques as
they relate to software engineeering.
Those departments which integrate these
techniques into their courses will become
leaders in software engineering education.

Regardless of which option is chosen there
are benefits that can be gained. Before
the levels of success which are expected

SIGCSE

BULLETIN Vo!-

25 No. 2 June 1993

30

can be obtained, it 1is necessary that
computer science faculty be trained in TQM
and its many facets, particularly as they
apply to the software development process.
Various organizations are beginning to
address this training need. The attached
references include a listing of these
groups.

References

Avison, D.E. and Fitzgerald, G.
"Information systems development: current
themes and future directions", Information
and Software Technology, 1986, 30, 458-466.

Belzer, Boris. Software System Testing &
Quality Assurance. New York: Van Nostrand
Reinhold, 1984.

Bollinger, Terry B. and McGowan, Clement.
"A Critical Look at Software Capability

Evaluatiocns", IEEE Software, July 1991,
25-46.
Card, D. "Understanding process

improvement", IEEE Software, 1991, 102-103.

Cho, Chin-Kuei. An Introduction to Software
Quality Control. New York: John Wiley &

Sons, 1980.
Connors, Danny T. "Software Development
Methodologies and Traditional and Modern

Information Systems", Software Engineering
Notes, Apr 1992, 43-49.

Crosby, Phillip. Quality is Free. New York:
New American Library, 1979.

T. "The Search for software
Quality Progress, 21(11l), 1988,

Daughtrey,
quality",
29-31.

Deming, W. Edwards. QOut of the Crisis. MIT,

Center for Advanced Engineering Study,
Cambridge, Mass., 1982

Deutsch, Michael and Willis, Ronald.
Software OQuality Engineering: A Total

Technical & Management Approach. New York:
Prentiss Hall, 1988.

Flaig, Scott. "Quality and Technology:
Sizing Up The U.S.", Solutions, Fall 1992,
4-5.

Gillies, A.C.

Software Quality: Theory and

Management. New York: Van Nostrand
Reinhold, 1992.
Huda, F. and Preston, D. "Kaizen: the

application of Japanese Techniques to IT",
Software Quality Journal, Vol. 1, No. 1,
March 1992, 9-26.

**
INTEGRATING TQ MGT-- continued on page 34

time, broad enocugh to give them a wider
view of the field.

This success, however, has not been
without costs. For several years we made
Computer Fundamentals prerequisite to
Ccs1. This worked nicely for computer
science majors but effectively locked out
of our first course, other science and
engineering students as well as curious
humanities majors. Perhaps even more
seriously, making Computer Fundamentals a
prerequisite to the first programming
course may well have discouraged
potential majors. Weren't many of us in
the field smitten with the machine as the
result of our first programming course?
We have, this year, dropped Computer
Fundamentals as a prerequisite for CSi
but strongly encourage majors to take in
their first or second semester.

The Computer Fundamentals requirement has
also posed a problem for sophisticated
transfer students, returning students
with industry experience, and majors in
electrical engineering who decide in
their third year that they want to minor
in computer science. These students have
often picked up most of what is taught in

Computer Fundamentals or can easily
acguire on their own what they have
missed. The solution to this problem is

fairly simple. We screen for these
students at the beginning of Computer
Fundamentals and allow them to fulfill
this requirement with a more advanced
course.

In the future we hope to write an
interpreter for PAL to be run under VMS.
Though it is instructive for students to
write programs in our pseudo assembler,
it is certainly more gratifying to see
ocne's work execute. From the
instructor's point of view, a long pencil
and paper assembly language program can
be difficult to decipher.

We, of course, have a textbook in the

works.

Bibliography

1. Brookshear, J. Computer Science: An
Overview. Benjamin/Cumnings,
Redwood City, CA, 1988.

2. Cooper, D. Oh My! Modula-2!. W.W.
Norton, New York, NY, 1990.

3. Hutchinson, s., Sawyer, S.
Computers: The User Perspective.
Irwin, Homewood, IL, 1992.

SIGCSE Vol. 25 @No. 2 June 1993

BULLETIN

34

4. Mandell, S. Computers and
Information Processing. W e s t
Publishing Company, St. Paul, MI,
1992.

5. Parker, C. Computers and Their
Applications. The Dryden
Press, Orlando, FL, 1991,

6. Savitch, W. Pascal: An Introduction
to the Art and Science of
Programming. Benjamin/Cummings,
Redwood City, €A, 1991.

7. Tanenbaum, A. Structured Computer
Organization. Prentice Hall,
Englewood Cliffs, NJ, 1990.

8. Tucker, A., Bradley, B., Cupper, R.,
Garnick, D. Fundamentals of
Computing I. McGraw-Hill, New York,
NY, 1992.

10. Tucker, A.,, Garnick, D. A Breadth-
First Introductory Curriculum in
Computing. Presented at SIGCSE
Conference, February, 1992.

11. Walter, R. Introducing _Computer
Science with Modula-2. West
Publishing Company, St. Paul, MI,
1992.

LR T e e R L R R e
INTEGRATING TQ MGT--continued from page 30

Humphrey, Watts. S., Snyder, Terry R., and

Willis, Ronald R. "Software Process
Improvement at Hughes Aircraft", IEEE
Software, July 1991, 11-23.

Juran, Joseph J. and Gryna, Frank M., eds.
Juran’s Quality Control Handbook, 4th. New
York: McGraw Hill, 1988.

Perry, William E. Effective Methods of EDP

Quality Assurance, 3rd Edition. 1987.

Perry, William E. “Quality Concerns in
Software Development", Information Systems

M;nagement, Vol. 9, No 2, Spring 1992, 48-
52,

Shulmeyer, G. Gordon. and McManus, James.
Handbook of Software Quality Assurance.
New York: Van Nostrand Reinhold, 1992.

Shulmeyer, G. Gordon and McManus, James I.
Total Quality Management for Software. New
York: Van Nostrand Reinhold, 1992,

Steward. N. "Software error costs", Quality
Progress, 1988, 21(1l1), 48-49.

FekkkKkkhhkd Rk hkhkkkkkkkkk kR hokkdkkkkkkkdkkk
TQ REFERENCES-~ continued on page 37

his own pool of '"string space" complete
with garbage <collection. None of the
students who chose to develop their own
string routines completed a working program
by the due date.

4.Next Developments in strings.

Some users of these string
implementations are troubled by the
"MaxStrLength" limitation: This constant
must be known at compile-time and every
string will use that much space. This is
the standard questions of static vs.

dynamic storage allocation.
fourth implementation:

It led to a
StrType. Inf.

In this case, StrType is a pointer to a

"block" which resembles the earlier
StrType.Std. A block can contain up to
"CharsPerBlock" (a new programmer-defined

constant) characters and possibly a pointer
to another block. Thus, the length of a
string is limited only by available memory
and short strings can be as short as one
block.

Although a working implementation is
possible with only the four core routines
described in section 2, efficient use of
dynamic data structures usually requires

some form on initialization. The fifth
"core" routine is InitsStr (S).
InitStr guarantees that storage is

available for S. Every program should call
InitStr before using a string. Although the
std, TP, and C versions of Initstr do
nothing, the 1Inf version uses NEW to
allocate space for the first block, sets
the length field to 0, and sets the first
block’s "Next'" pointer to nil. Separating
core operations from higher-level
operations allowed creating a reasonably
full set of operations on a dynamic data
structure with surprisingly little coding.

Certainly other data structures are
amenable to this level of separation. I

recently shared a layered toolkit for
character-based windowing (using these
string routines) with a software
engineering class (They surprised

themselves with the quality of their user
interfaces!) and am now re-~implementing its
"core"” to port it to two other compilers
running on dJdifferent operating systems.
Maybe "second-degree" data abstraction will
help the cause of software portability,
too.

I can supply a copy of the "second
degree" string routines and some sample
programs to anyone who sends one formatted
MS-DOS diskette in a self-addressed stamped
mailer.

References:
1. Dale, and Lilly. Pascal Plus Data
Structures, Third Ed. D. C. Heath
& Company, Lexington, Ma, 1991.
SIGCSE Vol. 25 No. 2 June 1993

BULLETIN

37

2. Koffman, Eliot B., Stemple,
David, and Wardle, Caroline E.
"Recommended Curriculum for CS2,
1984," Communications of the ACM,

28, 8 (Aug. 1985), pp. 815-818.

3. Kumar, Ashok, and Beidler, John.
"Using Generics Modules to
Enhance the cs2 Course,"
Proceedings of the Twentieth
SIGCSE Technical Symposium on
Computer Science Education (Feb.
1989), pp. 61-65).

4. McCracken, Daniel D. A4 Second

Course 1in Computer Science With

Pascal. John Wiley & Sons, New

York, 1987.
5. Collins, William, and McMillan,
Thomas. "Implementing Abstract
Data Types 1in Turbo Pascal,"
Proceedings of the Twenty-First
SIGCSE Technical Symposium on
Computer Science Education (Feb.
1990), pp. 134-138.

KEKKRAERRARRREARRRAKRARRR AR R R IRk k kR e Rk ke hedR
TQ REFERENCES-- continued from page 34

Tripp, Leonard L. "Software Engineering
Standards: Today and Tommorrow, Part 2. ",
Software Quality, September, 1992.

Walton, Mary. The Deming Management Method.
New York: The Putnam Publishing Group,
1986.

Training

American Society for Quality Control, P.O.

Box 3005, Milwaukee, WI 53201-3005
Specific courses in TQM, Quality
Control, Software Quality Assurance.
George Washington University, Continuing
Engineering Education Program, 801 22n
Street NW, Washington, DC 20052
Offers a wide variety of quality
oriented courses.
Juran Institute, Inc. 11 River Road,
Wilton, CT.

Special training in quality management
as related to software engineering, as well

as, courses in quality control and
management.
Quality Assurance Institute, Suite 350,

7575 Dxr. Phillips Blvd., Orlando, FL. 32819

Provides quality training in a wide
variety of information system and software
engineering fields. Specific courses
offered in testing and measurement.

