
Estimation of Quality for Software Components – an Empirical 
Approach 

 
Arun Sharma 

Amity Institute of Information Technology, 
Amity University, Noida arunsharma@aiit.amity.edu 

 
Rajesh Kumar 

School of Mathematics & Computer Applications 
Thapar University, Patiala. rajnagdev@yahoo.co.in 

 
P. S. Grover 

Guru Tegh Bahadur Institute of Technology, 
GGS IP University, Delhi groverps@rediffmail.com 

 
Abstract 
Component-Based Development (CBD) approach now is 

widely accepted in software industry. This approach 

enables efficient application development through the 

integration of already developed software components. 

The success of these applications heavily depends upon 

the selection of appropriate components to fit customer 

requirements. Therefore it is very necessary to evaluate 

the quality of components before using them in the final 

system. Quality models proposed so far can not be fully 

implemented as-it-is on components and component-

based systems (CBS) due to architectural differences in 

the development approach. Present paper surveys a 

number of quality models for traditional and component-

based systems and proposes a new model for CBS by 

proposing some new characteristics, which may be very 

relevant in the context of components. All the quality 

characteristics may not be of prime importance for an 

application to be developed for a specific domain. 

Therefore, it is necessary to identify only those 

characteristics/sub-characteristics, which may have 

higher priorities over the others. The present work uses 

Analytical Hierarchy Process (AHP) to assign the weight 

values to the characteristics for the proposed model. 

These weight values are then used to evaluate the quality 

contribution of sub-characteristics, characteristics and 

then finally the overall quality of the component by 

using the appropriate metrics. This approach can be used 

to identify and select better quality component among 

several others which can be used in the final system. 

Keywords: Components, Quality, Quality Model, 

ISO9126, AHP 

1.0 Introduction 

  CBSD has become an important alternative for building 

complex and distributed applications. Low cost and 

efforts, faster delivery, and quality are the main benefits 

of this approach.  However, although the market is 

growing rapidly in terms of the usage of this approach, 

very less could be done in terms of the quality aspects of 

this emerging approach. Quality, not only describes and 

measures the functional aspects of the software (what a 

system does), but also extra functional properties (how 

the system is built and performs). In CBD quality 

becomes more important as developers have to rely on 

the vendors, from whom they are taking the component/s 

to integrate it in the application. This component may 

not meet the quality requirements set by the developers 

and may produce catastrophic results in a typically 

complex situation. Therefore, quality of the components 

must be considered with top priority to increase the 

reliability of the end product. 

  Several quality models are proposed by researchers for 

software systems which include McCall, Boehm, 

FURPS, Dromey, Sehra, ISO 9126 and others. Most of 

these models are generic models and are proposed for 

general application systems. Out of these models, ISO 

9126 is a prominent model which includes the findings 

of almost all other models. This is widely recognized in 

industry and research community. Researchers made 

several efforts to implement this model for component 

based systems with minor modifications. Present work 

also considers this model as base model and proposes a 

new model by adding/removing some of the 

characteristics to/from this model. 

  Section 2 briefs about the general concepts of quality 

and quality models. Section 3 defines the quality 

characteristics and sub-characteristics in the component 

context. The proposed model for component based 

systems is presented in section 4. Section 5 describes the 

methodology to evaluate this model with the help of an 

experiment. Paper concludes with the discussion and 

conclusion in Section 6 and 7 respectively. 

SIGSOFT Software Engineering Notes Page 1 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613

mailto:arunsharma@aiit.amity.edu
mailto:rajnagdev@yahoo.co.in
mailto:groverps@rediffmail.com


2.0 Software Quality 
The discipline of software quality is a planned and 

systematic set of activities to ensure that quality is built 

into the software. It consists of software quality 

assurance, software quality control, and software quality 

engineering. According to the IEEE 610.12 [1] standard, 

software quality is a set of attributes of a software 

system and is defined as: 

(1) The degree to which a system, component, or 

process meets specified requirements. 

(2) The degree to which a system, component, or 

process meets customer or user needs or 

expectations. 

(3) Quality comprises all characteristics and 

significant features of a product or an activity which 

relate to the satisfaction of given requirements.  

Quality, in general, is the totality of features and 

characteristics of a product or a service that bears on its 

ability to satisfy the given needs. For example, 

conformance to specifications. It is the degree to which a 

customer or user perceives that software meets his or her 

composite expectations. Or in other words, it is the 

composite characteristics of software that determine the 

degree to which the software in use, will meet the 

expectations of the customer [2].  

The evaluation of quality for a software system depends 

upon the following: 

1) Quality Model 

2) Quality characteristics  

3) Metrics to assess the attributes of characteristics and 

sub-characteristics. 

Quality model describes the set of characteristics and 

relationships between them, which provide the basis for 

specifying quality requirements and evaluating quality 

[3]. A quality model establishes a framework to perform 

some kind of measurement of the specific desirable 

features that are needed in the final system and perceived 

by the end user. Here an important assumption is made 

that internal product characteristics, related to the 

product development, affect external attributes or quality 

in use [4]. Following section briefs some of the widely 

used and accessed quality models for software 

applications. 

2.1 McCall Model 
The first quality model was proposed by McCall [5] 

(1977). He presented a Software Quality Factor 

Framework and classified the quality attributes into three 

groups shown in Table 1. 

 Product Operation: refers to the system’s ability to 

be quickly understood, efficiently operated and 

capable of providing the results required by the user 

– i.e. involving attributes, such as, correctness, 

reliability, efficiency, integrity and usability; 

 Product Revision: relates to error correction and 

system adaptation. This aspect is generally 

considered the costliest part of the software and 

involves attributes, such as, maintainability, 

flexibility and testability; 

 Product Transition: refers to distributed processing, 

together with rapidly changing hardware and 

involves attributes, such as, portability, reusability 

and interoperability. 

 
Product 

operation 

factors 

Product revision 

factors 

Product 

transition factors 

• Correctness 
• Reliability 

• Efficiency 

• Integrity 

• Usability 

• Maintainability 
• Flexibility 

• Testability 

 

• Portability 
• Reusability 

• Interoperability 

Table 1: McCall Quality Model 

The major advantage of this model is the relationship 

created between its quality characteristics; however the 

main drawback is that it does not include the 

functionality aspect of the software product. Also, some 

of the factors and measurable properties, like traceability 

and self-documentation among others, are not really 

definable or even meaningful at an early stage for non-

technical stakeholders. It is, therefore, difficult to use 

this framework to set precise and specific quality 

requirements. This model is not applicable with respect 

to the criteria outlined in the IEEE Standard for a 

Software Quality Metrics Methodology for a top-down 

approach to quality engineering. It is, therefore, not 

suited as a foundation for Software Quality Engineering 

according to the stated premises [6].  

2.2 Boehm's Model 
The Boehm model is similar to the McCall model in that 

it represents a hierarchical structure of characteristics, 

each of which contributes to total quality. Boehm's 

notion includes users' needs, as McCall's does; however, 

it also adds the hardware yield characteristics not 

encountered in the McCall model [7]. Boehm’s model 

looks at utility from various dimensions, considering the 

types of user expected to work with the system once it is 

delivered. General utility is broken down into 

Portability, Utility and Maintainability. Utility is further 

broken down into Reliability, Efficiency and Human 

Engineering. Maintainability is in turn broken down into 

Testability, Understandability and Modifiability. 

However, Boehm’s model does not elaborate the 

methodology to measure these characteristics. 

2.3 ISO 9126 

ISO (International Standard Organization) proposed a 

standard, known as ISO 9126 [3], which provide a 

generic definition of software quality in terms of six 

main characteristics for software evaluation. These 

characteristics include: Functionality, Reliability, 

SIGSOFT Software Engineering Notes Page 2 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



Usability, Efficiency, Maintainability and Portability. 

These characteristics cover some sub-characteristics, as 

shown in Table 2.  

 

Table 2: ISO 9126 Quality Characteristics 

One of the advantages of this model is that, it identifies 

the internal and external quality characteristics of a 

software product. On the other hand, it does not show 

very clearly how these aspects can be measured [8]. 

2.4 Dromey’s Model 
Dromey [9] proposed a quality evaluation framework 

that analyzes the quality of software components through 

the measurement of tangible quality properties. All these 

components possess intrinsic properties that can be 

classified into four categories:  

 Correctness: Evaluates if some basic principles are 

violated.  

 Internal: Measure how well a component has been 

deployed according to its intended use.  

 Contextual: Deals with the external influences by 

and on the use of a component.  

 Descriptive: Measure the descriptiveness of a 

component (for example, does it have a meaningful 

name?).  

These properties are used to evaluate the quality of the 

components.  While Dromey's work is interesting from a 

technically inclined stakeholder's perspective, it is 

difficult to see how it could be used at the beginning of 

the lifecycle to determine user quality needs. The 

disadvantage of the Dromey’s model is also associated 

with reliability and maintainability. It is not feasible to 

judge both attributes of a system before it is actually 

operational in the production area [10]. 

3.0 Quality for Component Based Systems 
In component-based systems, it is very difficult to relate 

system properties to component properties [11]. For 

component-based systems crucial questions in relation to 

choosing a quality component, are the following: 

 How likely is it that the component will work properly 

in target application without or with minor 

reconfiguration? 

 In what ways has the component been tested in a 

sufficient variety of situations and are the testing 

methods relevant to intended use? 

 Has the component already been used in other 

applications similar to this, if so, how much and with 

what result? 

 What are the implications of using this component on 

system performance, reliability, maintainability, 

portability and other aspects? 

To answer these questions, we need to choose those 

quality attributes and finally a quality model which may 

be applied on software components and component 

based systems. There is no general consensus on the 

traditional quality models which can fit for component 

based systems. McCall’s ignored functionality, Boehm’s 

contains a diagram without any suggestion about 

measuring the quality characteristics, ISO-9126 does not 

show very clearly how the attributes can be measured. 

Thus, there is an absence of any kind of metrics that 

could help in evaluating quality characteristics 

objectively, in particular when the underlying software 

project is component-based. 

However, there are several models proposed exclusively 

for CBS also. But most of these models are based or 

derived from ISO9126. Bertoa [12] defines the 

characteristics and sub-characteristics in the changed 

context of component based systems. The paper divides 

sub-characteristics into runtime and lifecycle categories 

based on their nature. It adds compatibility sub-

characteristic under functionality, which indicates 

whether former versions of the component are 

compatible with its current version. The paper also 

proposes various attributes associated with the sub-

characteristics and finally defines these attributes with 

the classification for the measurement of such attributes 

like ratio, presence, integer and time [12]. Although the 

paper presents a good description on quality 

characteristics, sub-characteristics and their 

measurement, it fails to perform any empirical 

evaluation of the attributes on any application, thus 

leaving the proposed work as incomplete [13]. 

Adnan [10] also conducted a survey on various quality 

models available, which includes McCall, Boehm, 

FURPS, Dromey and ISO 9126. It performs some 

tailoring on ISO9126 model by adding compatibility 

sub-characteristic under functionality and complexity 

under usability. It omits stability and analyzability from 

maintainability and adds manageability to it.  It also adds 

new characteristic, named Stakeholders in its proposed 

model who are the members of the team responsible for 

developing, maintaining, integrating and/or using COTS 

systems. The paper performs a good comparison for 

various quality models; however, all the models 

considered are traditional models and may not fit for 

component-based systems, as-it-is. Moreover, the 

proposed model does not explain how the attributes 

belonging to various characteristics and sub-

characteristics will be measured to finally evaluate the 

quality of the system. 

SIGSOFT Software Engineering Notes Page 3 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



 Sedigh et. al. [14] categorized the system level metrics 

into management, requirement and quality. Management 

includes the cost, time-to-market, software engineering 

environment and system resource utilization. 

Requirements include requirements conformance and 

requirements stability, while quality includes 

adaptability, complexity of interface and integration test 

coverage, E2E test coverage, Fault profiles, reliability 

and customer satisfaction. The relationship among 

metrics is described using the influence diagram. 

The main quality characteristics (Functionality, 

Usability, Efficiency, Reliability, Portability and 

Maintainability) are available in almost all quality 

models proposed so far for component based systems. 

However, researchers differ while choosing sub-

characteristics under these characteristics. Proposed 

work in this paper is an extension to the work mentioned 

above. Following section defines the terms used for 

various characteristics and sub-characteristics in our 

proposed quality model for software components:  

Functionality: Functionality is a set of attributes that 

bear on the existence of a set of functions and their 

specified properties [ISO, 1991]. It means that the 

component should provide the functions and services as 

per the requirement when used under the specified 

condition. Pre-existing components with or minimum 

changes will allow low cost, faster delivery of end 

product.  

Suitability- Suitability tries to express how well the 

component fits the developer’s requirements. As the 

exact requirement can only be known to system 

developer, it can not be measured by component 

developer during its development. 

Accuracy: It evaluates whether the component 

produces the accurate results with correct precision 

level required by the system developer. 

Interoperability-This sub-characteristic indicates 

whether the format of the data handled by the target 

component is compliant with any international or 

’de facto’ standard or convention.  

Security: It refers how the component is able to 

control the unauthorized access to its provided 

services. 

Compliance: This characteristic indicates if a 

component is conforming to any international 

standard or certification etc.).  

Reliability: In general, reliability is the probability that a 

system or component will produce failure within a given 

period of time. In other words, reliability expresses the 

ability of the component to maintain a specified level of 

fault tolerance (fault frequency and fault severity), when 

used under specified conditions. Reusability aspect of 

the same component with multiple applications will 

increase the reliability of that component as it may be 

observed here that this component would have been 

thoroughly tested before using it in previous 

applications.  

Maturity- In component context, it deals with the 

number of commercial versions of the component 

and the time interval between each version. 

Recoverability- It measures the ability for a 

component to recover from an unexpected failure 

(e.g. through exception handling) and also to 

recover the lost data along with the original 

performance.  

Fault Tolerance: This sub-characteristic indicates 

whether the component can maintain a specified 

level of performance in case of faults. 

Usability: It is the ability of a component to be 

understood, learned, used, configured, and executed, 

when used under specified conditions. Obviously, here 

the user of the component is application/system 

developer rather than end user.  Therefore the usability 

of the component should be less complex and more 

reusable and developer friendly so that it can be 

assembled properly in the final system.  Sub-

characteristics of Usability are defined as under [15]: 

Understandability: It is the capability of the 

component to enable the user (system developer) to 

understand whether the component is suitable, and 

how it can be used for particular tasks and 

conditions of use.  

Learnability: This sub-characteristic refers the 

ability of the component to enable the system 

developer to learn the application. For example, the 

user documentation and the help system should be 

complete; the help should be context sensitive and 

explain how to achieve common tasks, etc.  

Operability: the capability of the software 

component to enable the user (system developer) to 

operate and control it.  

Attractiveness: It indicates the capability of the 

software component to be attractive to the user. 

Here as stated earlier, the user is system developer, 

and he/she may be more interested in the 

programmatic interfaces, API’s defining the services 

provided by the components so that they can be 

composed and integrated with the target system 

rather than its attractiveness or GUI interfaces, we 

may omit this sub-characteristic from the proposed 

model. 

Compliance: This characteristic indicates if a 

component is conforming to any international 

standard or certification etc) relating to usability. 

Currently, no standards have been set up for this 

sub-characteristic in the component context; 

therefore it can be omitted from the quality model 

for the time being. 

SIGSOFT Software Engineering Notes Page 4 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



Efficiency: This characteristic express the ability of a 

component to provide appropriate performance, relative 

to the amount of resources used. Efficiency is affected 

by the component technology, mainly through resource 

usage by the run-time system but also by interaction 

mechanism.  Component can be internally optimized to 

improve performance without affecting their 

specifications. Components should be tested on various 

platforms to check the performance [16].  

Time Behavior: This characteristic indicates the 

ability to perform a specific task at the correct time, 

under specified conditions. 

Resource behavior: This characteristic indicates 

the amount of the resources used, under specified 

conditions. 

Maintainability: This characteristic describes the ability 

of a component to be modified. As the component 

developers do not have the source code of the 

component, they can only adapt it, reconfigure it and 

finally test it before including it in the final product. The 

sub-characteristics under maintainability are: 

Customizability- As mentioned earlier, system 

developer can only adapt, reconfigure, test and 

finally embed it into the system, as he is not having 

the source code of the component. Customizability 

refers to the ability to modify the component 

through its limited available information, like 

interfaces and parameters. For example in 

JavaBeans, components can be customized through 

its customizable parameters (set methods). 

Testability- This sub-characteristic refers whether 

the component provides some sort of tests or test 

suites that can be performed to the component to 

check its functionality inside (or in isolation of) the 

final system in which the component will be 

integrated. 

Stability- It refers to the component ability to 

handle the unexpected changes during the 

maintenance. 

Analyzability- We propose to remove this sub-

characteristic from the quality model. A component 

is developed to attend certain functionalities of the 

application and, rarely are developed methods for its 

auto analyze or to identify parts to be modified (i.e. 

this is the main concern of Analyzability 

characteristic, according to ISO 9126). Therefore 

analyzability may not be required and is removed 

from the model. [17] 

 

Portability: This characteristic is defined as the ability 

of a component to be transferred from one environment 

to another with little modification, if required. The 

component should be easily and quickly portable to 

specified new environments if and when necessary, 

with minimized porting costs and schedules. In 

component based development, it is a very important 

characteristic as a component may be used and reused 

in various different environments.  Therefore the 

specification of a component should be platform 

independent.  

Replaceability: This sub-characteristic indicates 

whether the component is backward compatible 

with its previous versions. This means that the new 

component can substitute the previous ones without 

any major efforts. 

Adaptability: It refers whether the component can 

be adapted to different specified platforms. 

Installability- It is the capability for a component to  

be installed easily on different platforms. 

4.0 New characteristics added to quality model 
Complexity- Because the source code of the component 

is not available to the application developer, the 

complexity of a component in CBD, is limited to 

interface methods, pre and post conditions, properties 

and interactions available to the developer. Measuring 

the complexity at the initial stage is helpful during 

analyzing, testing, and maintaining the system. This 

measurement could direct the process of improvement 

and reengineering work. [18] proposes a complexity 

metric for software components which is based on the 

interface methods and properties, available for black box 

components. A complexity measure could also be used 

as a predictor of the effort that is needed to maintain the 

system. In component-based systems, functionalities are 

not performed within one component. Components 

communicate and share information in order to provide 

system functionalities. Because the system developer 

adapt the component, reconfigure it and then finally 

integrate it in the final system without going into the 

internals of the component, we propose that complexity 

should be added under Usability characteristic.  

Trackability- When reconfiguring a component for 

changed/improved functionality, maintainers must 

perform a full cycle of product evaluation, integration 

and testing. Even if the new release of a component 

claims to be functionally backward compatible with an 

older version, there will undoubtedly be differences such 

as resource usage, performance, or target system 

requirements [19]. Therefore, it is very necessary to keep 

track of all the parameters of the older version so that 

these details can be compared with the enhanced or 

changed parameters. Thus, maintenance activities may 

be extended to include provisions for keeping a proper 

track of various system properties during the 

maintenance activities, which may include tracking 

system performance or resource utilization, before and 

after any maintenance activity, like replacement of an 

old component with a new version with some 

SIGSOFT Software Engineering Notes Page 5 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



added/modified functionality. This may also include the 

possible security violations due to some maintenance 

activities. Tracking not only will validate any 

improvement efforts, but also once an information 

process is presumed to be stable, tracking may provide 

insight into maintaining statistical control. This, in 

effect, will ease the overall maintenance process. 

Therefore trackability aspect should be added under the 

Maintainability characteristic [20]. 

Reusability- Reusability is the intrinsic property of 

Component Based Systems. Reuse is the process of 

adapting a generalized component to various contexts of 

use. It improves productivity, maintainability, portability 

and therefore the overall quality of the end product. A 

reusable component must be generic, that is, it has 

appropriate features that enable the re-user to create 

specific instances of the components to satisfy 

application specific requirements. We propose to add it 

under Functionality characteristic. 

Scalability - Scalability expresses the ability of the 

component to support major data volumes. It may also 

be measured as the number of users or transactions it can 

scale to without sensible decrease in response time. It is 

related with the performance therefore should be 

included under Efficiency characteristic. 

Flexibility – It is the efforts required to modify a 

component under the maintenance activity. 

4.1 New Modified Quality Model- After tailoring the 

quality model for CBS, the changed characteristics in the 

new proposed quality model for software components is 

as shown in Table 3. The sub-characteristics shown in 

bold are newly proposed additions to the ISO9126 

model. 

 

Table 3: New proposed Quality Model for Software Components 

5.0 Evaluation of Proposed Model 
Not all quality characteristics are of equal importance to 

the software product. Therefore, developers must realize 

that to design a successful system does not mean that the 

system must conform to all the software quality 

attributes defined, but rather the most important 

attributes need to be identified, specified and prioritized. 

Moreover, the priorities of these characteristics and sub-

characteristics will vary from one application domain to 

another. Like for throwaway applications e.g. a real time 

system developed to launch a missile, maintainability 

will be of no use. Similarly, if the application is intended 

to work only for a dedicated platform, portability aspect 

is not required at all. However, the financial applications 

will require more security, efficiency, reliability, fault 

tolerance and availability. Similarly, for an e-Commerce 

system, the important characteristics would be 

reliability, performance, availability, security, and 

maintainability (maintenance on these applications 

occurs continuously) [21]. Therefore, we should 

consider only the just enough and related quality 

characteristics and sub-characteristics while developing 

a software system for a particular domain. It will 

eventually reduce the overall efforts, time and cost for 

the development. Empirically, we can assign weight 

values to these characteristics and sub-characteristics 

based on their importance in these domains. These 

weight values may vary from one domain to another.  

5.1 Weight Assignment Technique for Quality – 
Case Study 
To establish these facts in real practice, we conducted a 

survey on software professionals working on e-

commerce projects by using component-based 

technologies in 9 multi-national companies. These 

professionals have varied experience (5-12 years) 

ranging from senior software developers to the project 

managers. All the professionals involved have completed 

at least three projects on these technologies with varied 

responsibilities. Survey form consists of all the quality 

characteristics and sub-characteristics proposed in our 

model. Professionals were requested to give their 

preferences on these characteristics and sub-

characteristics ranging from Never Required - 0 to 

Always Required - 4, while keeping in mind a particular 

application domain. 

Responses received from these professionals are 

analyzed through Analytical Hierarchy Process (AHP) 

approach. AHP is a technique that supports decision 

makers in structuring complex decisions, quantifying 

intangible factors, and evaluating choices in multi-

objective decision situations. It is a comprehensive and 

rational decision-making framework that provides a 

powerful methodology for determining relative worth 

among a set of elements [22]. AHP is especially suitable 

for complex decisions that involve the comparison of 

decision elements which are difficult to quantify. Its 

application has been reported in numerous fields, such as 

transportation planning, portfolio selection, corporate 

planning and marketing. It involves: 

a) Development of relative importance among the 

attributes using experts’ opinion or through 

exhaustive     paired comparison analysis,  

b) Developing through an algorithm a weightage for 

each of the attributes,  

c) Performing similar analysis for the alternative 

solution strategies for each of the attributes, and  

SIGSOFT Software Engineering Notes Page 6 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



d) Developing a single overall score for each of the 

alternate solution strategies.  

 

The survey is conducted on 36 professionals and 

analyzed in three phases by taking first 10 then 25 and 

finally total 36 persons. After each phase, we analyzed 

the response by using AHP and we found a maximum 

of 3% variation in the results, which indicates towards 

the sufficiency of sample data and shows that there is no 

much difference in the result if we increase the number 

of respondents. MS-Excel is used to process the 

generated data. The Table 4 shows the weight values for 

each main characteristic in the range from 0 to 1. The 

sum of all weight values is 1. 

F
u

n
c
ti

o
n

a
li

ty
 

R
e
li

a
b

il
it

y
 

U
sa

b
il

it
y
  

E
ff

ic
ie

n
cy

 

M
a

in
ta

in
a

b
il

it
y

 

P
o

r
ta

b
il

it
y
 

0.205 0.184 0.202 0.16 0.139 0.11 

Table 4: Weight Values assigned to quality characteristics 

This table shows that in eCommerce domain, 

functionality and usability are two most important 

characteristics, while workers gave least preference to 

portability. However, as a characteristic, this lowest 

value can not be ignored and has to be considered while 

evaluating the overall quality of the component based 

system. 

Further, weights of sub-characteristics under these 

characteristics are decided by AHP analysis. The weight 

value of a characteristic is distributed among its sub-

characteristics. These weight values are used to calculate 

the measured value of a quality characteristic from the 

measured values of its sub-characteristics. The sum of 

the weight values of all the sub-characteristics under a 

characteristic is equal to the weight value of that parent 

characteristic. Similarly, the sum of all sub-

characteristics, irrespective of parent characteristics, is 

again equal to 1. The weight values of the sub-

characteristics are shown in Table 5.  

It may be noted from this table that the weight value for 

functionality is the highest among all, but its sub-

characteristics have very less weight values, as 

compared to other sub-characteristics. Similarly, though 

efficiency and portability have very less weights, but 

their constituents are assigned quite large weights as  

 

compared to others. The reason is obvious. Here number 

of sub-characteristics is not same for all characteristics. 

Functionality divides its weight value among its seven 

sub-characteristics, while portability and efficiency 

divide among three.  Therefore, while choosing the sub-

characteristics, the weight of their parent characteristics 

should also be considered.  

The weight values obtained through the process 

mentioned above can help a developer to select those 

quality characteristics and sub-characteristics, which are 

important and relevant as per their quality requirement in 

that domain. Through this weighting technique, 

developers can be restricted not to over design the 

system in favor of a particular characteristic. It will 

control the development time and financial tradeoff also. 

But if we choose only selected characteristics and sub-

characteristics, the sum of these will not be 1, as we are 

excluding the weight values of not-so-important 

characteristics/sub-characteristics. In this case, we can 

normalize the weight values of selected 

characteristics/sub-characteristics relatively to make the 

sum equal to 1. For example, if only suitability, 

accuracy, security and reusability have to be selected 

under the functionality characteristic, which have the 

weight values 0.033, 0.038, 0.035 and 0.028. Other 

attributes like interoperability, compliance and 

compatibility are not considered to be important (though 

these have been assigned certain weight values). We 

need to normalize these weight values to the selected 

Characteristic Sub- 

characteristics 

Weight 

Values 

Sum Grand 

Total 

 

 
 

Functionality 

 

Suitability 0.037  

 
 

 

 
 

0.205 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Accuracy 0.043 

Interoperability 0.028 

Security 0.039 

Compliance 0.026 

Reusability 0.032 

 

Reliability 

Maturity 0.067  

 
0.184 

Fault Tolerance 0.060 

Recoverability 0.057 

 

 

Efficiency 

Time Behavior 0.056  

 
0.16 

Resource Behavior 0.052 

Scalability 0.052 

 

 

Usability 

Understandability 0.057  

 
 

0.202 

Learnability 0.048 

Operability 0.049 

Complexity 0.048 

 

 

Maintainability 

Stability 0.022  

 

 

 

0.139 

Testability 0.032 

Changeability 0.033 

Trackability 0.026 

Flexibility 0.026 

 

 

Portability 

Adaptability 0.043  

 

0.11 
Installability 0.037 

Replaceability 0.030 

                                                                                                         1.0 

Table 5:  Weight Values assigned to quality sub-characteristics  

 

SIGSOFT Software Engineering Notes Page 7 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



sub-characteristics so that the sum of all these selected 

sub-characteristics will be equal to 0.205 (weight value 

for functionality characteristic shown in Table 5). The 

following formula can be used to normalize the weight 

value of sub-characteristic say SCi, which is under 

characteristics C: 

 

 
 

The normalized weight values in this case will be .05, 

0.058, 0.054 and 0.043. Similarly, we can get the 

normalized weight values of all the sub-characteristics 

chosen for a particular application for a domain. 

5.2 Evaluation of quality as a single variable 
Quality is the composition of all its required 

characteristics and sub-characteristics. To measure it as a 

single variable, one must include the contribution of 

each constituent and sub-constituent.  The objective of 

developer must be to achieve all the quality 

characteristics and sub-characteristics in a best possible 

way. However, in some cases, it may be possible that if 

we increase one aspect, other will automatically be 

decreased. For example, we try to increase the 

reusability or portability, complexity will be increased. 

Similarly, to implement more security aspects will 

reduce the performance. Therefore, efforts need to be 

made to establish an accepted balance among all these. 

Following formula is used to evaluate the quality of the 

system as a whole [20]: 

Q = wfF + wrR + wuU+ weE + wmM+ wpP 

where wf,  wr, wu, we wm and wp are the weight values for 

the quality characteristics- functionality (F) , reliability 

(R), usability (U), efficiency (E), maintainability (M) 

and portability (P) respectively.  Further, the 

characteristics are divided into sub-characteristics, the 

values of F, R, U, E, M and P can be measured by using 

their constituents like- 

F = wsS + waA + wiI + wseSe+ wcC+ wcoCo+ wreRe 

 R = wmaMa+ wftFt + wrecRec 

where S: Suitability, A: Accuracy, I: Interoperability, Se: 

Security, C: Compliance, Co: Compatibility, Re: 

Reusability, Ma: Maturity, Ft: Fault Tolerance and Rec: 

Recoverability. Also, the weight value symbols are used 

as a multiplier along with the sub-characteristics (like ws 

is the weight value of S). Other characteristics can also 

be expressed in a similar way. 

 Now, to evaluate the individual sub-characteristics, we 

need to use the related metric. But here units of all the 

metrics may not necessarily be same. Like, some may be 

measured in numbers; others may be in ratio or just 

presence. Therefore, we need to normalize these values 

in the range of 0 to 1, so that all can be fit under a unique 

scale. Within the normalized range, the highest value for 

a metric is 1 and is the maximum achievable level.  

5.3 Experimental Evaluation of Quality on 
Industry Software Project 
To evaluate the quality as a whole, we conducted an 

experiment on a software project from the manufacturing 

domain, which was to be developed in Java and related 

technologies. A COTS component to be used in the 

application was selected and its quality was evaluated. 

After a preliminary consideration, the following 

characteristics and sub-characteristics were specified by 

the client for the evaluation: 

 

 
Table 6: Selected quality attributes for evaluation 

Here portability and its sub-characteristics are not 

selected, as the application is intended only for a fixed 

platform. Based on these selected characteristics and 

sub-characteristics, the normalized weight values are 

obtained as given in the Table 7 and 8. 

Functionality Reliability Usability  Efficiency Maintainability 

0.23 0.207 0.227 0.18 0.156 

Table 7: Normalized Weight Values assigned for selected quality 

characteristics 

 

Table 8: Normalized Weight Values assigned to selected quality 

sub-characteristics 

 

Table 9 shows the set of metrics collected to measure 

these characteristics and sub-characteristics. Out of these 

selected 11 sub-characteristics, 4 (marked with *) need 

to be normalized on 0 to 1 scale. 

 

 

 

Characteristic Sub- 

characteristics 

Weight 

Values 

Sum Grand 

Total 

 

 

 

Functionality 

Suitability 0.057  

 

 
0.230 

 

Accuracy 0.066 

Security 0.060 

Reusability 0.047 

Reliability Maturity 0.207 0.207 

Efficiency Resource Behavior 0.18 0.180 

 

Usability 

Understandability 0.123  

 

   0.227 
Learnability 0.104 

 

 

Maintainability 

Testability 0.055  

 

 
0.156 

Changeability 0.056 

Trackability 0.045 

                                                                                                                                    

                                                                                                      1.00 

SIGSOFT Software Engineering Notes Page 8 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



Parameter Metric 

Suitability       1-(No. of operations not suitable 

/Total number of operations provided) 

Accuracy Number of operations having  

required accuracy/ Total number of operations 

Security No. of access controllability provided  

/ Total no. of access controllability required 

Reusability Number of customizable properties 

/total number of properties 

Maturity* No. of versions released so far for the same 

component 

Resource Behavior 1- (%CPU usage for the execution of the 

component/100) 

Understandability* Documentation, Help System, Training 

provided 

Learnability No. of observable properties/Total number 
of properties 

Changeability Number of customizable properties 

/total number of properties 

Testability* Sufficient number of test cases provided 

Trackability* Functional and Behavioral tracking system 

provided for easy maintenance 

 Table 9: Set of metrics to be used for evaluation 

For Maturity, we assume that a component having its 

first version has maturity 0, second released version 

0.25, third released versions 0.5, forth version 0.75 and 

five or more versions means the mature enough 

component and it may have maturity value 1.0. 

Understandability can be measured on the basis of 

documentation; help system and training provided to the 

users for the target component and 0.33 each can be 

assigned for these three constituents respectively. 

Testability is based on the sufficient number of test 

cases, so that component can be tested properly. We can 

measure it by giving values 0, 0.5 and 1 for no test cases 

provided, provided but not adequate and adequate 

number of test cases provided respectively. Lastly, 

trackability can be measured on the basis of tracking 

facility provided by the component developer so that it 

can help in future maintenance activities. Again, 0, 0.5 

and 1 can be assigned for no tracking provided at all, 

only functional or behavioral tracking provided, and 

both functional and behavioral tracking provided 

respectively. 

Now all the sub-characteristics selected for the 

component are normalized on the scale of 0 to 1 and can 

be applied on the target component. The values obtained 

for these metrics are shown in Table 10. Result shows 

that the quality of the target component to be used in the 

system is 0.583 on a scale of from 0 to 1. 

Chs. Sub- Chs.  Metric (M)  Wt. 

(w) 

Mi * wi Quality  

 
 

 

 
Funct. 

Suitability       1-1/7  
= 0.85 

0.057 0.048  
 

 

0.184 
Accuracy 6/6=1 0.066 0.066 

Security ¾=0.75 0.060 0.045 

Reusability 7/13=0.54 0.047 0.025 

Reliab Maturity* 0.25 0.207 0.052 0.052 

Effic. Resource  

Behavior 

 

0.89 

  

0.180 

 

0.160 

 

0.160 

 
Usab. 

Understan* 0.66 0.123 0.081  
0.129 Learnability 6/13=0.46 0.104 0.048 

 

 
Maint. 

Changeab. 7/13=0.54 0.056 0.030  

 
 

0.058 

Testability* 0.5 0.055 0.028 

Trackability* 0 0.045 0 

Total                                                                                          0.583 

Table 10: Final value of quality 

6.0 Discussion 

Proposed methodology can be used to estimate the 

quality of any component before using it in the final 

system. Also, it may be used to estimate the efforts 

required to achieve a required value of any 

characteristic. Like in the above experimentation, the 

score of the functionality is 0.184 out of 0.205. To 

achieve a minimum accepted level of functionality for 

example say 0.19, we need to increase the value of some 

of its constituent parameters, without affecting others. 

We can achieve it by putting extra efforts in security by 

providing one more controllability aspect, so that the 

metric value for security now is 1.0 and final value of 

functionality will become more than the minimum 

required value. However, it may be possible that if we 

increase security aspect, it will decrease other aspects 

like complexity or performance. Therefore, we need to 

have a balance between these values so that the 

component can be used in the final system. Further, to 

achieve a particular level of any quality aspect, 

developers must employ certain techniques, 

methodologies, tools and processes, each of which has 

associated costs and benefits.  These costs and benefits 

need be considered while implementing the requirement 

analysis. 

7.0 Conclusion 
This paper presents a survey of various quality models 

proposed so far for non-component and component 

based systems. ISO 9126 is found to be more promising 

model among all. Present work defines the 

characteristics and sub-characteristics of the component 

and proposes to add some more sub-characteristics to it, 

which may be relevant in the component context. As, not 

all characteristics, are required while developing a 

quality system, we need to select only those 

characteristics and sub-characteristics which may be of 

prime importance for that application. For that purpose, 

a weight assignment technique is used by using the 

Analytical Hierarchical Process (AHP) concept. We 

have demonstrated the use of this technique in an 

experiment by taking a real-life example and evaluated 

the overall quality of the component. This quality can be 

used to compare and select the best suitable component 

as per all desired quality characteristics.  

 

 

SIGSOFT Software Engineering Notes Page 9 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613



8.0 References 
[1] IEEE Standard Glossary of Software Engineering Terminology, 
IEEE Std 610.12-1990. 

[2] Khosravi, K., Gueheneuc, Y.G., “A Quality Model for Design 

Patterns”, 2004, Online at: http://www.yanngael.gueheneuc.net/Work/ 
Tutoring/Documents/041021+Kashayar+Khosravi+Technical+Report.

doc.pdf. 

[3] ISO 9126, “Information Technology – Product Quality - Part1: 
Quality Model”, International Standard ISO/IEC 9126, International 

Standard Organization, June, 2001. 

[4] Losavio, Francisca, Chirinos, Ledis, Pérez, Maria A., “Quality 
Models to Design Software Architecture”, Journal of Object 

Technology, Vol. 1, Iss. 4, 2002 

[5] McCall, J. A., Richards, P. K., & Walters, G. F., “Factors in 
Software Quality”, Griffiths Air Force Base, N.Y. Rome Air 

Development Center Air Force Systems Command, 1977. 

[6] Cote, M., A. Suryn, W. Georgiadou, E,”Software Quality Model 
Requirements for Software Quality Engineering”, 14th International 

Conference on Software Quality Management, 2006, 31-50. 

[7] Boehm, B. W., Brown, J. R., Lipow, M. L., Quantitative Evaluation 

of Software Quality. Proceedings of the 2nd International Conference 

on Software Engineering, San Francisco, California, United States, 

1976, 592-605, IEEE Computer Society Press.  
[8] Maryoly, O., M.A. Perez and T. Rojas, “A Systemic Quality Model 

For Evaluating Software Products” 2002, available at 

http://www.lisi.usb.ve/publicaciones. 
[9] Dromey, R. G., A model for software product quality. IEEE 

Transactions on Software Engineering 21, 1995, 146-162.  

[10] Adnan Rawashdeh, Bassem Matalkah, “A New Software Quality 
Model for Evaluating COTS Components”, Journal of Computer 

Science, 2006, Vol. 2 Iss. 4, 373-381. 

[11] I. Crnkovic, M. Larsson, and O. Preiss, “Concerning Predictability 
in Dependable Component-Based Systems”, Classification of Quality 

Attributes, Architecting Dependable Systems III, 257-278, LNCS 

3549, 2005. 
[12] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS 

Components”, In the Proceedings of the 6th International ECOOP 

Workshop on Quantitative Approaches in Object-Oriented Software 

Engineering (QAOOSE), Spain, 2002. 
[13] Preiss, O., Weqmann, A., Wong, J, “On Quality Attribute Based 

Software Engineering”, Proceeding of 27th EuroMicro Conference, 

2001, 114-121. 
[14] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Software Engineering 

Metrics for COTS-based Systems”. IEEE Computer, 2001, 34(5): 44-

50. 
[15] Bertoa, M. and Vallecillo, A. “Usability metrics for software 

components”. Proceedings of Quantitative Approaches in Object-

Oriented Software Engineering QAOOSE 2004, Oslo. 
[16] Jon Arvid Borretzen, “The Impact of Component Based 

Development on Software Quality Attributes”, available at 

http://www.idi.ntnu.no/emner/dt8100/Essay2005/Boerretzen.pdf 
[17] Alexandre Alvaro, duardo Santana de Almeida, Silvio Romero de 

Lemos Meira, “Quality Attributes for a Component Quality Model”, 

Proceeding of 10th International Workshop on Component Oriented 
Programming (WCOP), Glasgow, Scotland, 2005.  

[18] Sharma Arun, Kumar Rajesh, Grover P S, “Empirical Evaluation 

of Complexity Metric for Software Components”, International Journal 

of Software Engineering and Knowledge Engineering, Vol 19, Iss. 5, to 

be published in Aug. 2009. 

[19]Mark R Vigder, Anatol W. Kark, “Maintaining COTS-Based 
Systems: Start with the Design”, in Fifth International Conference on 

Commercial-off-the-Shelf (COTS)-Based Software Systems, 2006, 8– 

13.  
[20] Grover P S, R Kumar, A Sharma, “Few Useful Considerations for 

Maintaining Software Components and Component-Based Systems”, 
ACM SIGSOFT Software Engineering Notes, 2007, Vol. 32, Iss. (5), 

1-5. 

[21] Voas, Jeffrey, Agresti, William W. (2004): Software Quality from 
a Behavioral Perspective. IEEE Computer Society. IT Pro., July-

August 2004. 
[22] Jayaswal, B, K., Patton, Peter, C., Forman, Ernest, H., “The 
Analytic Hierarchy Process (AHP) in Software Development”, Prentice 

Hall, 2007. 

 

  

SIGSOFT Software Engineering Notes Page 10 November 2008 Volume 33 Number 6

DOI: 10.1145/1449603.1449613 http://doi.acm.org/10.1145/1449603.1449613




