
SOFTWARE QUALITY ASSESSMENT TECUNOLOGY

Toshihiko SUnazUka, Motoei Azuma, Noriko Yamagishi

Sof:wy;e Product Engineering Laboratory, NIX Corporation
- , Shiba 5-chome, Minato-ku Tokyo 108, JAPAN

Abstract

Necessities for Software Quality
Measurement and Assurance Technology have
been increased.

B. Boehm and McCall proposed software
evaluation criteria. Based on these
studies, G. Murine developed Software
Quality Metrics (SQM).

SQM was applied to several projects in
NEC experimentally. An outline of the
experiment will be presented and the
results discussed.

Software Quality Measurement and
Assurance Technology (SQMAT) was developed
in NEC as a total technology for apply iw
to various types and size of software
projects, throughout the software life
cycle.

l.INTRODUCTION

There are increasing demands for
technologies to develop high quality
software. Quality metrics to evaluate
various kinds of software from various
viewpoints in each development phase, and
the methodology to use the metrics, are
especially required.

B. Boehm proposed over 60 quality
metrics [ll in 1976, and showed how to
evaluate total software quality.

In 1977, Walters and McCall reduced
quality factors to 11 candidates in on
RADC (Rome Air Development Center) report
[21.

Based on these studies, SQM (Software
Quality Metrics) was developed by G.
Murine (METRIQS Incorporated) as
quantitative software quality assessmen:
technology. SQM has been applied to
several sites in America already, and good
results have been reported [31[41[51.

SQMAT was developed in NEC, taking SQM
experimental use results into
consideration. More than 500 persons have
already been trained in its use.

This paper describes SQM out1 ine,
experimental use, SQMAT outline and its
technology transfer.

2. SQM OUTLINE

measurable quality factors, criteria and
elements. The SQM objective is to produce
cost-effective quality software. Figure 1
shows the quality metrics structure.

SQM takes a deductive measurement
approach to assessing both product quality
and process quality. Therefore, it has a
hierarchy structure.

wtric -All requirements identified in requirements

allocation document are fed into 85

specification

----All requirements identified in 85

catlone derived from requirements allocation

doculnent

sig”r; 1. Quality netrics structure

The SQM measurement approach is as
follow.

(1) Life-cycle properties (called Quality
Factors) are identified and ordered.

SQ!4 is customized by software category,
development phase and user requirements.
In using SQ14, these conditions are taken
into consideration and important Quality
Factors are chosen from twelve candidates,
which include one added to McCall's 11
Factors.

(2) Each Quality Factor is further
defined by set of
(called CriterTa).

attributes

Necessary Criteria for each Quality
Factor are chosen in this stage, referring
to the relation matrix between Quality
Factors and Criteria, whose size is a 12 x
23 digit matrix. 23 Criteria are based on
McCall's 25 Criteria.

(3) Each Criteria is quantified
individual measurements (call%
Metrics).

In this stage, Metrics are decided in
response to the necessity for each
Criteria chosen. For individual Metrics,

SQM is a rigorous, precise software reviewers give a full account of parts to
quality methodology consisting of measure on the tally sheet. For each part,

142
CH2139-4/85/0000/0142 0 IEEE 1985

if quality requirements are satisfied,
this part's score is "1". If quality
requirements are not met, the score is
nO". Criteria score is a ratio of "1" and
Quality Factors score is a weighted sum of
Criteria scores.

3. SQM EXPERIMENTAL USE --- ----- -___--_-

3.1 Preliminary Stur .--- -.-..-
and Experiment Preparation

The "Software Productivity Committee"
was organized to solve software problems
and to increase software productivity and
quality as a company-wide committee in
NEC. The committee includes several task
groups. The "Quality Assurance Task
Group" was established in September 1982,
to develop technologies, i.e., metrics,
methodologies and tools, for software
quality measurement and assurance.

As the first step to develop the
technologies, Murine and his associates
were invited and a one week SQM and SQA
(Software Quality Assurance) seminar was
held.

Some efforts were required for
translating the materials, understanding
the technology, discussing how to use it,
and preparing the materials written in
Japanese.

The "SQA/SQM Text" was issued six
months later by the group, and was used at
the first SQM pilot seminar. In October
1983, the text was revised. The "SQM
Handbook", which contains instructions on
how to measure software quality in detail,
was also issued.

The second training course was held in
November, aiming to transfer SQM
technology to those who wanted to use it
experimentally on actual projects.

$2. Experiments Outline ----_.---I
and Target Projects

SQM was applied experimentally to some
actual projects, taking as much caution as
possible to retain the original technology
style. Data were collected for use in
assessing the technology. The following
describes an experiment outline and the
results obtained from four projects.
Figure 2 shows the applying phase and
assessment object for each project.

Definition Design blaqufacture Test

(cl / >
HIPD COBOL

SPD
>

COBOL
C

(SP chart) (PL/I) PL/I
D

I< 3,

Figure 2. Applying phase and 88sessment object for each project

143

%!%%%iare category
development and maintena:ce

Software
software

(2)

(3)

(4)

(5)

(6)

Assessment object
Specifications in thl

Requirement
requirements

definition phase
Organization : 4 persons assessment
team without the writer
Quality metrics : 28 metrics about
"Usability" (Fig.31
Assessment cost : 3 or 4 hours for
individual assessment in advance and
1 or 2 hours for team assessment
Effect :

The number of pages for the
specifications was reduced from 22
paw-s to 12. The specifications
became easy to read and more
understandable.

Only necessary functions, based on
user needs, had been described.

Development costs, after the
requirements definition phase,
diminished by one third.

System Function propriety of function itself

continuity with other function

human characteristicsl

interface medium

Figure 3. Quality metrics for project A

Project B
(1) Software category : A cost control

(2)

(3)

(4)

(5)

(6)

system
Assessment object : Detailed
specifications written by HIP0 and
source list written by COBOL for 4
programs
Organization : 3 persons assessment
group; the project leader and two
from a third group
Quality metrics : 15 Metrics derived
from 5 Criteria (cf. Fig.41 about
"Correctness" and "Reliability" in
the design phase, and 22 Metrics in
the manufacturing phase
Assessment cost : 8.5 hours / kilo
lines in design phase and 8.9 hours /
kilo lines in manufacturing phase

Assessment cost ratio was 20.8%.
(Design cost* manufacturing cost and
test cost were 36.9, 19.5, and 9.7
hours / kilo lines, respectively.)
Effects :

Effects were as shown in Fig.5.
SQM cut down the test cost from

19.1 hours / kilo lines to 9.7.
After release, no error was

detected in the part of the system
assessed by SQM, but 2 bugs / 19.167
kilo lines were detected in the rest
of that part.

Total quality score in the design
phase was .84 and that in the
manufacturing phase was .98.

Total quality score in the design
phase was 84 and that in the
manufacturing ihase was 098.

Figure 4. Quality metrics for Project B

number of bugs detected during 3 month

0.101 bugs/U, f S0M not applied)

Figure 5. SQ” effect

Project C
(1) Software category : Business

application software (small scale
program)

(2) Assessment object : Detailed
specifications written by SPD
(Structured Programming Diagram) and
source list written by COBOL

(3) Organization : 1 assessor from a
third group

(4) Quality metrics : 9 Metrics in the
design phase and 8 in the manufactur-
ing phase about 2 Factors (Fig.61

(5) Assessment cost : 4.8 hours / kilo
lines in the design phase and 4.6
hours / kilo lines in the manufactur-
ing phase

Total assessment cost was 12.7% of
the software development cost.
(Design, manufacturing and test costs
were 27.0, 23.9 and 13.9 hours / kilo
lines, respectively.)

(6) Effects :
SQM saved 46.2 % of the cost for

the manufacturing phase (from 44.4
hours / kilo lines to 23.9) and 19.9
% for the test phase (from 17.4 hours
/ kilo lines to 13.9).

Wanufacturing phase

Figure 6. Quality metrics for project C

Project D
(1) Software category : A part Of an

operating system for a telephone
exchange

(2) Assessment object : supplied software
written by PL/I for 3 programs

(3) Organization : 2 persons in MEC, as
a part of the acceptance test

(4) Quality metrics : 12 Metrics about 2
Factors (cf. Fig.71, in addition to
acceptance test

(5) Assessment cost : 6.7 hours / kilo
line.5 (= 11.0 hours / 1.643 kilo
lines).

(6) Effects :
Subcontractor sales-points and

weak-points become clear.
In subcontractor management,

mainly quality guidance was carried
out.

Acceptance test
Completeness] ---.

Error Tolerance

Simplicity

Figure 7. Quality metrics for project D

3.3 Results

Two sorts of data were gathered to
assess the SQM technology.

(1) Scores on the same object by
different reviewers (cf. Table 1)

(2) Number of errors in the test phase
for each project (cf. Table 2)

Table 1. Scores on the Sam.3 object by different reviewers

Veteran Newcomer-1 Nevcomsr-2

score .915 .957 .932

,,umber of measucfx”ent points 201 139 132

Number of detected errors 17 6 9

masurement time (minutes 1 150 180 185

Heasurement time /.point .746 1.295 1.402

Table 2. Relationship between number of errors and SW 8cor.z

Detailed score
in test phase SQN score

Correctness Reliability

mog-1 13.9 .90 .905 .986
-

FTog-2 21.9 .921 .913 .904

FTog-3 5.3 .9-l, .963 .900

The difference between
different

scores by
reviewers is within 5% at most

(Table 1). It was concluded that the score
was objective and that anyone can use the
SQM for measuring, because the reviewer
group included personnel ranging from
newcomers to veterans.

It was found, from Table 2, that the
higher the SQM score is, the fewer the
errors that could be detected in the test

144

phase. It was concluded that high
correlation exists between SQM score and
result of quality assessment in the test
phase. Thus, the score is considered to
be reliable.

4. SQWAT (Software Quality Measurement
and Assurance Technology)

Taking the SQM experimental use
result into consideration, SQMAT was
developed as a technology which will
satisfy the necessity for company-wide
use. This necessity means that the
technology should be applicable not only
to a large software project, with
sufficient quality assurance staff, but
also to a very small project working on a
tight schedule. The software category
also varies, i.e., built in micro
processer program, small business
application, electronic telephone switch,
large realtime application, and main frame
computer operating system.

SQMAT is integrated technology which
consist of;

(1) Strategy to use the technology
throughout the software life-cycle,

(2) #etrics and methodology for measur-
ing quality,

(3) Rethodology and tool fOK quality
evaluation and assurance,

(4) Documentations and training packages
for transferring the technology.

4.1 Reauirements

Requirements applicable to the
technology, considering the above
mentioned necessity for company-wide use,
are as follows.

(1)

(2)

(3)

(4)

(5)

The technology should be goal
oriented. This means that quality
requirement should be defined quanti-
tatively and clearly from a user
viewpoint as well as a functional
requirement.
@;llty should be measured, evaluated

assured from all the quality
aspects, based on software category.
A reasonable number of quality
aspects, from the user's viewpoint,
is between 5 to 9, considering
human recognition and understanding
capability.
Accurate and simple shortcut measure-
ment methods should both be provided,
because quality should be measured
and assured at reasonable cost.
Technology should be easy to under-
stand and use, and technology tsans-
fer facilities should be provided.

4.2 Strateav

The feed forward control principle is
applied, in addition to the feed back
control principle.

In many cases, software quality is

improved in the process by design review
and code inspection. The number of errors
will be detected and corrective action
will be carried out by the final test.
This is feed back control. It is good for
quality, but a more positive control will
contribute to quality improvement; that
is, quality improvement action should be
accomplished before errors are detected.
This is feed forward control. The
procedure is to establish the quality
target. first, then discuss how to
accomplish achieving the desired high
quality and how to include the data in the
development process.

This procedure is shown in Fig.8.

(each Obiect / Phase]

Do +
Software Development

Check 1
Quality r:leasurement
Quality Visualization
Qualitv Judoement

Figure 8. SQMAT procedure

4.3 Metrics

Metrics are segregated into three
levels, i.e., Software Quality Requirement
Criteria (SQRC), Software Quality Design
Criteria tSQDC1 and Software Quality
Measurement Criteria (SQMC).

SQRC is the quality criteria, based on
user requirements and software
characteristics, which correspond to the
Factor.

SQDC is the quality criteria, based on
designer and implementor viewpoint, to
satisfy the requirements, which correspond
to Criteria.

SQMC is the review checklist, used in
inspecting to determine whether the
quality is good or not. This is corporate
know-how. It can be used to measure
results quantitatively.

145

Relationship between SQRC and SQDC is
shown in Table 3.

Table 3. Relationship between Software QualitY RequirementZ Criteria
and SOItware Quality Design Criteria

Traceabi,
Complete:.,- , v ,
ConsistencY 1010
SimpT' "
ACCXL-., ! I"
Error Tolerance((0
Modularity I ,
Se1 f- I I

-

h
8
.:
.”
2 -
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-

-

-
0

0
-
-
- E -

-

4.4 Methodology

It is suggested that
be measured and

software quality
assured by all Software

Quality Requirement Criteria. To avoid
increasing measurement costs by this
suggestion, SQRC importance ranking and
simple measurement methods were
considered.

"SQRC importance ranking"
SQRC are

importance
classified according to

rank. Rank A means
important", rank

"very
6 is "important", and

rank C is "ordinary". When the criteria is
meaningless for the software, rank is "-*,
which means "not applicable". Quality to
be satisfied prior to others differs for
different software categories and user
requirements. The difference in
importance rank is reflected in the
measurement method. That is, the higher
the required quality is, the more detailed
and precise the measurement is.

I mt methods"
There are three types of measurement

method:

;:
: Accurate method
: Comprehensive method

C : Shorthand method

Accurate method
This measurement method corresponds to

the rank A criteria. For each SQHC, list
all points to be measured, and assess each
point by YES-NO assessment or 4-stage
assessment.

Assessment criteria is as follow. YES
is "satisfactory", and NO is
"unsatisfactoryR for YES-NO assessment. 4
is "very satisfactory", 3 is
"satisfactory', 2 is "almost
satisfactory", and 1 is 'unsatisfactoryD
for 4-stage assessment.

Comprehensive method
On each SQNC, where it is not necessary

to measure in detail, the whole assessme&
object can be measured by 4-stage
assessment.

This method takes less measurement cost
than accurate method.

Shorthand method
On each SQDC, the whole assessment

object can be measured by 4-stage assess-
ment. Though the assessment viewpoint
is too wide to measure quality accurately,
this method is effective to measure
multiple viewpoints at a small cost.

Guide-lines were set the
relationship between import%e :znk for
SQRC and measurement method (cf. Table 4).
In Table 4, SQM corresponds to rank A and
accurate measurement. Other cases are not
considered here.

Table 0. Relationship between quality importance and measurement
method

Quality importance (A) 1 (8)

1 '-Ai Very important 1 Important 1

CC)

Ordinary

(a 1 ACCUrete meas”rement 0 0 0

(b 1 Comprehensive
meas"reme"t X 0 0

(c) Shorthand
meas"rement x x 0

0: standard case

0: case which has sufficient QA cost

x : case not desirable

This SQHAT methodology has been
accepted by a growing number of site
engineers.

4.5 SQMAT Technoloav Transfer

The following two actions have been
taken to cause this methodology to become
more practical.

(1) Support tool development
(2) Training course development and

carrying it out

Support too1 : The too1 provides
functions for quality metrics

146

establishment support and for display of a
graph indicating quality, so a manager can
determine the present quality state and
can execute proper action. Figure 9 shows
an example of the SQRC result. If there is
a difference between the target and the
result, the cause is investigated
thoroughly by graphing the SQDC

Traininq course : A curriculum was
developed for the software engineers and
for the managers. Methodology, case study
and practice are covered. These courses
are held continuously for transferring the
technology at a pace of a hundred persons
a month. As the result, it has been
penetrating into a number of software
development sites in NEC. The necessity
for assessment from a multiple point of
view and the importance of quantitative
control have become more widely
understood.

5. CONCLUSION

Four items have been described. SQM
provides ways to carry out visual
management on software quality, through
indicating the quality quantitatively.
SQMAT can be applied to every scale of
software, because of the economical
measurement method development.
Supplemental use of SQr4 and SQMAT provides
more effective management methods. Further
study on SQMAT assessment and quality
control system development are needed.

The following results were obtained by
using SQM.

(1) The quality target can be concretely
established, because of the quantify-
ing quality.

(2) Quality can be assessed objectively,
because there are only small differ-
ences between reviewers' score.

(3) "Visual management" can be put into
practice through displaying quality
graphically.

SQUAT, which matches the environment in
NEC, brought about other effects.

(1) It can be a common quality criteria,
because of assessing from a fixed
multiple point of view.

(2) It can be applied to small projects,
within a reasonable measurement cost,
because of using the comprehensive or
shorthand mothod.

SQM and SQMAT are necessary
technologies to measure quality
quantitatively f-OK managing software
quality, which is a subject of world-wide
interest. Thus, international standards on
quality criteria, especially SQRC and SQDC
level, will be

Inc.)
necessary. !4etrics

(METRIQS and SQMC (NEC Corp.)
should be integrated and classified by
software category, requirements, etc.

SQrlAT is being assessed now at several
sites in NEC. The strategy is positive
for producing high quality, using a
measuring method reasonable in cost.

By using SQMAT, it is expected that
high quality could be achieved and a good
deal of the cost for test and maintenance
phase could be saved.

Both SQM and SQMAT are self-contained
technologies. They can be used
supplementally ' measuring software
quality, because?he second level quality
criteria is the same (Criteria and SQDC)
and measurement methods don't overlap each
other.

Future themes are as follow.
(1) Development of a quality control

system, which can show on the monitor
both present and future state of
quality at each development phase.

(2) Correlation analysis between the
score by SQMAT and user satisfaction.

As the demand for software increases,
the difference between demand and supply
for software personnel is increasing and
serious problems are arising. It is
therefore necessary to develop both
product engineering and management
engineering. The authors are convinced
that this methodology contributes to
management engineering, from a standpoint
of not only controlling quality but also
managing software development by means of
quality assessment.

ACKNOWLEDGEMENT

The authors thank EIr.Gerald E.Murine of
METRIQS Incorporated, Mr.C.L.(Skip)
Carpenter,Jr. of General Dynamics
Corporation and Mr.Hiroyuki Ochi of YDK
Consultants International for their
helpful SQM guidance and support. They
are grateful to Dt.Yukio Mizuno and
Dr.Kiichi Fujino for their continuous
encouragement and advice to the authors.

147

They also thank Mr.Hiroyuki Mori and other MAINTAINABILITY
QAG colleagues for their contributions to Effort required to locate and fix an
this study. error in an operational program, and

<References>
to test a program.

FLEXIBILITY

[ll

121
131

Boehm,B.W. and others : "Quantitative
Evaluattz; ;f Software Quality , 2nd
ICSE, pp.592-605, 1976
RADC TR-77:3;9, 1977
Murine,G.E. : "Applying Software
Quality Metrics in the Requirements
Analvsis Phase of a Distributive
System", Proceedings from Minnow
Brook Conference, 1980
Murine,G.E. and others : "Applying
Software Quality Metrics", ASQC
Quality Congress Transactions, 1983
Murine,G.E. and others : "Measuring
Software Product Quality", Quality
Progress, vo1.17, No.5, pp.16-20,
1984
Mizuno,Y. : "Software Quality Im-
provement", 6th compsac 82, 1982
Azuma,M. and others : "Quantitative
Assessment Technique of Software
Quality (1) -- required conditions
and operation --I, Information
Processing Society of Japan, 29th
National Conference, p.681-682, 1984
Sunazuka,T. and others : "Quant ita-
tive Assessment Technique of Software
Quality (2) -- metrics and measure-
ment method --", Information Process-

Effort required to modify and/or
transfer an operational program,
and/or to use a program in other ap-
plications.

INTEROPERABILITY
Effort required to couple one System,
one sub-system or one module with
another.

t41

[51

[61

I71

t 81

[91

ing Society of Japan, 29th National
Conference, p.683-684, 1984
Yamagishi,N. and others : "Quantita-
tive Assessment Technique of Software
Quality (3) -- real cases and assess-
ment --n, Information Processing
Society of Japan, 29th National
Conference, p.685-686, 1984

<Appendix> Quality Metrics Definitions

Software Quality Requirement Criteria De-
finitions
CORRECTNESS

Extent to which a program satisfies
its specifications and fulfills the
user's mission objectives.

RELIABILITY
Extent to which a program can be ex-
pected to perform its intended
function with required precision.

EFFICIENCY
Extent to which a program performs a
function with required computing
resources and code.

SECURITY
Extent to which access to software or
data by unauthorized persons can be
controlled.

USABILITY
Effort required to learn, operate,
prepare input, and interpret output
of a program.

148

